PartV: Algorithms & Data Structs

Goal: Focus more closely on scalable parallel techniques, both
computation and data

Announcement

Notice on the calendar that next week’s class
(normally 5/4) is rescheduled for Thursday
(5/6), same time, same place
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Commentary on Homework

Are there any further comments on the Red
/Blue thread program?

How was the Peril-L sample sort exercise?
Randomizing
Finding Cut-points
Global Exchange
Scooch

4/30/10
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Recovering A Missed Chance

Recall from last week ... the balanced () code

6 for (i=start; i<start+len per th; i++) {
temp = symb[i];

7 if (temp == " ("

8 o++;

9 if (temp == ")" ) |
10 o-—;
11 if (o < 0) |
12 ct+; o = 0;
13 }
14 }

The question was raised, could we move
symbli] into a local variable before the if's
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The answer was ‘yes, though a modern
compiler could do this for us’

That answer’s correct, but | missed the
opportunity to say why

This move would not be legal in our assumed
sequentially consistent shared memory model
UNLESS the compiler could establish the global
fact that the array is read only

It is legal in the Peril-L model, which has no
coherency commitments at all
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Reconceptualizing a Computation

Good parallel solutions result from rethinking
a computation ...

Sometimes that amounts to reordering scalar
operations

Sometimes it requires starting from scratch
The SUMMA matrix multiplication algorithm
is the poster computation for rethinking!
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Return To A Lecture 1 Computation

Matrix Multiplication on Processor Grid
Po P Po P Po

P, ||Ps P, [P, P,

c A

P

P3

B
Matrices A and B producing i H
n x n result C where

Temp
—_ *
Crs - E I<ksn Ark Bks
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Applying Scalable Techniques

Assume each processor stores block of C, A,
B; assume “can’t” store all of any matrix

To compute c,. a processor needs all of row r
of A and column s of B

Consider strategies for minimizing data

movement, because that is .
the greatest cost -- what are H

they7 |, .2+ [

o= '+ P *n
o, 0O, O

Temp

n
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Grab All Rows/Columns At Once

If all rows/columns are present, it's local
C A B
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Process t x t Blocks

Use that solution, but incrementally
Referring to local storage

for (r=0; r < t; r++){

for (s=0; s < t; s++){
clrll[s] = 0.0;
for (k=0; k < n; k++){
clrlls] += alr]l[kl*blk]I )
} Sweeter caching
) C A B
} _—
[ —
[
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Change Of View Point

Don't think of row-times-column
C A B

Switch orientation -- by

an | @bl a, b, _img m, W |using a column of A
[ e A and a row of B

n | compute all 1st terms

8y1b11 821P5; of the dot products
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SUMMA

Scalable Universal Matrix Multiplication Alg
Invented by van de Geijn & Watts of UT Austin
Claimed to be the best machine independent MM

Whereas MM is usually A row x B column,

SUMMA is A column x B row because

computation switches sense
Normal: Compute all terms of a dot product
SUMMA: Computer a term of all dot products
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SUMMA Assumptions

Threads have two indices, handle t x t block
Let p = P2, then thread u,v
reads all columns of A for indices u*t:(u+1)*t-1,j
reads all rows of B for indices i,v*t:(v+1)*t-1

The arrays will be in “global” memory and
referenced as needed

C A B
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Higher Level SUMMA View

See SUMMA as an iteration multicasting columns and
rows

Each processor is responsible for sending/recving its
column/row portion at proper time

Followed by a step of computing next term locally

C A B
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Summary of SUMMA

Facts:
vdG & W advocate blocking for msg passing
Works for A being mx nand B beingnxp
Works fine when local region is not square
Load is balanced esp. of Ceiling/Floor is used

Fastest machine independent MM algorithm!
Key algorithm for 524: Reconceptualizes MM
to handle high A, balance work, use BW well,
exploit efficiencies like multicast, ...
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Schwartz’s Algorithm

Jack Schwartz (NYU) asked: What is the optimal number
of processors to combine n values?

Reasonable Answer: binary tree w/ values at leaves has O(log n)
complexity

To this solution add log n values into each leaf
Same complexity (O(log n)), but nlog n values!

Asymptotically, the advantage is small, but the tree edges
require communication

4/30/10 © 2010 Larry Snyder, CSE 16




Schwartz’ Algorithm

Jack Schwartz (NYU) asked: What is optimal number of
processors to combine n values?
Reasonable Answer: binary tree w/ values at leaves has O(log n)
complexity
To this solution add log n values into each leaf
Same complexity (O(log n)), but nlog n values!

Asymptotically, the advantage is small_but the tree edges
require communication
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Schwartz

Generally P is not a variable, and P << n

Use Schwartz as heuristic: Prefer to work at leaves (no
matter how much smaller nis than P) rather than
enlarge (make a deeper) tree, implying tree will have
no more than log, P height

Also, consider higher degree tree -- in cases of parallel
communication (CTA) some of the communication

may overlap
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Block Allocations

T

2

4/30/10

X

The Red/Blue computation illustrated a 2D
-block data parallel allocation of the problem
Generally block allocations are better for data
transmission: surface to volume advantage
... since oanmidges are x-mitted

@E Vs
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Different Regimens

Though block is generally a good allocation
it's not absolute:

P=1, all
comm
wasted

P=2, row-wise saves
column comm

VS

P=4, rows and
blocks are a
wash

point of dim.

return?

Where is the |

4/30/10
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Shadow Regions/Fluff

To simplify local computation in cases where
nearest neighbor’s values x-mitted, allocate
in-place memory (fluff) to store values:

T |

e

il

[uEmEEEnE)

Array can be referenced as if it's all local
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Aspect Ratio

Generally P and n do not allow for a perfectly
balanced allocation ...
Several ways to assign arrays to processors

| HHEHE )
S A
i EREEE

Quotient + Ceiling + Generally a small
remainder floor effect
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Assigning Processor o Work

p, is often assigned “other duties”, such as
Orchestrate 1/0
Root node for combining trees
Work Queue Manager ...
Assigning p, the smallest quantum of work
helps it avoid becoming a bottleneck

For either quotient + remainder or ceiling/floor p,
should be the last processor
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Locality Always Matters

Array computations on CMPs
Dense Allocation vs Fluff
Issue is cache invalidation
Keeping MM managed
intermediate buffers keeps —_ —
array and fluff local (L1) H I H
Sharing causes elements i
at edge to repeatedly 1
invalidate harming locality H H
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Load Balancing

Certain computations are inherently
imbalanced ... LU Decomposition is one

N[N MM MM

gray is balanced work, white & black are finished
Standard block decomposition quickly

becomes very biased
s

Cyclic and block cyclic allocation are one fix
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Cyclic & Block Cyclic

Cyclic allocation means “to deal” the
elements to the processes like cards

Allocating 64 elements to five processes: black,
white, three shades of gray

Block cyclic is the same idea, but rather with
reqular shaped blocks
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Block Cyclic

Consider the LU matrix allocated in 3x2

blocks to four processes:

Then check it midway in

the computation

————— | BEEEs
EmE ARl =
lﬂil -...l.
O [

1A B~
H HHH FHEH
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The technique applies to work allocation as

well as memory allocation
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Generalized Reduce and Scan

The importance of reduce/scan has been
repeated so often, it is by now our mantra

In nearly all languages the only available
operatorsare +, *, min, max, &§&, | |

The concepts apply much more broadly

Goal: Understand how to make user-defined
variants of reduce/scan specialized to specific
situations
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An Important Detall

Recall scan specifics

+ scan of:

is either: 1 3 6 10 15 21 28 36 [inclusive]
oritis: 0 1 3 6 10 15 21 28 [exclusive]

Important fact about standard scans

o—scan, (X) = a—scan (X) ax

inclusive exclusive

For technical reasons prefer exclusive, for
today, think inclusive
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Examples Applicable Computations

Reduce
Second smallest, or generally, kth smallest
Histogram, counts items in k buckets
Length of longest run of value 1s
Index of first occurrence of x
Scan
Team standings
Find the longest sequence of 1s
Index of most recent occurrence
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Structure of Computation

Local co

Global log, P tree

Begin by applying Schwartz idea to problem

mputation

—

\
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Recall Parallel Prefix Algorithm

Compute sum going up: reduce 0
. : |
Compute prefixes going down 76

36

/

N\

26

Introduce a virtual
parent, the sum of
values to tree’s left: 0

40

/N

30

I

Le]

| [ [Tafle] J[  [1o] [16]

[1e] [2] [ [s]

6

4/30/10

4

16 10
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Parallel Prefix Algorithm

Compute sum going up: reduce

| Invariant: Parent data
Compute prefixes going down P is sum of elements to

/T[ 0+36 \Ieftof subtree

36 40
/ ;r\k |
10 26 30 10
/ |
Lel [ [alle] J[ [wo]fse] || [af[2] J[ [e]
6 4 16 10 16 14 2 8
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Compute sum going up iJ Invariant: Parent data
Figure prefixes going down 76 Is sum of elements to

gure p going o[ 036 left of subtree

36
36 0 40
/ | N\ / | N\
10 26 30 10
|
Lel L Telfe] J[ [eoff[se] [[ [aff2]f [[ [s]
6 4 16 10 16 14 2 8
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Parallel Prefix Algorithm

Compute sum going up 1) Invariant: Parent data
Figure prefixes going down . is sum of elements to
0| o+36 left of subtree
36 0 36 40
/o] o+10 36 36+30\
10 26 30 10
| / |
Lel [ [allse] J[ [wo]fse] || [af[2] J[ [e]
6 4 16 10 16 14 2 8
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Parallel Prefix Algorithm

Each prefix is computed 0
in 2log ntime, if P=n !
76
o[ o+36
36 40
o] o+10 36| 36+30
10 26 30 10
o o+6 10[10+16 36| 36+16 66| 66+2
[6] 6t0 | [ 4+6 [ 4] [16]16+10] [10+26 [10] [16] 16+36 ] [ 14+52[14] [ 2] 2+66 | | 8+e8 [ 8]
6 10 26 36 52 66 68 76
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Introduce Four Functions

x = reduce
X =scan

Make four non-communication operations
init () initialize the reduce/scan
accum () perform local computation
combine () perform tree combining
Xx_gen () produce the final result for either op

Incorporate into Schwartz-type logic

4/30/10 © 2010 Larry Snyder, CSE
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Assignment of Functions

Init: Each leaf
Accum: Aggregate
each array value
Combine: Each
tree node
reduceGen: Root

Operand: A 2 a a

4/30/10 © 2010 Larry Snyder, CSE
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Example: +<<A Definitions

Sum reduce uses a temporary value, called a
tally, to hold items during processing
Four reduce functions:
tally init () {tal = new tally; tal=0;
return tal;}
tally accum(int op val, tally tal)
{tal += op val; return tal; }
tally combine(tally left, tally right)
{return left + right; }
int reduce gen(tally ans) {return ans;}
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More Involved Case

Consider Second Smallest -- useful, perhaps for finding
smallest nonzero among non-negative values
tallyis astruct of the smallest and next smallest
found so far {float sm, nsm}

Four functions:

tally init() {
pair = new tally;
pair.sm = maxFloat;
pair.nsm = maxFloat;
return pair; }

4/30/10 © 2010 Larry Snyder, CSE
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Second Smallest (Continued)

Accumulate
tally accum(float op_val, tally tal) {
if (op_val < tal.sm) {
tal.nsm = tal.sm;
tal.sm = op_val;
} else {
if (op_val > tal.sm && op_val < tal.nsm)
tal.nsm = op val;
}

return tal;
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Second Smallest (Continued)

tally combine(tally left, tally right) {
return
accum(left.nsm, accum(left.sm, right)) ;}

int reduce_gen(tally ans) {return ans.nsm;}
Notice that the signatures are all different

Conceptually easy to write equivalent code,
but reduction abstraction clarifies
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Custom Use of Parallel Prefix

PoPP presents the state of the art of user-
defined scans
The conclusion must be, that generally it is
inconvenient, cumbersome, difficult
requires low-level knowledge and interface
But, custom scan has wide application

Take a moment to think “outside the box” on
adding UD Scan to a programmer’s tool belt
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Essential Feature of || Prefix

Because the definition of the computation is in
terms of prefixes we usually see scan as a
sequential left to right operation

But studying the implementational or compiler
view of the computation, we notice ...

From the backbone logic of the tree evaluation
that the crux is combining adjacent sequences

4/30/10 © 2010 Larry Snyder, CSE 46
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The Main Idea

4/30/10 © 2010 Larry Snyder, CSE 47

Rethinking Scan As Combining

Accordingly, think of the operation as

X, X @ Xy, e Xy

where
the sequences are contiguous
begin anywhere, end anywhere
any nonzero length

Additionally, think about
The data to be merged from the two halves
The basis case starting with initial data
The completion processing

4/30/10 © 2010 Larry Snyder, CSE 48
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Consequences of ® view

To make the new view concrete, notice that
The substrings need a descriptor for state: tally
The basis case is an initial tally value: Initial(inval.)

in each position

The result of x, ... x, D x,, ... X, is the root value of
the implementation tree, but the computation
may not be finished [down sweep] implying that
there is a finalize step: outval =Final()

Defining the tally, tnitial( ), 1tally®rtally
and Finalize () suffices
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Three Parts of + reduce

The tally is a single float

Initialize:

float tally = inval; [[initialize
Complete:

outval = tally; /[final output from root
Combine: ltally @ rtally

float tally = Itally + rtally; [Isum is left+right

4/30/10 © 2010 Larry Snyder, CSE 50
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Three Parts of + Scan

Initialize [each item in sequence]:
pair tally = new Pair()
float tally.pre = o; float tally.sum = inval; //initialize
Complete [each item in sequence]:
outval = tally.pre + tally.sum /[final output
Combine: Itally @ rtally
pair tally = new Pair()

float tally.pre = Itally.pre;
float tally.sums=ltally.sum+rtally.sum;  //sum is left+right

THEN: Itally.pre = tally.pre; [/left prefix is prefix
rtally.pre = tally.pre+left.sum

//descriptor is a pair

//describe combin’n
[Iprefix is left prefix

4/30/10 © 2010 Larry Snyder, CSE
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[[right is prefix+l.sum

Three Parts of +scan [cartoon]

4/30/10 © 2010 Larry Snyder, CSE
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Three Parts of +scan [combine]

37 28 @ 536422
37 28536422
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Three Parts of +scan [downsweep]

3728 @® 536422 37 28®@® 5361422
37 28536422 37 28536422
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Three Parts of +scan [final]

3 7 2 8@®5 3 6 4 2 2
103 110 108 116 121 124 130 134 136 138
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Parts of + Scan

Initialize [each item in sequence]:
pair tally = new Pair() //descriptor is a pair
float tally.pre = o; float tally.sum = inval; //initialize
Complete [each item in sequence]:
outval = tally.pre + tally.sum /[final output
4/30/10 ©2010 Larry Snyder, CSE 56
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Parts of + Scan

Initialize [each item in sequence]:
pair tally = new Pair() //descriptor is a pair
float tally.pre = o; float tally.sum = inval; //initialize
Complete [each item in sequence]:
outval = tally.pre + tally.sum /[final output
Combine: Itally @ rtally
pair tally = new Pair() //describe combin’n
float tally.pre = ltally.pre; [Iprefix is left prefix
float tally.sum=ltally.sum+rtally.sum;  //sum is left+right
THEN: Itally.pre = tally.pre; [/left prefix is prefix
rtally.pre = tally.pre+left.sum [[right is prefix+l.sum
4130110 ©2010 Larry Snyder, CSE 57

Another Ex.: Longest Run of x

How do we think of this computation as
combining two subcomputations

xX0000x0xxxx @  xO0xxxxxx000
Obviously
X runs can be at the start, interior, or end
Combining will merge a start and end run

... Making it an interior run
The tally needs to keep this information

58

4/30/10 © 2010 Larry Snyder, CSE
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Longest Run of x [a reduce cartoon]

xX0000x0Oxxxx @ X0xxxxxx000
xX0000x0xxxxx0xxxxxx000
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Longest Run of x [a reduce cartoon]

xX0000x0Oxxxx @ X0xxxxxx000
xX0000x0xxxxx0xxxxxx000

4/30/10 © 2010 Larry Snyder, CSE 60
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Longest Run of x [a reduce cartoon]

e

xX0000x0Oxxxx @ X0xxxxxx000
xX0000x0xxxxx0xxxxxx000
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Longest Run of x [a reduce cartoon]

4+1<6

L=

xX0000x0Oxxxx @ X0xxxxxx000
xX0000x0xxxxx0xxxxxx000
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Longest Run of x [a reduce cartoon]

max

xX0000x0xxxx @  x0xxxxxx000
xX0000x0xxxxx0xxxxxx000
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Balanced Parentheses...

lllustrate for the matching parentheses
Carry along the count of excess of opens/closes
Cancel if matched, else record the excess
Output “yes” if excess is 0

Descriptor for “balanced parens” is two ints,
excess open parens opCount and excess closed
parents clCount

4/30/10 © 2010 Larry Snyder, CSE 64
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A || Prefix Solution

Visualize a processor per point (not really)
Each point is initialized to its data structure
Pairs are combined in some way
Process continues until there is one descriptor
Compute the final result

lllustrate on this problem: [a-f(c)*(d+f(e)) |

a-f (c)*(d+f (e))
000100010001 0O00O
0000010000CO0O0O0CT11
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Tri-Partite Parallel Prefix

Create a tally:
if (inval == ' (' )
int tally.opCount = 1;

else

int tally.opCount = 0;
if (inval == ")' ) {

int tally.clCount = 1;
else

int tally.clCount = 0;

Combine two tallies:
tally.clCount = ltally.clCount;
tally.opCount = rtally.opCount;
int temp = ltally.opCount - rtally.clCount;
if (temp < 0)

tally.clCount += abs(temp);
else

tally.opCount += temp;

Finalize result from tally:
outval = (tally.opCount == 0) && (tally.clCount == 0);
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Matching
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Parens
Working out a -
. 00
the details 0 0
Matching
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Matching
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Matching

Parens

Working out a-f (c)*(d+f(e))
. 00L0100010001000
the details Lo oY 0 0100000001 1
I\/Iatching a- /f( c) *( df £( e) )
1 0o 1 0 1 0 0
‘o o 1 o o0 o 1 1
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Matching

Parens
Working out a-f(c)*(d+f(e))
. 000100010001000
the details 0000010000000 11
I\/Iatching a- £( c) *( df £( e) )
o 1 0 1 0 1 0 0
o 0o 1 0o o0 0 1 1
a-f ( c) * ( d+f ( e))
1 1 1 0
0 1 0 2
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Matching

Parens
Working out a - f (c) x|
. 00O01O0O0O0T1
the details 00000100
Matching am Eloe)
0 1 0 1
0 0 1 0
a—1( c) *(
1 1
0 1
a-f(c)*(
1
0
a-f(c)*(d+f(e))
0
0
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Matching

Parens

Working out a-f)c)*(d+f(e))
. 0 0O0OO0OO0OODOD1TOOODILITOODO

the details 0001010000000 71 1

Mismatching
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Matching

Parens

Working out
the details
Mismatching

4/30/10

H O~ o-—
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Matching

Parens

Working out
the details
Mismatching
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Matching

Parens
Working out a-f)c)*(d+f (e))
. 000000010001000
the details 0001010000000 11
Mismatching a= B o *( dt £C &) )
o 0 0 1 0 1 0 0
o 1 1 o o0 0 1 1
a-f) c) * ( d+£ ( e))
0 1 1 0
1 1 0 2
a-f)c)* ( d+f (e))
1 0
2 1
a-f)c) * (d+f (e))
0
2
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Compiling The || Prefix

One last question concerned how the 3 parts
of the || prefix specification fit into the tree
model shown for prefix sum & Schwartz?

Short answer, they don’t have to
Compilers can produce excellent code from spec

F)2i F)2i+1

googoood Uoogooobd | [ local value

I
.Combine
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Emphasizing the Point

At the start of class we cited bal-parens — the
leaf code for a Schwartz approach

[ for (i=start; i<start+len per th; i++) {

7 if (symb[i] == "(" )
8 o++;

9 if (symb[i] == ")" ) |
10 o-—;

11 if (o < 0) {

12 ct+; o = 0;

13 }
14 }

Combining required entirely different code
The Infix approach captures the whole thing,
except for pre- and post-operations
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Summary on || Prefix

By thinking abstractly of carrying along
information that describes the sequence,
combining adjacent subsequences, and
finally extracting a value, it is possible to
move directly to a || prefix solution

Using the abstraction is an intellectually
different way of thinking about sequential
computations
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HW 5, Part | ... for Tuesday

Think of a “sequential computation” that can
be expressed as a UD reduce or scan
Examples from this lecture are off limits

Prefer a scan; it's often easy to convert a reduce
into a scan: A 10-bucket histogram (a reduce) is
related to a 10-team “league standings” (a scan)
that gives won/loss for game input, team t beat u

Turn in a document giving an infix
formulation of the computation together
with a worked example
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HW 5, Part |l ... for Thursday

Write an MPI program for the SUMMA alg

Create rectangular arrays A, B, C, filling A, B
Send portions of A, B to worker processes
Iterate over common dimension,

send columns of A, rows of B to other processes

for each, multiply A elements times B elements and

accumulate into local portion of C
Measure time, except for initialization, and
report the “usual stuff” for different numbers of
processes
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