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Part II: Architecture 

Goal: Understand the main properties of parallel 
computers  

The parallel approach to computing … does require
 that some original thinking be done about numerical
 analysis and data management in order to secure
 efficient use. In an environment which has
 represented the absence of the need to think as the
 highest virtue, this is a decided disadvantage.  

    -- Dan Slotnick, 1967 

What’s The Deal With Hardware? 
  Facts Concerning Hardware 

  Parallel computers differ dramatically from 
each other -- there is no standard architecture 
  No single programming target! 

  Parallelism introduces costs not present in vN 
machines -- communication; influence of 
external events 

  Many parallel architectures have failed  
  Details of parallel computer are of no greater 

concern to programmers than details of vN 

The “no single target” is key problem to solve 

should be 
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Our Plan 
  Think about the problem abstractly 
  Introduce instances of basic || designs 

  Multicore 
  Symmetric Multiprocessors (SMPs) 
  Large scale parallel machines 
  Clusters 
  Blue Gene/L 

  Formulate a model of computation 
  Assess the model of computation 

Shared Memory 
 Global memory shared among ||processors

 is the natural generalization of the
 sequential memory model 
  Thinking about it, programmers assume

 sequential consistency when they think ||ism 
 Recall Lamport’s definition of SC: 

  "...the result of any execution is the same as if the operations
 of all the processors were executed in some sequential
 order, and the operations of each individual processor
 appear in this sequence in the order specified by its
 program." 
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Sequential Consistency 
  SC difficult to achieve under all

 circumstances  
  [Whether SC suffices as a model at all is a

 deep and complex issue; there’s more to
 say than today’s points.] 

  The original way to achieve SC was literally
 to keep a single memory image and make
 sure that modifications are recorded in that
 memory 

The Problem 
  The “single memory” view implies … 

  The memory is the only source of values 
  Processors use memory values one-at-a-time,

 not sharing or caching; if not available, stall 
  Lock when fetched, Execute, Store & unlock 

  A bus can do this, but …  

M M M M M M M M 

P P P P P P P P references
 all visible 

source of
 contention 
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Reduce Contention 
 Replace bus with network, an early design 

 Network delays cause memory latency to
 be higher for a single reference than with a
 the bus, but simultaneous use should help
 when many references are in the air (MT) 

M M M M M M M M 

P P P P P P P P 
Interconnection Network 

(Dance Hall) 

An Implementation 
 Ω-Network is one possible interconnect 
  Processor 2 references memory 6 (110) 
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Backing Up In Network 
  Even if processors work on different data,

 the requests can back up in the network 
  Everyone references data in memory 6 

0 0 
1 1 

0 0 
1 1 

0 0 
1 1 

0 0 
1 1 

0 0 
1 1 

0 0 
1 1 

0 0 
1 1 

0 0 
1 1 

0 0 
1 1 

0 0 
1 1 

0 0 
1 1 

0 0 
1 1 

000 
001 

010 
011 

100 
101 

110 
111 

000 
001 

010 
011 

100 
101 

110 
111 

One-At-A-Time Use 
  The critical problem is that only one

 processor at a time can use/change data 
  Cache read-only data (& pgms) only 
  Check-in/Check-out model most appropriate 
  Conclusion: Processors stall a lot … 

  Solution: Multi-threading 
  When stalled, change to another waiting activity 

  Must make transition quickly, keeping context 
  Need ample supply of waiting activities 
  Available at different granularities 
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Briefly recall, Multithreading 
 Multithreading: Executing multiple threads 

“at once” 
  The threads are, of course, simply 

sequential programs executing a von 
Neumann model of computation 

  Executed “at once” means that the context 
switching among them is not implemented 
by the OS, but takes place opportunistically 
in the hardware … 3 related cases 

Facts of Instruction Execution   
  The von Neumann model requires 

that each instruction be executed to 
completion before starting the next 
  Once that was the way it worked 
  Now it is a conceptual model 

 Multi-issue architectures start many 
instructions at a time, and do them 
when their operands are available 
leading to out of order execution 

ld r1,0(r2) 
add r1,r5 
mult r8,r6 
sw r1,0(r2) 
li r1,0xabc 
sw r1,4(r2) 
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Fine Grain Multithreading: Tera 

Figure from: Paolo.Ienne@epfl.ch 

Coarse Grain Multithreading: Alewife 
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Simultaneous Multi-threading: SMT 

Multi-threading Grain Size 
  The point when the activity switches can be 

  Instruction level, at memory reference: Tera MTA 
  Basic block level, with L1 cache miss: Alewife 
  … 
  At process level, with page fault: Time sharing 

  Another variation (3-address code level) is to
 execute many threads (P*log P) in batches,
 called Bulk Synchronous Programming  

No individual activity improved, but less wait time 
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Problems with Multi-threading 
 Cost (time, resources) of switching trades off

 with work: larger switching cost means
 more useful work completed before switch
 … instruction level too low? 

 Need many threads w/o dependences & … 
  Threads must meet preceding criterion 
  Computations grow & shrink thread count (loop

 control) implies potential thread starvation 
  Fine-grain threads most numerous, but have

 least locality  

Multi-core Chips 
 Multi-core means more than one processor 

per chip – generalization of SMT 
 Consequence of Moore’s Law  
  IBM’s PowerPC 2002, AMD Dual Core 

Opteron 2005, Intel CoreDuo 2006 
  A small amount of multi-threading included 
 Main advantage: More ops per tick 
 Main disadvantages: Programming, BW 
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Diversity Among Small Systems 

Intel CoreDuo 
  2 32-bit Pentiums 
  Private 32K L1s 
  Shared 2M-4M L2 
 MESI cc-protocol 
  Shared bus control 
and memory bus  

 L1-I L1-D 

Memory Bus Controller 

Processor 
P0 

Processor 
P1 

 L1-I L1-D 

L2 Cache 

Front Side Bus 



11 

MESI Protocol 
  Standard Protocol for 

cache - coherent 
shared memory 
  Mechanism for  

 multiple caches to give 
 single memory image 

  We will not study it 
  4 states can be 

 amazingly rich   

Thanks: Slater & Tibrewala of CMU 

MESI, Intuitively 
 Upon loading, a line is marked E, 

subsequent reads are OK; write marks M 
  Seeing another load, mark as S 
  A write to an S, sends I to all, marks as M 
  Another’s read to an M line, writes it back, 

marks it S 
 Read/write to an I misses  
 Related scheme: MOESI (used by AMD) 

Modified 
Exclusive 
Shared 
Invalid 
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AMD Dual Core Opteron 

 

AMD Dual Core Opteron 
  2 64-bit Opterons 
  64K private L1s 
  1 MB private L2s 
 MOESI cc-protocol 
 Direct connect 

shared memory  

System Request Interface 

 L1-I L1-D 

Mem Ctlr 

Processor 
P0 

Processor 
P1 

 L1-I L1-D 

L2 Cache 

HT 

L2 Cache 

Cross-Bar Interconnect 
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Comparing Core Duo/Dual Core 
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Symmetric Multiprocessor on a Bus 
  The bus is a point that serializes references 
  A serializing point is a shared mem enabler  

Bus 

 L1-I L1-D 

Processor 
P0 

L2 Cache 

Cache Control 

Memory  Memory Memory Memory 
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 L1-I L1-D 
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P3 
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Cache Control 

Sun Fire E25K 
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Cross-Bar Switch 
  A crossbar is a network 

connecting each processor 
to every other processor  

 Used in CMU’s 1971 
C.MMP, 16 proc PDP-11s 

 Crossbars grow as n2 
making them impractical 
for large n 

B0 

B1 

B2 

B3 

Sun Fire E25K 
  X-bar gives low latency for snoops allowing 

for shared memory 
  18 x 18 X-bar is basically the limit 
 Raising the number of processors per node 

will, on average, increase congestion 
 How could we make a larger machine? 
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Co-Processor Architectures 
  A powerful parallel design is to add 1 or 

more subordinate processors to std design 
  Floating point instructions once implemented 

this way 
  Graphics Processing Units - deep pipelining 
  Cell Processor - multiple SIMD units 
  Attached FPGA chip(s) - compile to a circuit 

  These architectures will be discussed later 

Clusters 
  Interconnecting 

with InfiniBand 
  Switch-based 

technology 
  Host channel 

adapters (HCA) 
  Peripheral 

computer 
interconnect (PCI) 

Thanks: IBM’s Clustering sytems using InfiniBand Hardware 
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Clusters 
 Cheap to build using commodity 

technologies 
  Effective when interconnect is “switched” 
  Easy to extend, usually in increments of 1 
  Processors often have disks “nearby” 
 No shared memory 
  Latencies are usually large 
  Programming uses message passing 

Networks 

Torus  
(Mesh) 

Hyper- 
Cube 

Fat Tree 

Omega Network 
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Supercomputer 
  BlueGene/L 

BlueGene/L Specs 
  A 64x32x32 torus = 65K 2-core processors 
 Cut-through routing gives a worst-case 

latency of 6.4 µs 
  Processor nodes are dual PPC-440 with 

“double hummer” FPUs 
 Collective network performs global reduce 

for the “usual” functions 
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Summarizing Architectures 
  Two main classes 

  Complete connection: CMPs, SMPs, X-bar 
  Preserve single memory image 
  Complete connection limits scaling to … 
  Available to everyone 

  Sparse connection: Clusters, Supercomputers, 
Networked computers used for parallelism (Grid) 
  Separate memory images 
  Can grow “arbitrarily” large 
  Available to everyone with air conditioning 

  Differences are significant; world views diverge 

Break 
 During the break, consider which aspects 

of the architectures we’ve seen should be 
high-lighted and which should be 
abstracted away 
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The Parallel Programming Problem 
  Some computations can be platform specific 
 Most should be platform independent 
  Parallel Software Development Problem: 

How do we neutralize the machine 
differences given that 
  Some knowledge of execution behavior is 

needed to write programs that perform 
  Programs must port across platforms effortlessly, 

meaning, by at most recompilation 

Options for Solving the PPP 
  Leave the problem to the compiler … 
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Options for Solving the PPP 
  Leave the problem to the compiler … 

  Very low level parallelism (ILP) is already 
being exploited 

  Sequential languages cause us to introduce 
unintentional sequentiality 

  Parallel solutions often require a paradigm shift 
  Compiler writers’ track record over past 3 

decades not promising … recall HPF 
  Bottom Line: Compilers will get more helpful, 

but they probably won’t solve the PPP  

Options for Solving the PPP 
  Adopt a very abstract language that can 

target to any platform … 
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Options for Solving the PPP 
  Adopt a very abstract language that can 

target to any platform … 
  No one wants to learn a new language, no 

matter how cool 
  How does a programmer know how efficient or 

effective his/her code is? Interpreted code? 
  What are the “right” abstractions and statement 

forms for such a language?  
  Emphasize programmer convenience? 
  Emphasize compiler translation effectiveness? 

Options for Solving the PPP 
  Agree on a set of parallel primitives (spawn 

process, lock location, etc.) and create 
libraries that work w/ sequential code … 
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Options for Solving the PPP 
  Agree on a set of parallel primitives (spawn 

process, lock location, etc.) and create 
libraries that work w/ sequential code … 
  Libraries are a mature technology 
  To work with multiple languages, limit base 

language assumptions … L.C.D. facilities 
  Libraries use a stylized interface (fcn call) 

limiting possible parallelism-specific abstractions 
  Achieving consistent semantics is difficult  

Options for Solving the PPP 
 Create an abstract machine model that 

accurately describes common capabilities 
and let the language facilities catch up … 
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Options for Solving the PPP 
 Create an abstract machine model that 

accurately describes common capabilities 
and let the language facilities catch up … 
  Not a full solution until languages are available 
  The solution works in sequential world (RAM) 
  Requires discovering (and predicting) what the 

common capabilities are 
  Solution needs to be (continually) validated 

against actual experience 

Summary of Options for PPP 
  Leave the problem to the compiler … 
  Adopt a very abstract language that can 

target to any platform … 
  Agree on a set of parallel primitives (spawn 

process, lock location, etc.) and create 
libraries that work w/ sequential code … 

 Create an abstract machine model that 
accurately describes common capabilities 
and let the language facilities catch up … 
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Why is Seq Programming Successful  
When we write programs in C they are ... 

  Efficient -- programs run fast, especially if we use performance
 as a goal  
  traverse arrays in row major order to improve caching  

  Economical -- use resources well  
  represent data by packing memory 

  Portable -- run well on any computer with C compiler 
  all computers are universal, but with C fast programs are

 fast everywhere 
  Easy to write -- we know many ‘good’ techniques 

  reference data, don’t copy 

These qualities all derive from von Neumman model 
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Von Neumann (RAM) Model 
  Call the ‘standard’ model of a random access

 machine (RAM) the von Neumann model 
  A processor interpreting 3-address instructions 
  PC pointing to the next instruction of program in

 memory 
  “Flat,” randomly accessed memory requires 1 time unit 
  Memory is composed of fixed-size addressable units  
  One instruction executes at a time, and is completed

 before the next instruction executes 

  The model is not literally true, e.g., memory is
 hierarchical but made to “look flat” 

C directly implements this model in a HLL 
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Why Use Model That’s Not Literally True? 

  Simple is better, and many things--GPRs,
 floating point format--don’t matter at all 

  Avoid embedding assumptions where things
 could change … 
  Flat memory, tho originally true, is no longer

 right, but we don’t retrofit the model; we don’t
 want people “programming to the cache”  
  Yes, exploit spatial locality 
  No, avoid blocking to fit in cache line, or tricking cache

 into prefetch, etc. 

  Compilers bind late, particularize and are better
 than you are! 
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vN Model Contributes To Success 
  The cost of C statements on the vN machine

 is “understood” by C programmers …  
  How much time does A[r][s] += B[r][s]; take?  

  Load row_size_A, row_size_B, r, s, A_base, B_base (6) 
  tempa = (row_size_A * r + s) * data_size (3) 
  tempb = (row_size_B * r + s) * data_size (3) 
  A_base + tempa; B_base + tempb; load both values (4) 
  Add values and return to memory (2) 

  Same for many operations, any data size 
  Result is measured in “instructions” not time 

Widely known and effectively used 
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Portability 
  Most important property of the C-vN coupling:  

  It is approximately right everywhere 
  Why so little variation in sequential computers? 

HW vendors must run
 installed SW so follow
 vN rules 

SW vendors must run
 on installed HW so
 follow vN rules  

Everyone wins … no
 motive to change 
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Von Neumann Summary 
  The von Neumann model “explains” the costs of C

 because C expresses the facilities of the von
 Neumann machines in programming terms 

  Knowing the relationship between C and the von
 Neumann machine is essential for writing fast
 programs 

  Following the rules produces good results
 everywhere because everyone benefits 

  These ideas are “in our bones” … it’s how we think 

What is the parallel version of vN? 
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PRAM Often Proposed As A Candidate 

  PRAM (Parallel RAM) ignores memory
 organization, collisions, latency, conflicts, etc.  

  Ignoring these are claimed to have benefits ... 
  Portable everywhere since it is very general 
  It is a simple programming model ignoring only

 insignificant details -- off by “only log P” 
  Ignoring memory difficulties is OK because

 hardware can “fake” a shared memory 
  Good for getting started: Begin with PRAM then

 refine the program to a practical solution if needed 

56 

Recall Parallel Random-Access Machine 
PRAM has any number of processors 

  Every proc references any memory in “time 1” 
  Memory read/write collisions must be resolved 

P1 P0 P3 P2 P5 P4 P7 P6 

Memory 
PRAM 

A BC

SMPs implement PRAMs for small P … not scalable 
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Variations on PRAM 
Resolving the memory conflicts considers read

 and write conflicts separately 
  Exclusive read/exclusive write (EREW) 

  The most limited model 

  Concurrent read/exclusive write (CREW) 
  Multiple readers are OK 

  Concurrent read/concurrent write (CRCW) 
  Various write-conflict resolutions used 

  There are at least a dozen other variations 
All theoretical -- not used in practice 

CTA Model 
 Candidate Type Architecture: A model with 

P standard processors, d degree, λ latency 

 Node == processor + memory + NIC 

… RAM RAM RAM RAM RAM 

RAM 

Interconnection Network 

Key Property: Local memory ref is 1, global memory is λ  
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What CTA Doesn’t Describe 
 CTA has no global memory … but memory 

could be globally addressed 
 Mechanism for referencing memory not 

specified: shared, message passing, 1-side 
  Interconnection network not specified  
  λ is not specified beyond λ>>1 -- cannot be 

because every machine is different 
 Controller, combining network “optional” 

More On the CTA 
 Consider what the diagram means… 

… RAM RAM RAM RAM RAM 

RAM 

Interconnection Network 

mem mem 
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More On the CTA 
 Consider what the diagram means… 

… RAM RAM RAM RAM RAM 

RAM 

Interconnection Network 

mem mem 

More On the CTA 
 Consider what the diagram means… 

… RAM RAM RAM RAM RAM 

RAM 

Interconnection Network 

mem mem 
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More On the CTA 
 Consider what the diagram doesn’t mean… 

  After ACKing that CTA doesn’t model 
buses, accept that it’s a good first approx. 

… RAM RAM RAM RAM RAM 

RAM 

Interconnection Network BUS 

Typical Values for λ 
  Lambda can be estimated for any machine 

(given numbers include no contention or 
congestion) 

CMP AMD 100 
SMP Sun Fire E25K 400-660 
Cluster Itanium + Myrinet 4100-5100 
Super BlueGene/L 5000 

As with merchandizing: It’s location, location, location!  

Lg λ range
 => cannot
 be
 ignored 
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Measured Numbers 
  Values (approximating) λ for small systems 

Communication Mechanisms 
  Shared addressing 

  One consistent memory image; primitives are 
load and store 

  Must protect locations from races 
  Widely considered most convenient, though it 

is often tough to get a program to perform 
  CTA implies that best practice is to keep as 

much of the problem private; use sharing only 
to communicate 

A common pitfall: Logic is too fine grain  
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Communication Mechanisms 
 Message Passing 

  No global memory image; primitives are 
send() and recv() 

  Required for most large machines 
  User writes in sequential language with 

message passing library: 
  Message Passing Interface (MPI) 
  Parallel Virtual Machine (PVM) 

  CTA implies that best practice is to build and 
use own abstractions 
Lack of abstractions makes message passing brutal  

Communication Mechanisms 
 One Sided Communication 

  One global address space; primitives are 
get() and put() 

  Consistency is the programmer’s responsibility 
  Elevating mem copy to a comm mechanism  
  Programmer writes in sequential language with 

library calls -- not widely available unfortunately 
  CTA implies that best practice is to build and 

use own abstractions 
One-sided is lighter weight than message passing  
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Programming Implications 
 How does CTA influence programming … 
 Discuss  

  Expression evaluation: Same/Different? 
  Relationship among processors?  
  Data structures? 
  Organization of work? 
   … 
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Find Maximum in Parallel (Valiant) 
Task: Find largest of n integers w/ n processors 
Model: CRCW PRAM (writes OK if same value) 

L.G.Valiant, “Parallelism in comparison problems,” SIAM J. Computing
 4(3):348-355, 1975 

L.G. Valiant, “A Bridging Model for Parallel Computation,” CACM 33(8)
:103-111, 1990  

R.J. Anderson & L. Snyder, “A Comparison of Shared and Nonshared
 Memory Models for Parallel Computation,” Proc. IEEE 79(4)
:480-487 

How would YOU do it? 
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Algorithm Sketch 
Algorithm: T rounds of O(1) time each 
In round, process groups of m vals, v1, v2, …, vm 

  Fill m memory locations x1, x2, …, xm with 1s to be
 “knocked out” 

  For each 1≤i,j ≤m a processor tests ... 
  if vi < vj then xi = 0 else xj = 0 

  If xk = 1 it’s max of group; pass vk to next round 

The ‘trick’ is to pick m right to minimize T 
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Finding Max (continued) 
Round 1: m = 3 

      v1       v2        v3 
v1    -     v1:v2    v1:v3 
v2    -         -       v2:v3 
v3    -         -          - 

      x1       x2       x3 
      1        1        1 

      v1       v2       v3 
      20       3       34 

      x1       x2       x3 
      0        0        1 

For groups of size 3, three tests
 can find max, i.e. 3 procesors 

Schedule 

Input 

Output 
Knock out 
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Solving Whole Problem 
  Round 1 uses P processors to find the max in

 groups of m=3 … producing P/3 group maxes 
  Round 2 uses P processors to find the max in

 groups of m=7 … producing P/21 group maxes 
  Generally to find the max of a group requires

 m(m-1)/2 comparisons 
  Picking m when there are P processors, r

 maxes … largest m s.t. (r/m)(m(m-1)/2) ≤ P i.e.
 r(m-1) ≤ 2P  

74 

Finding Max (continued) 
  Initially, r = P, so      

 r(m-1) ≤ 2P 
 implies m = 3, producing r = P/3 

  For (P/3)(m-1) ≤ 2P implies next group = 7 
  Etc. 
 Group size increases quadratically implying

 the maximum is found in O(loglog n) steps
 on CRCW PRAM 

It’s very clever, but is it of any practical use?  
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Assessing Valiant’s Max Algorithm 
The PRAM model caused us to ... 

  Exploit the “free use” of read and write
 collisions, which are not possible in practice 

  Ignore the costs of data motion, so we adopt
 an algorithm that runs faster than the time
 required to bring all data values together,
 which is Ω(log n) 

  So what? 
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Running Valiant’s Algorithm 
  PRAM’s don’t exist and can’t be built 
  To run the algorithm we need a simulator for the

 CRCWPRAM 
  In order to simulate the concurrent reads and the

 concurrent writes, a parallel computer will need 
 Ω(log P) time per step, though there are bandwidth
 requirements and serious engineering problems to
 attain that goal 

  Observed performance of Valiant’s Max:   

  O(log n loglog n)   
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Alternative Solution 
  What is the best way of computing max using

 the CTA? 
  A tree algorithm, a variation on global sum 
  O(log P) time on P processors 
  The tree algorithm doesn’t need to be simulated …

 it runs in the stated time directly on all existing
 parallel processors 

  Since O(log n) < O(log n loglog n) the PRAM
 model mispredicted the best practical
 algorithm  

The PRAM didn’t help, it hurt our effort 
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Is The PRAM A Good Abstraction? 
Different Opinions ... 
  OK for finding theoretical limits to parallelism 
  It is a simple programming model ignoring only

 insignificant details -- off only by log P  
  Ignoring memory difficulties is OK because

 hardware can “fake” a shared memory 
  Start with PRAM then evolve to more realistic

 solution -- good for getting started  
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Apply CTA to Count 3s 
 How does CTA guide us for Count 3s pgm 

  Array segments will be allocated to local mem 
  Each processor should count 3s in its segment 
  Global total should be formed using reduction 
  Performance is  

  Full parallelism for local processing 
  λ log n for combining 
  Base of log should be large, i.e high degree nodes 

  Same solution as before, but by different rt 

Summary 
  Parallel hardware is a critical component of 

improving performance through ||-ism … but 
there’s a Catch-22 
  To have portable programs, we must abstract 

away from the hardware 
  To write performant programs requires that we 

respect the hardware realities 
  Solve the problem with CTA  --  an abstract 

machine with just enough (realizable) detail 
to support critical programming decisions 
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Assignment for Next Time 
  Thinking of XML trees, which are made up of 

well-nested, user-defined matching tags, use 
the CTA to sketch the logic of a || algorithm to 
check if an XML file (is / is not) well nested 
and estimate its performance 

  Simplifications 
  Linear sequence of:  (, x, ) as in ((xxx)x(x)(xx)) 
  Explain the algorithm to a person, e.g. a TA grader, 

giving data allocation, communication specifics, 
protocol for processor interactions, etc. 

  Assume n >> P, comm costs l, give performance 


