Chapel: Motivating Themes

Brad Chamberlain
Cray Inc.

CSEP 524
May 20, 2010

What is Chapel?

= A new parallel language being developed by Cray Inc.

Part of Cray’s entry in DARPA’s HPCS program

Main Goal: Improve programmer productivity
Improve the programmability of parallel computers
Match or beat the performance of current programming models
Provide better portability than current programming models
Improve robustness of parallel codes

Target architectures:
multicore desktop machines
clusters of commodity processors
Cray architectures
systems from other vendors

A work in progress

Chapel’s Setting: HPCS

HPCS: High Productivity Computing Systems (DARPA et al.)
* Goal: Raise productivity of high-end computing users by 10x

° Productivity = Performance
+ Programmability
+ Portability
+ Robustness

= Phase II: Cray, IBM, Sun (July 2003 — June 2006)

° Evaluated the entire system architecture’s impact on productivity...
processors, memory, network, 1/0, OS, runtime, compilers, tools, ...

...and new languages:
Cray: Chapel IBM: X10 Sun: Fortress

= Phase llI: Cray, IBM (July 2006 —)
° Implement the systems and technologies resulting from phase Il
* (Sun also continues work on Fortress, without HPCS funding)

Chapel: Motivating Themes

1) general parallel programming

2) global-view abstractions

3) multiresolution design

4) control of locality/affinity

5) reduce gap between mainstream & parallel languages

1) General Parallel Programming

= General software parallelism
* Algorithms: should be able to express any that come to mind
should never hit a limitation requiring the user to return to MPI
° Styles: data-parallel, task-parallel, concurrent algorithms
as well as the ability to compose these naturally
° Levels: module-level, function-level, loop-level, statement-level, ...

= General hardware parallelism
° Types: multicore desktops, clusters, HPC systems, ...
° Levels: inter-machine, inter-node, inter-core, vectors, multithreading

2) Global-view vs. Fragmented

Problem: “Apply 3-pt stencil to vector”

global-view fragmented
« R T] (0 O T Y O
+) /> :
V2 m P ™ o

- COOE

2) Global-view vs. Fragmented
Problem: “Apply 3-pt stencil to vector”

global-view fragmented

I T v Dy
NS

(ECT: OWMECT: omCD
gun R HSaE P
M - M -

2) Global-view vs. SPMD Code

Problem: “Apply 3-pt stencil to vector”

\ global-view §‘ def main() {
def main() {

var n: int = 1000;
var locN: int = n/numProcs;
var a, b: [0..locN+1] real;

SPMD

var n: int = 1000;
var a, b: [l..n] real;

forall i in 2..n-1 { if (iHaveRightNeighbor) {
b(i) = (a(i-1) + a(i+l))/2; send (right, a(locN));
} recv (right, a(locN+1l));
} }
if (iHaveLeftNeighbor) {
send (left, a(l));
recv(left, a(0));
}
forall i in 1..locN {
b(i) = (a(i-1) + a(i+l))/2;
}

}

Problem:

*def main (

var n:
var a,

forall
b (1)

2) SPM

Assumes numProcs divides n;
amore general version would
require additional effort

“Apply 3-pt stencil to vector”

global-view def main()
) A var n:
int = 1000; var locN: int = n/numProcs;
b: [1..n] real; var a, b: [0..locN+1] real;

var innerLo: int = 1;

idin 2..n-1 | var innerHi: int = locN;

= (a(i-1) + a(i+l))/2;

if (iHaveRightNeighbor) {
send (right, a(locN));
recv (right, a(locN+1l));

} else {

innerHi = locN-1;

}

if (iHaveLeftNeighbor) {
send (left, a(l));
recv (left, a(0));

} else {
innerlLo = 2;

I
!
i
|
i
I
|
|
|
'
}

forall i in innerLo..innerHi ({

b(i) = (a(i-1) + a(i+l))/2;

D pseudo-code + MPI

Problem: “Apply 3-pt stencil to vector”

var n: int

SPMD (pseudocode + MPI)

= 1000, locN: int = n/numProcs;

var a, b: [0..locN+1] real; Communication becomes

var innerLo: int = 1, innerHi: int = locN;
var numProcs, myPE: int;

var retval:
var status:

geometrically more complex for
higher-dimensional arrays

int;
MPI_Status;

MPI_Comln_size (MPI_COMM WORLD, &numProcs);
MPI_Comm rank (MPI_COMM WORLD, &myPE);

if (myPE < numProcs-1) {
retval = MPI_Send(&(a(locN)), 1, MPI_FLOAT, myPE+l, 0, MPI_COMM WORLD) ;
if (retval != MPI_SUCCESS) { handleError(retval); }
retval = MPI_Recv (& (a(locN+1)), 1, MPI_FLOAT, myPE+1, 1, MPI_COMM WORLD, &status);
if (retval != MPI_SUCCESS) { handleErrorWithStatus(retval, status); }
} else
innerHi = locN-1;
if (myPE > 0) {
retval = MPI_Send(&(a(l)), 1, MPI_FLOAT, myPE-1, 1, MPI_COMM WORLD) ;
if (retval != MPI_SUCCESS) { handleError(retval); }
retval = MPI_Recv(&(a(0)), 1, MPI_FLOAT, myPE-1, 0, MPI_COMM WORLD, &status)
if (retval != MPI_SUCCESS) { handleErrorWithStatus(retval, status); }
} else
innerLo = 2;

forall i in (innerLo..innerHi) {

b(i) = (a

}

(i-1) + a(i+l))/2;

encil from NAS MG

2) NAS M

aubtoutina comaw,ml 12,13, K8)

swpiest mone

oA

eracirion vint a2

a e, w00
meER)

e sl
et

smptscat mone
inciogs ‘Siershan
e ot i

Se(axia a1)oben

e don A) = (2, 12,49

St bt San b st brusin e 1)+
B et ety

atae SECdix oq. 1) then

DerETbate.don, BUfE_id) = u(mie1, 12,59
St b San b st brusin e 1)+
B et ety

Sel s ea 2)0
fr Mt o
et ion, Bt = u(51, 2,43

| ot e o
St

oo oo e 01 -

G rprj3 stencil

tse i e g 1) then

e R SR

 boee_aeh) s axta, a1e 101 =

B s v

e e

BRGNS s wnen

 boee_aeh) s axta, a1e 101 =

R s v

hse i e g 1) e
RO < u sy

 uee_arh) s axta, a1e 101 =

B s v

sibrovine tare3(e, atx, w1, 03, 13)

i sam,

integer axts, aie, ai, 02,
S preckiton o(mk 3, 03)

integer bute_ia, sadx
seane
e

3 yen
3%
ST L burtune, st 0y
tee i e a1 e
S S e o, et s
rrpe—
e

yenen
3%
ST L bt inan, boee_sa)

tse i e g 1) e

T e, w0y

e e

ST L e, a0y
tee i e g 1) than
T e, vare 0y

sibrotine come sxie, v, 1, 53, 13, ¥k)

i sm,

ntege amin, a1 o3 3
S prectiton 4(mk 3, 03)

e 13,82, 1, et 1o

SheE e« 0.000

e = 0.0

BitETeate ten, Boff_la) = w(mie1,
2,50

Cien, TDuFELLd)m u(11,02

»

in Fortran +

iR e, ot _ia) = o0 11,52,00-

2o, 11

| BERSROWRT v,

= ey
e

2o, 11

ST L Rure s, w0y

3,

i, 2 e
S e oss, et se)

1 o

S sl o, e sa

CRANY

CRANY

MPI

aubtoutine rpesa(e,mik a2 a3k, w13, 820,939.%)
iepieis nom.

integer aik, wak, a3, w13, 823, m30%

o prscision st a2y
L
e prectaion i 0, yaim) 1 o
)tz
FERR R
yren & E i, B § E s, e
> R P e
3 G e, e
> [TR R T e
PR Rt
e R)
> S Csn, 2,5
S o e 4 e,
[e TR T i)
R e TR e)

2) NAS MG rprj3 stencil in Chapel

def rprji3 (S, R) {
const Stencil = [-1..1, -1..1, -1..1],
w: [0..3] real = (0.5, 0.25, 0.125, 0.0625), e |
w3d = [(i,9,k) in Stencil] w((i!=0) + (3!=0) + (k!=0)); .

forall ijk in S.domain do
S(ijk) = + reduce [offset in Stencil]
(w3d (offset) * R(ijk + offset*R.stride));

Our previous work in ZPL showed that compact,
global-view codes like these can result in performance
that matches or beats hand-coded Fortran+MPI
while also supporting more runtime flexibility

NAS MG rprj3 stencil in ZPL

procedure rprj3(var S,R: [,,] double;
d: array [] of direction);

begin
S := * R

+ 0.25 * (R@*d[1, O, 0] + R@"d[O, 1, 0] + R@"dA[O, O, 1] +
rRe@~d[(-1, 0, 0] + R@~d[O0,-1, O] + RE@~d[0, 0,-11])

+ 0.125 * (R@~d[1, 1, 0] + RE~d[1, O, 1] + R@~d[O, 1, 11 +
Re@~d[1,-1, 0] + R@~d[1, 0,-1] + R@"d[O, 1,-1] +
rRe~d[(-1, 1, 0] + R@~d[-1, O, 1] + RE@~d[O0,-1, 1] +
rRe@~d[(-1,-1, 0] + R@~d[-1, O0,-1] + R@~d[0,-1,-11])

+ 0.0625 * (R@~d[1, 1, 1] + Re~d[1, 1,-1] +
R@~d[1,-1, 1] + R@~d[1,-1,-1]1 +
rR@~d[(-1, 1, 1] + R@~d[-1, 1,-1] +
R@~d[-1,-1, 1] + RE"d[-1,-1,-11);

end;

NAS MG Speedup: ZPL vs. Fortran + MPI

MG ZPL scales better than MPI
since its communication is
P expressed in an
implementation-neutral
way; this permits the
compiler to use SHMEM
on this Cray T3E but MPI

/. on a commodity cluster

ZPL also performs better at smaller
scales where communication is not
the bottleneck = new languages need
not imply performance sacrifices

-
<)
|

1
N

= = = linear speedup

—eo— A-ZPL
ZPL

—a&— F+MPI

.
N
1

Similar observations—and more dramatic
ones—have been made using more recent
architectures, languages, and benchmarks

Speedup over best 16-processor time
(114.607 seconds in A-ZPL)
(o]
1

| I [
0 32 64 128 256

Processors
Cray T3E

CRANY

Generality Notes
MG

Each ZPL binary supports:

« an arbitrary load-time problem size

* an arbitrary load-time # of processors
» 1D/2D/3D data decompositions

o

~ — ==
gy 127 zPL
g__g | —a— F+MPI
Low
1] 4
- E 8 -
7]
o 9 4
23
5~ 1 This MPI binary only supports:
23 4 i - a static 2**k problem size
e o] * a static 2**j # of processors
° =] »a 3D data decomposition
(1]
c% 0 | The code could be rewritten to relax
T T T ; 5
0 32 64 128 thgse assumptions, but at what cost?
-in performance?
Processors -in development effort?

Cray T3E

Code Size

1200
Ocommunication
1000 Edeclarations
O computation
800
[}
3 566
@]
S 600
%]
(]
=
£

F+MPI ZPL A-ZPL

Language

Code Size Notes

it supports a global view of parallelism
rather than an SPMD programming model

Ocommunication

» the ZPL codes are 5.5-6.5x shorter because _‘\

= little/no code for communication mdeclarations
= little/no code for array bookkeeping = computation
800
[}
S 566 \
(6]
S 600
1%}
[}
o
More important than the \

size difference is that it
is easier to write, read,
modify, and maintain

F+MPI ZPL A-ZPL
Language

Global-view models can benefit Productivity

-
=3
|

1200

1 === linear speedup
1 —e— A-ZPL
1 ZPL

] —a— F+uPl

1000 — Ocommunication |—

-
N
1

BEdeclarations

®
o
o

= computation
566

B
| @ o

Lines of Code
[=2]
o
o

N
(=3
o

(114.607 seconds in A-ZPL)
(o]
1

Speedup over best 16-processor time
N
o
o

T T T 0
0 32 64 128 2!56 F+MPI ZPL A-ZPL
Processors Language
Cray T3E

= more programmable, flexible
able to achieve competitive performance
= more portable; leave low-level details to the compiler

2) Classifying HPC Programming Notations

= communication libraries: data / control
° MPI, MPI-2 fragmented / fragmented/SPMD
° SHMEM, ARMCI, GASNet fragmented / SPMD

= shared memory models:
° OpenMP, pthreads global-view / global-view (trivially)

= PGAS languages:

° Co-Array Fortran fragmented / SPMD
* UPC global-view / SPMD
° Titanium fragmented / SPMD

= HPCS languages:
* Chapel global-view / global-view
* X10 (IBM) global-view / global-view

° Fortress (Sun) global-view / global-view

3) Multiresolution Languages: Motivation

Two typical camps of parallel language design:
low-level vs. high-level

I’\ Higher-Level

Abstractions
HPF

Expose
Implementing

Mechanisms
Target Machine Target Machine

“Why is everything so tedious?” “Why don’t | have more control?”

3) Multiresolution Language Design

Our Approach: Structure the language in a layered manner,

permitting it to be used at multiple levels as required/desired
° support high-level features and automation for convenience
° provide the ability to drop down to lower, more manual levels
° use appropriate separation of concerns to keep these layers clean

language concepts
@ Distributions D
Data parallelism

Locality Control
Base Language

Target Machine

4) Ability to Tune for Locality/Affinity

= Large-scale systems tend to store memory w/ processors
° a good approach for building scalable parallel systems

= Remote accesses tend to be significantly more expensive
than local

= Therefore, placement of data relative to computation matters

for scalable performance
= programmer should have control over placement of data, tasks

= As multicore chips grow in #cores, locality likely to become

more important in desktop parallel programming as well
° GPUs/accelerators also expose node-level locality concerns

4) A Note on Machine Model

= As with ZPL, the CTA is still present in our design to reason
about locality

= That said, it is probably more subconscious for us

= And we vary in some minor ways:
° no controller node
though we do utilize a front-end launcher node in practice
° nodes can execute multiple tasks/threads
through software multiplexing if not hardware

5) Support for Modern Language Concepts

= students graduate with training in Java, Matlab, Perl, C#
= HPC community mired in Fortran, C (maybe C++) and MPI

= we'd like to narrow this gulf
leverage advances in modern language design
better utilize the skills of the entry-level workforce...
...while not ostracizing traditional HPC programmers

= examples:
build on an imperative, block-structured language design
support object-oriented programming, but make its use optional
support for static type inference, generic programming to support...
...exploratory programming as in scripting languages
...code reuse

