PartV: Algorithms & Data Structs

Goal: Focus more closely on scalable parallel techniques, both
computation and data

Announcement

Notice on the calendar that next week’s class
(normally 5/4) is rescheduled for Thursday
(5/6), same time, same place

4/30/10 © 2010 Larry Snyder, CSE

Commentary on Homework

Are there any further comments on the Red
/Blue thread program?

How was the Peril-L sample sort exercise?
Randomizing
Finding Cut-points
Global Exchange
Scooch

4/30/10

© 2010 Larry Snyder, CSE

Recovering A Missed Chance

Recall from last week ... the balanced () code

6 for (i=start; i<start+len per th; i++) {
temp = symb[i];

7 if (temp == " ("

8 o++;

9 if (temp == ")") |
10 o-—;
11 if (o < 0) |
12 ct+; o = 0;
13 }
14 }

The question was raised, could we move
symbli] into a local variable before the if's

4/30/10 © 2010 Larry Snyder, CSE

The answer was ‘yes, though a modern
compiler could do this for us’

That answer’s correct, but | missed the
opportunity to say why

This move would not be legal in our assumed
sequentially consistent shared memory model
UNLESS the compiler could establish the global
fact that the array is read only

It is legal in the Peril-L model, which has no
coherency commitments at all

4/30/10 © 2010 Larry Snyder, CSE

Reconceptualizing a Computation

Good parallel solutions result from rethinking
a computation ...

Sometimes that amounts to reordering scalar
operations

Sometimes it requires starting from scratch
The SUMMA matrix multiplication algorithm
is the poster computation for rethinking!

4/30/10 © 2010 Larry Snyder, CSE

Return To A Lecture 1 Computation

Matrix Multiplication on Processor Grid
Po P Po P Po

P, ||Ps P, [P, P,

c A

P

P3

B
Matrices A and B producing i H
n x n result C where

Temp
—_ *
Crs - E I<ksn Ark Bks

4/30/10 © 2010 Larry Snyder, CSE 7

Applying Scalable Techniques

Assume each processor stores block of C, A,
B; assume “can’t” store all of any matrix

To compute c,. a processor needs all of row r
of A and column s of B

Consider strategies for minimizing data

movement, because that is .
the greatest cost -- what are H

they7 |, .2+ [

o= '+ P *n
o, 0O, O

Temp

n

4/30/10 © 2010 Larry Snyder, CSE 8

Grab All Rows/Columns At Once

If all rows/columns are present, it's local
C A B

4/30/10 © 2010 Larry Snyder, CSE 9

Process t x t Blocks

Use that solution, but incrementally
Referring to local storage

for (r=0; r < t; r++){

for (s=0; s < t; s++){
clrll[s] = 0.0;
for (k=0; k < n; k++){
clrlls] += alr]l[kl*blk]I)
} Sweeter caching
) C A B
} _—
[—
[

4/30/10 © 2010 Larry Snyder, CSE 10

Change Of View Point

Don't think of row-times-column
C A B

Switch orientation -- by

an | @bl a, b, _img m, W |using a column of A
[e A and a row of B

n | compute all 1st terms

8y1b11 821P5; of the dot products

4/30/10 © 2010 Larry Snyder, CSE 1"

SUMMA

Scalable Universal Matrix Multiplication Alg
Invented by van de Geijn & Watts of UT Austin
Claimed to be the best machine independent MM

Whereas MM is usually A row x B column,

SUMMA is A column x B row because

computation switches sense
Normal: Compute all terms of a dot product
SUMMA: Computer a term of all dot products

4/30/10 © 2010 Larry Snyder, CSE 12

SUMMA Assumptions

Threads have two indices, handle t x t block
Let p = P2, then thread u,v
reads all columns of A for indices u*t:(u+1)*t-1,j
reads all rows of B for indices i,v*t:(v+1)*t-1

The arrays will be in “global” memory and
referenced as needed

C A B

4/30/10 © 2010 Larry Snyder, CSE

Higher Level SUMMA View

See SUMMA as an iteration multicasting columns and
rows

Each processor is responsible for sending/recving its
column/row portion at proper time

Followed by a step of computing next term locally

C A B

4/30/10 © 2010 Larry Snyder, CSE

Summary of SUMMA

Facts:
vdG & W advocate blocking for msg passing
Works for A being mx nand B beingnxp
Works fine when local region is not square
Load is balanced esp. of Ceiling/Floor is used

Fastest machine independent MM algorithm!
Key algorithm for 524: Reconceptualizes MM
to handle high A, balance work, use BW well,
exploit efficiencies like multicast, ...

4/30/10 © 2010 Larry Snyder, CSE 15

Schwartz’s Algorithm

Jack Schwartz (NYU) asked: What is the optimal number
of processors to combine n values?

Reasonable Answer: binary tree w/ values at leaves has O(log n)
complexity

To this solution add log n values into each leaf
Same complexity (O(log n)), but nlog n values!

Asymptotically, the advantage is small, but the tree edges
require communication

4/30/10 © 2010 Larry Snyder, CSE 16

Schwartz’ Algorithm

Jack Schwartz (NYU) asked: What is optimal number of
processors to combine n values?
Reasonable Answer: binary tree w/ values at leaves has O(log n)
complexity
To this solution add log n values into each leaf
Same complexity (O(log n)), but nlog n values!

Asymptotically, the advantage is small_but the tree edges
require communication

4/30/10 © 2010 Larry Snyder, CSE

Schwartz

Generally P is not a variable, and P << n

Use Schwartz as heuristic: Prefer to work at leaves (no
matter how much smaller nis than P) rather than
enlarge (make a deeper) tree, implying tree will have
no more than log, P height

Also, consider higher degree tree -- in cases of parallel
communication (CTA) some of the communication

may overlap

4/30/10 © 2010 Larry Snyder, CSE 18

Block Allocations

T

2

4/30/10

X

The Red/Blue computation illustrated a 2D
-block data parallel allocation of the problem
Generally block allocations are better for data
transmission: surface to volume advantage
... since oanmidges are x-mitted

@E Vs

© 2010 Larry Snyder, CSE

O

o

Different Regimens

Though block is generally a good allocation
it's not absolute:

P=1, all
comm
wasted

P=2, row-wise saves
column comm

VS

P=4, rows and
blocks are a
wash

point of dim.

return?

Where is the |

4/30/10

© 2010 Larry Snyder, CSE

20

10

Shadow Regions/Fluff

To simplify local computation in cases where
nearest neighbor’s values x-mitted, allocate
in-place memory (fluff) to store values:

T |

e

il

[uEmEEEnE)

Array can be referenced as if it's all local

4/30/10 © 2010 Larry Snyder, CSE 21

Aspect Ratio

Generally P and n do not allow for a perfectly
balanced allocation ...
Several ways to assign arrays to processors

| HHEHE)
S A
i EREEE

Quotient + Ceiling + Generally a small
remainder floor effect

4/30/10 © 2010 Larry Snyder, CSE 22

Assigning Processor o Work

p, is often assigned “other duties”, such as
Orchestrate 1/0
Root node for combining trees
Work Queue Manager ...
Assigning p, the smallest quantum of work
helps it avoid becoming a bottleneck

For either quotient + remainder or ceiling/floor p,
should be the last processor

4/30/10 © 2010 Larry Snyder, CSE 23

Locality Always Matters

Array computations on CMPs
Dense Allocation vs Fluff
Issue is cache invalidation
Keeping MM managed
intermediate buffers keeps —_ —
array and fluff local (L1) H I H
Sharing causes elements i
at edge to repeatedly 1
invalidate harming locality H H

4/30/10 © 2010 Larry Snyder, CSE 24

12

Load Balancing

Certain computations are inherently
imbalanced ... LU Decomposition is one

N[N MM MM

gray is balanced work, white & black are finished
Standard block decomposition quickly

becomes very biased
s

Cyclic and block cyclic allocation are one fix

4/30/10 © 2010 Larry Snyder, CSE 25

Cyclic & Block Cyclic

Cyclic allocation means “to deal” the
elements to the processes like cards

Allocating 64 elements to five processes: black,
white, three shades of gray

Block cyclic is the same idea, but rather with
reqular shaped blocks

4/30/10 © 2010 Larry Snyder, CSE 26

13

Block Cyclic

Consider the LU matrix allocated in 3x2

blocks to four processes:

Then check it midway in

the computation

————— | BEEEs
EmE ARl =
lﬂil -...l.
O [

1A B~
H HHH FHEH

4/30/10 © 2010 Larry Snyder, CSE

27

The technique applies to work allocation as

well as memory allocation

4/30/10 © 2010 Larry Snyder, CSE

28

14

4/30/10 © 2010 Larry Snyder, CSE 29

Generalized Reduce and Scan

The importance of reduce/scan has been
repeated so often, it is by now our mantra

In nearly all languages the only available
operatorsare +, *, min, max, &§&, | |

The concepts apply much more broadly

Goal: Understand how to make user-defined
variants of reduce/scan specialized to specific
situations

4/30/10 © 2010 Larry Snyder, CSE 30

15

An Important Detall

Recall scan specifics

+ scan of:

is either: 1 3 6 10 15 21 28 36 [inclusive]
oritis: 0 1 3 6 10 15 21 28 [exclusive]

Important fact about standard scans

o—scan, (X) = a—scan (X) ax

inclusive exclusive

For technical reasons prefer exclusive, for
today, think inclusive

4/30/10 © 2010 Larry Snyder, CSE 31

Examples Applicable Computations

Reduce
Second smallest, or generally, kth smallest
Histogram, counts items in k buckets
Length of longest run of value 1s
Index of first occurrence of x
Scan
Team standings
Find the longest sequence of 1s
Index of most recent occurrence

4/30/10 © 2010 Larry Snyder, CSE 32

16

Structure of Computation

Local co

Global log, P tree

Begin by applying Schwartz idea to problem

mputation

—

\

4/30/10

© 2010 Larry Snyder, CSE

Lval..val |l val..val [val..vall[val..val |[val..val |[val..val |[val..val |[val..val |

33

Recall Parallel Prefix Algorithm

Compute sum going up: reduce 0
. : |
Compute prefixes going down 76

36

/

N\

26

Introduce a virtual
parent, the sum of
values to tree’s left: 0

40

/N

30

I

Le]

| [[Tafle] J[[1o] [16]

[1e] [2] [[s]

6

4/30/10

4

16 10

© 2010 Larry Snyder, CSE

16

14

2 8

34

17

Parallel Prefix Algorithm

Compute sum going up: reduce

| Invariant: Parent data
Compute prefixes going down P is sum of elements to

/T[0+36 \Ieftof subtree

36 40
/ ;r\k |
10 26 30 10
/ |
Lel [[alle] J[[wo]fse] || [af[2] J[[e]
6 4 16 10 16 14 2 8
4/30/10 © 2010 Larry Snyder, CSE 35

Compute sum going up iJ Invariant: Parent data
Figure prefixes going down 76 Is sum of elements to

gure p going o[036 left of subtree

36
36 0 40
/ | N\ / | N\
10 26 30 10
|
Lel L Telfe] J[[eoff[se] [[[aff2]f [[[s]
6 4 16 10 16 14 2 8

4/30/10 © 2010 Larry Snyder, CSE 36

18

Parallel Prefix Algorithm

Compute sum going up 1) Invariant: Parent data
Figure prefixes going down . is sum of elements to
0| o+36 left of subtree
36 0 36 40
/o] o+10 36 36+30\
10 26 30 10
| / |
Lel [[allse] J[[wo]fse] || [af[2] J[[e]
6 4 16 10 16 14 2 8

4/30/10 © 2010 Larry Snyder, CSE

37

Parallel Prefix Algorithm

Each prefix is computed 0
in 2log ntime, if P=n !
76
o[o+36
36 40
o] o+10 36| 36+30
10 26 30 10
o o+6 10[10+16 36| 36+16 66| 66+2
[6] 6t0 | [4+6 [4] [16]16+10] [10+26 [10] [16] 16+36] [14+52[14] [2] 2+66 | | 8+e8 [8]
6 10 26 36 52 66 68 76
4/30/10 © 2010 Larry Snyder, CSE

38

19

Introduce Four Functions

x = reduce
X =scan

Make four non-communication operations
init () initialize the reduce/scan
accum () perform local computation
combine () perform tree combining
Xx_gen () produce the final result for either op

Incorporate into Schwartz-type logic

4/30/10 © 2010 Larry Snyder, CSE

39

Assignment of Functions

Init: Each leaf
Accum: Aggregate
each array value
Combine: Each
tree node
reduceGen: Root

Operand: A 2 a a

4/30/10 © 2010 Larry Snyder, CSE

40

20

Example: +<<A Definitions

Sum reduce uses a temporary value, called a
tally, to hold items during processing
Four reduce functions:
tally init () {tal = new tally; tal=0;
return tal;}
tally accum(int op val, tally tal)
{tal += op val; return tal; }
tally combine(tally left, tally right)
{return left + right; }
int reduce gen(tally ans) {return ans;}

4/30/10 © 2010 Larry Snyder, CSE

41

More Involved Case

Consider Second Smallest -- useful, perhaps for finding
smallest nonzero among non-negative values
tallyis astruct of the smallest and next smallest
found so far {float sm, nsm}

Four functions:

tally init() {
pair = new tally;
pair.sm = maxFloat;
pair.nsm = maxFloat;
return pair; }

4/30/10 © 2010 Larry Snyder, CSE

42

21

Second Smallest (Continued)

Accumulate
tally accum(float op_val, tally tal) {
if (op_val < tal.sm) {
tal.nsm = tal.sm;
tal.sm = op_val;
} else {
if (op_val > tal.sm && op_val < tal.nsm)
tal.nsm = op val;
}

return tal;

4/30/10 © 2010 Larry Snyder, CSE 43

Second Smallest (Continued)

tally combine(tally left, tally right) {
return
accum(left.nsm, accum(left.sm, right)) ;}

int reduce_gen(tally ans) {return ans.nsm;}
Notice that the signatures are all different

Conceptually easy to write equivalent code,
but reduction abstraction clarifies

4/30/10 © 2010 Larry Snyder, CSE 44

22

Custom Use of Parallel Prefix

PoPP presents the state of the art of user-
defined scans
The conclusion must be, that generally it is
inconvenient, cumbersome, difficult
requires low-level knowledge and interface
But, custom scan has wide application

Take a moment to think “outside the box” on
adding UD Scan to a programmer’s tool belt

4/30/10 © 2010 Larry Snyder, CSE 45

Essential Feature of || Prefix

Because the definition of the computation is in
terms of prefixes we usually see scan as a
sequential left to right operation

But studying the implementational or compiler
view of the computation, we notice ...

From the backbone logic of the tree evaluation
that the crux is combining adjacent sequences

4/30/10 © 2010 Larry Snyder, CSE 46

23

The Main Idea

4/30/10 © 2010 Larry Snyder, CSE 47

Rethinking Scan As Combining

Accordingly, think of the operation as

X, X @ Xy, e Xy

where
the sequences are contiguous
begin anywhere, end anywhere
any nonzero length

Additionally, think about
The data to be merged from the two halves
The basis case starting with initial data
The completion processing

4/30/10 © 2010 Larry Snyder, CSE 48

24

Consequences of ® view

To make the new view concrete, notice that
The substrings need a descriptor for state: tally
The basis case is an initial tally value: Initial(inval.)

in each position

The result of x, ... x, D x,, ... X, is the root value of
the implementation tree, but the computation
may not be finished [down sweep] implying that
there is a finalize step: outval =Final()

Defining the tally, tnitial(), 1tally®rtally
and Finalize () suffices

4/30/10 © 2010 Larry Snyder, CSE 49

Three Parts of + reduce

The tally is a single float

Initialize:

float tally = inval; [[initialize
Complete:

outval = tally; /[final output from root
Combine: ltally @ rtally

float tally = Itally + rtally; [Isum is left+right

4/30/10 © 2010 Larry Snyder, CSE 50

25

Three Parts of + Scan

Initialize [each item in sequence]:
pair tally = new Pair()
float tally.pre = o; float tally.sum = inval; //initialize
Complete [each item in sequence]:
outval = tally.pre + tally.sum /[final output
Combine: Itally @ rtally
pair tally = new Pair()

float tally.pre = Itally.pre;
float tally.sums=ltally.sum+rtally.sum; //sum is left+right

THEN: Itally.pre = tally.pre; [/left prefix is prefix
rtally.pre = tally.pre+left.sum

//descriptor is a pair

//describe combin’n
[Iprefix is left prefix

4/30/10 © 2010 Larry Snyder, CSE

51

[[right is prefix+l.sum

Three Parts of +scan [cartoon]

4/30/10 © 2010 Larry Snyder, CSE

52

26

Three Parts of +scan [combine]

37 28 @ 536422
37 28536422

4/30/10 © 2010 Larry Snyder, CSE 53

Three Parts of +scan [downsweep]

3728 @® 536422 37 28®@® 5361422
37 28536422 37 28536422

4/30/10 © 2010 Larry Snyder, CSE 54

27

Three Parts of +scan [final]

3 7 2 8@®5 3 6 4 2 2
103 110 108 116 121 124 130 134 136 138

4/30/10 © 2010 Larry Snyder, CSE 55

Parts of + Scan

Initialize [each item in sequence]:
pair tally = new Pair() //descriptor is a pair
float tally.pre = o; float tally.sum = inval; //initialize
Complete [each item in sequence]:
outval = tally.pre + tally.sum /[final output
4/30/10 ©2010 Larry Snyder, CSE 56

28

Parts of + Scan

Initialize [each item in sequence]:
pair tally = new Pair() //descriptor is a pair
float tally.pre = o; float tally.sum = inval; //initialize
Complete [each item in sequence]:
outval = tally.pre + tally.sum /[final output
Combine: Itally @ rtally
pair tally = new Pair() //describe combin’n
float tally.pre = ltally.pre; [Iprefix is left prefix
float tally.sum=ltally.sum+rtally.sum; //sum is left+right
THEN: Itally.pre = tally.pre; [/left prefix is prefix
rtally.pre = tally.pre+left.sum [[right is prefix+l.sum
4130110 ©2010 Larry Snyder, CSE 57

Another Ex.: Longest Run of x

How do we think of this computation as
combining two subcomputations

xX0000x0xxxx @ xO0xxxxxx000
Obviously
X runs can be at the start, interior, or end
Combining will merge a start and end run

... Making it an interior run
The tally needs to keep this information

58

4/30/10 © 2010 Larry Snyder, CSE

29

Longest Run of x [a reduce cartoon]

xX0000x0Oxxxx @ X0xxxxxx000
xX0000x0xxxxx0xxxxxx000

4/30/10 © 2010 Larry Snyder, CSE 59

Longest Run of x [a reduce cartoon]

xX0000x0Oxxxx @ X0xxxxxx000
xX0000x0xxxxx0xxxxxx000

4/30/10 © 2010 Larry Snyder, CSE 60

30

Longest Run of x [a reduce cartoon]

e

xX0000x0Oxxxx @ X0xxxxxx000
xX0000x0xxxxx0xxxxxx000

4/30/10 © 2010 Larry Snyder, CSE 61

Longest Run of x [a reduce cartoon]

4+1<6

L=

xX0000x0Oxxxx @ X0xxxxxx000
xX0000x0xxxxx0xxxxxx000

4/30/10 © 2010 Larry Snyder, CSE 62

31

Longest Run of x [a reduce cartoon]

max

xX0000x0xxxx @ x0xxxxxx000
xX0000x0xxxxx0xxxxxx000

4/30/10 © 2010 Larry Snyder, CSE 63

Balanced Parentheses...

lllustrate for the matching parentheses
Carry along the count of excess of opens/closes
Cancel if matched, else record the excess
Output “yes” if excess is 0

Descriptor for “balanced parens” is two ints,
excess open parens opCount and excess closed
parents clCount

4/30/10 © 2010 Larry Snyder, CSE 64

32

A || Prefix Solution

Visualize a processor per point (not really)
Each point is initialized to its data structure
Pairs are combined in some way
Process continues until there is one descriptor
Compute the final result

lllustrate on this problem: [a-f(c)*(d+f(e)) |

a-f (c)*(d+f (e))
000100010001 0O00O
0000010000CO0O0O0CT11

4/3010 ©2010 Larry Snyder, CSE 65

Tri-Partite Parallel Prefix

Create a tally:
if (inval == ' (')
int tally.opCount = 1;

else

int tally.opCount = 0;
if (inval == ")') {

int tally.clCount = 1;
else

int tally.clCount = 0;

Combine two tallies:
tally.clCount = ltally.clCount;
tally.opCount = rtally.opCount;
int temp = ltally.opCount - rtally.clCount;
if (temp < 0)

tally.clCount += abs(temp);
else

tally.opCount += temp;

Finalize result from tally:
outval = (tally.opCount == 0) && (tally.clCount == 0);

4/30/10 © 2010 Larry Snyder, CSE 66

33

Matching

O O Hh

O =~

O O 0

B o~

O O x
O P~

o o Q
o o +

O O Hh
O =~

o O 0

B o~

B o~

Parens
Working out a -
. 00
the details 0 0
Matching

67

Matching

Parens
Working out a -
. 00
the details 0 0
Matching o
0

O = Hh O O Hh
O P~

= o Q O o0

B o~

O x O O X
O P~

o o0 o oQ
o o +

O = Hh O O Hh
O P~

= O 0h O o0
o~

H O~ o-—

68

34

Matching

Parens

Working out a-f (c)*(d+f(e))
. 00L0100010001000
the details Lo oY 0 0100000001 1
I\/Iatching a- /f(c) *(df £(e))
1 0o 1 0 1 0 0
‘o o 1 o o0 o 1 1

4/30/10 © 2010 Larry Snyder, CSE 69

Matching

Parens
Working out a-f(c)*(d+f(e))
. 000100010001000
the details 0000010000000 11
I\/Iatching a- £(c) *(df £(e))
o 1 0 1 0 1 0 0
o 0o 1 0o o0 0 1 1
a-f (c) * (d+f (e))
1 1 1 0
0 1 0 2
4/30/10 © 2010 Larry Snyder, CSE 70

35

Matching

Parens
Working out a - f (c) x|
. 00O01O0O0O0T1
the details 00000100
Matching am Eloe)
0 1 0 1
0 0 1 0
a—1(c) *(
1 1
0 1
a-f(c)*(
1
0
a-f(c)*(d+f(e))
0
0
4/30/10 © 2010 Larry Snyder, CSE

o o Q
o o +
o —~
- o~

O = Hh O O Hh

N O D - O OO0

H O~ o-—

71

Matching

Parens

Working out a-f)c)*(d+f(e))
. 0 0O0OO0OO0OODOD1TOOODILITOODO

the details 0001010000000 71 1

Mismatching

4/30/10 © 2010 Larry Snyder, CSE

72

36

Matching

Parens

Working out
the details
Mismatching

4/30/10

H O~ o-—

© 2010 Larry Snyder, CSE

73

Matching

Parens

Working out
the details
Mismatching

4/30/10

o O |

= O 0 OO0 OO W
|
Hh

= O Hh O O Hh

B o~

B o~
O % OO %

R Q P OQ O O0N
*

o —~
o0 oo
+

o o +

O =~

O = Hh O O Hh

B o~

N O D - O OO0

H O~ o-—

© 2010 Larry Snyder, CSE

74

37

Matching

Parens
Working out a-f)c)*(d+f (e))
. 000000010001000
the details 0001010000000 11
Mismatching a= B o *(dt £C &))
o 0 0 1 0 1 0 0
o 1 1 o o0 0 1 1
a-f) c) * (d+£ (e))
0 1 1 0
1 1 0 2
a-f)c)* (d+f (e))
1 0
2 1
a-f)c) * (d+f (e))
0
2
4/30/10 © 2010 Larry Snyder, CSE 75

Compiling The || Prefix

One last question concerned how the 3 parts
of the || prefix specification fit into the tree
model shown for prefix sum & Schwartz?

Short answer, they don’t have to
Compilers can produce excellent code from spec

F)2i F)2i+1

googoood Uoogooobd | [local value

I
.Combine

4/30/10 © 2010 Larry Snyder, CSE 76

38

Emphasizing the Point

At the start of class we cited bal-parens — the
leaf code for a Schwartz approach

[for (i=start; i<start+len per th; i++) {

7 if (symb[i] == "(")
8 o++;

9 if (symb[i] == ")") |
10 o-—;

11 if (o < 0) {

12 ct+; o = 0;

13 }
14 }

Combining required entirely different code
The Infix approach captures the whole thing,
except for pre- and post-operations

4/30/10 © 2010 Larry Snyder, CSE 7

Summary on || Prefix

By thinking abstractly of carrying along
information that describes the sequence,
combining adjacent subsequences, and
finally extracting a value, it is possible to
move directly to a || prefix solution

Using the abstraction is an intellectually
different way of thinking about sequential
computations

4/30/10 © 2010 Larry Snyder, CSE 78

39

HW 5, Part | ... for Tuesday

Think of a “sequential computation” that can
be expressed as a UD reduce or scan
Examples from this lecture are off limits

Prefer a scan; it's often easy to convert a reduce
into a scan: A 10-bucket histogram (a reduce) is
related to a 10-team “league standings” (a scan)
that gives won/loss for game input, team t beat u

Turn in a document giving an infix
formulation of the computation together
with a worked example

4/30/10 © 2010 Larry Snyder, CSE

79

HW 5, Part |l ... for Thursday

Write an MPI program for the SUMMA alg

Create rectangular arrays A, B, C, filling A, B
Send portions of A, B to worker processes
Iterate over common dimension,

send columns of A, rows of B to other processes

for each, multiply A elements times B elements and

accumulate into local portion of C
Measure time, except for initialization, and
report the “usual stuff” for different numbers of
processes

4/30/10 © 2010 Larry Snyder, CSE

80

40

