
1

Part II: Architecture

Goal: Understand the main properties of parallel
computers

The parallel approach to computing … does require
 that some original thinking be done about numerical
 analysis and data management in order to secure
 efficient use. In an environment which has
 represented the absence of the need to think as the
 highest virtue, this is a decided disadvantage.

 -- Dan Slotnick, 1967

What’s The Deal With Hardware?
  Facts Concerning Hardware

  Parallel computers differ dramatically from
each other -- there is no standard architecture
  No single programming target!

  Parallelism introduces costs not present in vN
machines -- communication; influence of
external events

  Many parallel architectures have failed
  Details of parallel computer are of no greater

concern to programmers than details of vN

The “no single target” is key problem to solve

should be

2

Our Plan
  Think about the problem abstractly
  Introduce instances of basic || designs

  Multicore
  Symmetric Multiprocessors (SMPs)
  Large scale parallel machines
  Clusters
  Blue Gene/L

  Formulate a model of computation
  Assess the model of computation

Shared Memory
 Global memory shared among ||processors

 is the natural generalization of the
 sequential memory model
  Thinking about it, programmers assume

 sequential consistency when they think ||ism
 Recall Lamport’s definition of SC:

  "...the result of any execution is the same as if the operations
 of all the processors were executed in some sequential
 order, and the operations of each individual processor
 appear in this sequence in the order specified by its
 program."

3

Sequential Consistency
  SC difficult to achieve under all

 circumstances
  [Whether SC suffices as a model at all is a

 deep and complex issue; there’s more to
 say than today’s points.]

  The original way to achieve SC was literally
 to keep a single memory image and make
 sure that modifications are recorded in that
 memory

The Problem
  The “single memory” view implies …

  The memory is the only source of values
  Processors use memory values one-at-a-time,

 not sharing or caching; if not available, stall
  Lock when fetched, Execute, Store & unlock

  A bus can do this, but …

M M M M M M M M

P P P P P P P P references
 all visible

source of
 contention

4

Reduce Contention
 Replace bus with network, an early design

 Network delays cause memory latency to
 be higher for a single reference than with a
 the bus, but simultaneous use should help
 when many references are in the air (MT)

M M M M M M M M

P P P P P P P P
Interconnection Network

(Dance Hall)

An Implementation
 Ω-Network is one possible interconnect
  Processor 2 references memory 6 (110)

0 0
1 1
0 0
1 1
0 0
1 1
0 0
1 1

0 0
1 1
0 0
1 1
0 0
1 1
0 0
1 1

0 0
1 1
0 0
1 1
0 0
1 1
0 0
1 1

000
001
010
011
100
101
110
111

000
001
010
011
100
101
110
111

P
ro

ce
ss

or
 ID

 H
i M

em
ory B

its

5

Backing Up In Network
  Even if processors work on different data,

 the requests can back up in the network
  Everyone references data in memory 6

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

0 0
1 1

000
001

010
011

100
101

110
111

000
001

010
011

100
101

110
111

One-At-A-Time Use
  The critical problem is that only one

 processor at a time can use/change data
  Cache read-only data (& pgms) only
  Check-in/Check-out model most appropriate
  Conclusion: Processors stall a lot …

  Solution: Multi-threading
  When stalled, change to another waiting activity

  Must make transition quickly, keeping context
  Need ample supply of waiting activities
  Available at different granularities

6

Briefly recall, Multithreading
 Multithreading: Executing multiple threads

“at once”
  The threads are, of course, simply

sequential programs executing a von
Neumann model of computation

  Executed “at once” means that the context
switching among them is not implemented
by the OS, but takes place opportunistically
in the hardware … 3 related cases

Facts of Instruction Execution
  The von Neumann model requires

that each instruction be executed to
completion before starting the next
  Once that was the way it worked
  Now it is a conceptual model

 Multi-issue architectures start many
instructions at a time, and do them
when their operands are available
leading to out of order execution

ld r1,0(r2)
add r1,r5
mult r8,r6
sw r1,0(r2)
li r1,0xabc
sw r1,4(r2)

7

Fine Grain Multithreading: Tera

Figure from: Paolo.Ienne@epfl.ch

Coarse Grain Multithreading: Alewife

8

Simultaneous Multi-threading: SMT

Multi-threading Grain Size
  The point when the activity switches can be

  Instruction level, at memory reference: Tera MTA
  Basic block level, with L1 cache miss: Alewife
  …
  At process level, with page fault: Time sharing

  Another variation (3-address code level) is to
 execute many threads (P*log P) in batches,
 called Bulk Synchronous Programming

No individual activity improved, but less wait time

9

Problems with Multi-threading
 Cost (time, resources) of switching trades off

 with work: larger switching cost means
 more useful work completed before switch
 … instruction level too low?

 Need many threads w/o dependences & …
  Threads must meet preceding criterion
  Computations grow & shrink thread count (loop

 control) implies potential thread starvation
  Fine-grain threads most numerous, but have

 least locality

Multi-core Chips
 Multi-core means more than one processor

per chip – generalization of SMT
 Consequence of Moore’s Law
  IBM’s PowerPC 2002, AMD Dual Core

Opteron 2005, Intel CoreDuo 2006
  A small amount of multi-threading included
 Main advantage: More ops per tick
 Main disadvantages: Programming, BW

10

Diversity Among Small Systems

Intel CoreDuo
  2 32-bit Pentiums
  Private 32K L1s
  Shared 2M-4M L2
 MESI cc-protocol
  Shared bus control
and memory bus

 L1-I L1-D

Memory Bus Controller

Processor
P0

Processor
P1

 L1-I L1-D

L2 Cache

Front Side Bus

11

MESI Protocol
  Standard Protocol for

cache - coherent
shared memory
  Mechanism for

 multiple caches to give
 single memory image

  We will not study it
  4 states can be

 amazingly rich

Thanks: Slater & Tibrewala of CMU

MESI, Intuitively
 Upon loading, a line is marked E,

subsequent reads are OK; write marks M
  Seeing another load, mark as S
  A write to an S, sends I to all, marks as M
  Another’s read to an M line, writes it back,

marks it S
 Read/write to an I misses
 Related scheme: MOESI (used by AMD)

Modified
Exclusive
Shared
Invalid

12

AMD Dual Core Opteron

AMD Dual Core Opteron
  2 64-bit Opterons
  64K private L1s
  1 MB private L2s
 MOESI cc-protocol
 Direct connect

shared memory

System Request Interface

 L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

 L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

13

Comparing Core Duo/Dual Core

 L1-I L1-D

Memory Bus Controller

Processor
P0

Processor
P1

 L1-I L1-D

L2 Cache

Front Side Bus

Intel

System Request Interface

 L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

 L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

AMD AMD

Comparing Core Duo/Dual Core

 L1-I L1-D

Memory Bus Controller

Processor
P0

Processor
P1

 L1-I L1-D

L2 Cache

Front Side Bus

System Request Interface

 L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

 L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

System Request Interface

 L1-I L1-D

Mem Ctlr

Processor
P0

Processor
P1

 L1-I L1-D

L2 Cache

HT

L2 Cache

Cross-Bar Interconnect

Intel AMD AMD AMD AMD

14

Symmetric Multiprocessor on a Bus
  The bus is a point that serializes references
  A serializing point is a shared mem enabler

Bus

 L1-I L1-D

Processor
P0

L2 Cache

Cache Control

Memory Memory Memory Memory

 L1-I L1-D

Processor
P1

L2 Cache

Cache Control

 L1-I L1-D

Processor
P2

L2 Cache

Cache Control

 L1-I L1-D

Processor
P3

L2 Cache

Cache Control

Sun Fire E25K

15

Cross-Bar Switch
  A crossbar is a network

connecting each processor
to every other processor

 Used in CMU’s 1971
C.MMP, 16 proc PDP-11s

 Crossbars grow as n2
making them impractical
for large n

B0

B1

B2

B3

Sun Fire E25K
  X-bar gives low latency for snoops allowing

for shared memory
  18 x 18 X-bar is basically the limit
 Raising the number of processors per node

will, on average, increase congestion
 How could we make a larger machine?

16

Co-Processor Architectures
  A powerful parallel design is to add 1 or

more subordinate processors to std design
  Floating point instructions once implemented

this way
  Graphics Processing Units - deep pipelining
  Cell Processor - multiple SIMD units
  Attached FPGA chip(s) - compile to a circuit

  These architectures will be discussed later

Clusters
  Interconnecting

with InfiniBand
  Switch-based

technology
  Host channel

adapters (HCA)
  Peripheral

computer
interconnect (PCI)

Thanks: IBM’s Clustering sytems using InfiniBand Hardware

17

Clusters
 Cheap to build using commodity

technologies
  Effective when interconnect is “switched”
  Easy to extend, usually in increments of 1
  Processors often have disks “nearby”
 No shared memory
  Latencies are usually large
  Programming uses message passing

Networks

Torus
(Mesh)

Hyper-
Cube

Fat Tree

Omega Network

18

Supercomputer
  BlueGene/L

BlueGene/L Specs
  A 64x32x32 torus = 65K 2-core processors
 Cut-through routing gives a worst-case

latency of 6.4 µs
  Processor nodes are dual PPC-440 with

“double hummer” FPUs
 Collective network performs global reduce

for the “usual” functions

19

Summarizing Architectures
  Two main classes

  Complete connection: CMPs, SMPs, X-bar
  Preserve single memory image
  Complete connection limits scaling to …
  Available to everyone

  Sparse connection: Clusters, Supercomputers,
Networked computers used for parallelism (Grid)
  Separate memory images
  Can grow “arbitrarily” large
  Available to everyone with air conditioning

  Differences are significant; world views diverge

Break
 During the break, consider which aspects

of the architectures we’ve seen should be
high-lighted and which should be
abstracted away

20

The Parallel Programming Problem
  Some computations can be platform specific
 Most should be platform independent
  Parallel Software Development Problem:

How do we neutralize the machine
differences given that
  Some knowledge of execution behavior is

needed to write programs that perform
  Programs must port across platforms effortlessly,

meaning, by at most recompilation

Options for Solving the PPP
  Leave the problem to the compiler …

21

Options for Solving the PPP
  Leave the problem to the compiler …

  Very low level parallelism (ILP) is already
being exploited

  Sequential languages cause us to introduce
unintentional sequentiality

  Parallel solutions often require a paradigm shift
  Compiler writers’ track record over past 3

decades not promising … recall HPF
  Bottom Line: Compilers will get more helpful,

but they probably won’t solve the PPP

Options for Solving the PPP
  Adopt a very abstract language that can

target to any platform …

22

Options for Solving the PPP
  Adopt a very abstract language that can

target to any platform …
  No one wants to learn a new language, no

matter how cool
  How does a programmer know how efficient or

effective his/her code is? Interpreted code?
  What are the “right” abstractions and statement

forms for such a language?
  Emphasize programmer convenience?
  Emphasize compiler translation effectiveness?

Options for Solving the PPP
  Agree on a set of parallel primitives (spawn

process, lock location, etc.) and create
libraries that work w/ sequential code …

23

Options for Solving the PPP
  Agree on a set of parallel primitives (spawn

process, lock location, etc.) and create
libraries that work w/ sequential code …
  Libraries are a mature technology
  To work with multiple languages, limit base

language assumptions … L.C.D. facilities
  Libraries use a stylized interface (fcn call)

limiting possible parallelism-specific abstractions
  Achieving consistent semantics is difficult

Options for Solving the PPP
 Create an abstract machine model that

accurately describes common capabilities
and let the language facilities catch up …

24

Options for Solving the PPP
 Create an abstract machine model that

accurately describes common capabilities
and let the language facilities catch up …
  Not a full solution until languages are available
  The solution works in sequential world (RAM)
  Requires discovering (and predicting) what the

common capabilities are
  Solution needs to be (continually) validated

against actual experience

Summary of Options for PPP
  Leave the problem to the compiler …
  Adopt a very abstract language that can

target to any platform …
  Agree on a set of parallel primitives (spawn

process, lock location, etc.) and create
libraries that work w/ sequential code …

 Create an abstract machine model that
accurately describes common capabilities
and let the language facilities catch up …

25

49

Why is Seq Programming Successful
When we write programs in C they are ...

  Efficient -- programs run fast, especially if we use performance
 as a goal
  traverse arrays in row major order to improve caching

  Economical -- use resources well
  represent data by packing memory

  Portable -- run well on any computer with C compiler
  all computers are universal, but with C fast programs are

 fast everywhere
  Easy to write -- we know many ‘good’ techniques

  reference data, don’t copy

These qualities all derive from von Neumman model

50

Von Neumann (RAM) Model
  Call the ‘standard’ model of a random access

 machine (RAM) the von Neumann model
  A processor interpreting 3-address instructions
  PC pointing to the next instruction of program in

 memory
  “Flat,” randomly accessed memory requires 1 time unit
  Memory is composed of fixed-size addressable units
  One instruction executes at a time, and is completed

 before the next instruction executes

  The model is not literally true, e.g., memory is
 hierarchical but made to “look flat”

C directly implements this model in a HLL

26

51

Why Use Model That’s Not Literally True?

  Simple is better, and many things--GPRs,
 floating point format--don’t matter at all

  Avoid embedding assumptions where things
 could change …
  Flat memory, tho originally true, is no longer

 right, but we don’t retrofit the model; we don’t
 want people “programming to the cache”
  Yes, exploit spatial locality
  No, avoid blocking to fit in cache line, or tricking cache

 into prefetch, etc.

  Compilers bind late, particularize and are better
 than you are!

52

vN Model Contributes To Success
  The cost of C statements on the vN machine

 is “understood” by C programmers …
  How much time does A[r][s] += B[r][s]; take?

  Load row_size_A, row_size_B, r, s, A_base, B_base (6)
  tempa = (row_size_A * r + s) * data_size (3)
  tempb = (row_size_B * r + s) * data_size (3)
  A_base + tempa; B_base + tempb; load both values (4)
  Add values and return to memory (2)

  Same for many operations, any data size
  Result is measured in “instructions” not time

Widely known and effectively used

27

53

Portability
  Most important property of the C-vN coupling:

 It is approximately right everywhere
  Why so little variation in sequential computers?

HW vendors must run
 installed SW so follow
 vN rules

SW vendors must run
 on installed HW so
 follow vN rules

Everyone wins … no
 motive to change

54

Von Neumann Summary
  The von Neumann model “explains” the costs of C

 because C expresses the facilities of the von
 Neumann machines in programming terms

  Knowing the relationship between C and the von
 Neumann machine is essential for writing fast
 programs

  Following the rules produces good results
 everywhere because everyone benefits

  These ideas are “in our bones” … it’s how we think

What is the parallel version of vN?

28

55

PRAM Often Proposed As A Candidate

  PRAM (Parallel RAM) ignores memory
 organization, collisions, latency, conflicts, etc.

  Ignoring these are claimed to have benefits ...
  Portable everywhere since it is very general
  It is a simple programming model ignoring only

 insignificant details -- off by “only log P”
  Ignoring memory difficulties is OK because

 hardware can “fake” a shared memory
  Good for getting started: Begin with PRAM then

 refine the program to a practical solution if needed

56

Recall Parallel Random-Access Machine
PRAM has any number of processors

  Every proc references any memory in “time 1”
  Memory read/write collisions must be resolved

P1 P0 P3 P2 P5 P4 P7 P6

Memory
PRAM

A BC

SMPs implement PRAMs for small P … not scalable

29

57

Variations on PRAM
Resolving the memory conflicts considers read

 and write conflicts separately
  Exclusive read/exclusive write (EREW)

  The most limited model

  Concurrent read/exclusive write (CREW)
  Multiple readers are OK

  Concurrent read/concurrent write (CRCW)
  Various write-conflict resolutions used

  There are at least a dozen other variations
All theoretical -- not used in practice

CTA Model
 Candidate Type Architecture: A model with

P standard processors, d degree, λ latency

 Node == processor + memory + NIC

… RAM RAM RAM RAM RAM

RAM

Interconnection Network

Key Property: Local memory ref is 1, global memory is λ

30

What CTA Doesn’t Describe
 CTA has no global memory … but memory

could be globally addressed
 Mechanism for referencing memory not

specified: shared, message passing, 1-side
  Interconnection network not specified
  λ is not specified beyond λ>>1 -- cannot be

because every machine is different
 Controller, combining network “optional”

More On the CTA
 Consider what the diagram means…

… RAM RAM RAM RAM RAM

RAM

Interconnection Network

mem mem

31

More On the CTA
 Consider what the diagram means…

… RAM RAM RAM RAM RAM

RAM

Interconnection Network

mem mem

More On the CTA
 Consider what the diagram means…

… RAM RAM RAM RAM RAM

RAM

Interconnection Network

mem mem

32

More On the CTA
 Consider what the diagram doesn’t mean…

  After ACKing that CTA doesn’t model
buses, accept that it’s a good first approx.

… RAM RAM RAM RAM RAM

RAM

Interconnection Network BUS

Typical Values for λ
  Lambda can be estimated for any machine

(given numbers include no contention or
congestion)

CMP AMD 100
SMP Sun Fire E25K 400-660
Cluster Itanium + Myrinet 4100-5100
Super BlueGene/L 5000

As with merchandizing: It’s location, location, location!

Lg λ range
 => cannot
 be
 ignored

33

Measured Numbers
  Values (approximating) λ for small systems

Communication Mechanisms
  Shared addressing

  One consistent memory image; primitives are
load and store

  Must protect locations from races
  Widely considered most convenient, though it

is often tough to get a program to perform
  CTA implies that best practice is to keep as

much of the problem private; use sharing only
to communicate

A common pitfall: Logic is too fine grain

34

Communication Mechanisms
 Message Passing

  No global memory image; primitives are
send() and recv()

  Required for most large machines
  User writes in sequential language with

message passing library:
  Message Passing Interface (MPI)
  Parallel Virtual Machine (PVM)

  CTA implies that best practice is to build and
use own abstractions
Lack of abstractions makes message passing brutal

Communication Mechanisms
 One Sided Communication

  One global address space; primitives are
get() and put()

  Consistency is the programmer’s responsibility
  Elevating mem copy to a comm mechanism
  Programmer writes in sequential language with

library calls -- not widely available unfortunately
  CTA implies that best practice is to build and

use own abstractions
One-sided is lighter weight than message passing

35

Programming Implications
 How does CTA influence programming …
 Discuss

  Expression evaluation: Same/Different?
  Relationship among processors?
  Data structures?
  Organization of work?
  …

70

Find Maximum in Parallel (Valiant)
Task: Find largest of n integers w/ n processors
Model: CRCW PRAM (writes OK if same value)

L.G.Valiant, “Parallelism in comparison problems,” SIAM J. Computing
 4(3):348-355, 1975

L.G. Valiant, “A Bridging Model for Parallel Computation,” CACM 33(8)
:103-111, 1990

R.J. Anderson & L. Snyder, “A Comparison of Shared and Nonshared
 Memory Models for Parallel Computation,” Proc. IEEE 79(4)
:480-487

How would YOU do it?

36

71

Algorithm Sketch
Algorithm: T rounds of O(1) time each
In round, process groups of m vals, v1, v2, …, vm

  Fill m memory locations x1, x2, …, xm with 1s to be
 “knocked out”

  For each 1≤i,j ≤m a processor tests ...
 if vi < vj then xi = 0 else xj = 0

  If xk = 1 it’s max of group; pass vk to next round

The ‘trick’ is to pick m right to minimize T

72

Finding Max (continued)
Round 1: m = 3

 v1 v2 v3
v1 - v1:v2 v1:v3
v2 - - v2:v3
v3 - - -

 x1 x2 x3
 1 1 1

 v1 v2 v3
 20 3 34

 x1 x2 x3
 0 0 1

For groups of size 3, three tests
 can find max, i.e. 3 procesors

Schedule

Input

Output
Knock out

37

73

Solving Whole Problem
  Round 1 uses P processors to find the max in

 groups of m=3 … producing P/3 group maxes
  Round 2 uses P processors to find the max in

 groups of m=7 … producing P/21 group maxes
  Generally to find the max of a group requires

 m(m-1)/2 comparisons
  Picking m when there are P processors, r

 maxes … largest m s.t. (r/m)(m(m-1)/2) ≤ P i.e.
 r(m-1) ≤ 2P

74

Finding Max (continued)
  Initially, r = P, so

 r(m-1) ≤ 2P
 implies m = 3, producing r = P/3

  For (P/3)(m-1) ≤ 2P implies next group = 7
  Etc.
 Group size increases quadratically implying

 the maximum is found in O(loglog n) steps
 on CRCW PRAM

It’s very clever, but is it of any practical use?

38

75

Assessing Valiant’s Max Algorithm
The PRAM model caused us to ...

  Exploit the “free use” of read and write
 collisions, which are not possible in practice

  Ignore the costs of data motion, so we adopt
 an algorithm that runs faster than the time
 required to bring all data values together,
 which is Ω(log n)

  So what?

76

Running Valiant’s Algorithm
  PRAM’s don’t exist and can’t be built
  To run the algorithm we need a simulator for the

 CRCWPRAM
  In order to simulate the concurrent reads and the

 concurrent writes, a parallel computer will need
 Ω(log P) time per step, though there are bandwidth
 requirements and serious engineering problems to
 attain that goal

  Observed performance of Valiant’s Max:

 O(log n loglog n)

39

77

Alternative Solution
  What is the best way of computing max using

 the CTA?
  A tree algorithm, a variation on global sum
  O(log P) time on P processors
  The tree algorithm doesn’t need to be simulated …

 it runs in the stated time directly on all existing
 parallel processors

  Since O(log n) < O(log n loglog n) the PRAM
 model mispredicted the best practical
 algorithm

The PRAM didn’t help, it hurt our effort

78

Is The PRAM A Good Abstraction?
Different Opinions ...
  OK for finding theoretical limits to parallelism
  It is a simple programming model ignoring only

 insignificant details -- off only by log P 
  Ignoring memory difficulties is OK because

 hardware can “fake” a shared memory
  Start with PRAM then evolve to more realistic

 solution -- good for getting started 

40

Apply CTA to Count 3s
 How does CTA guide us for Count 3s pgm

  Array segments will be allocated to local mem
  Each processor should count 3s in its segment
  Global total should be formed using reduction
  Performance is

  Full parallelism for local processing
  λ log n for combining
  Base of log should be large, i.e high degree nodes

  Same solution as before, but by different rt

Summary
  Parallel hardware is a critical component of

improving performance through ||-ism … but
there’s a Catch-22
  To have portable programs, we must abstract

away from the hardware
  To write performant programs requires that we

respect the hardware realities
  Solve the problem with CTA -- an abstract

machine with just enough (realizable) detail
to support critical programming decisions

41

Assignment for Next Time
  Thinking of XML trees, which are made up of

well-nested, user-defined matching tags, use
the CTA to sketch the logic of a || algorithm to
check if an XML file (is / is not) well nested
and estimate its performance

  Simplifications
  Linear sequence of: (, x,) as in ((xxx)x(x)(xx))
  Explain the algorithm to a person, e.g. a TA grader,

giving data allocation, communication specifics,
protocol for processor interactions, etc.

  Assume n >> P, comm costs l, give performance

