
Cray

The Mother of All Chapel Talks

Brad Chamberlain
Cray Inc.

CSEP 524
May 20, 2010

Lecture Structure

1. Programming Models Landscape

2. Chapel Motivating Themes

3. Chapel Language Features

4. Project Status

5. Sample Codes

Cray

Chapel:
the Programming Models Landscape

Disclaimers

This lecture’s contents should be considered my

personal opinions (or at least one facet of them)

and not necessarily those of Cray Inc.

nor my funding sources.

I work in high-performance scientific computing,

so my talk may reflect my biases in that regard

(as compared to, say, mainstream multicore programming).

That said, there are probably more similarities than

differences between the two worlds (esp. as time goes on).

Cray

Terminology: Programming Models

Programming Models:

1.abstract models that permit users to reason about how their

programs will execute with respect to parallelism, memory,

communication, performance, etc.
e.g., “what should/can I be thinking about when writing my programs?”

2.concrete notations used to write programs
i.e., the union of programming languages, libraries, annotations, …

HPC Programming Model Taxonomy (2010)

 Communication Libraries
• MPI, PVM, SHMEM, ARMCI, GASNet, …

 Shared Memory Programming Models
• OpenMP, pthreads, …

 Hybrid Models
• MPI+OpenMP, MPI+CUDA, MPI+OpenCL, …

 Traditional PGAS Languages
• Unified Parallel C (UPC), Co-Array Fortran (CAF), Titanium

 HPCS Languages
• Chapel, X10, Fortress

 GPU Programming Models
• CUDA, OpenCL, PGI annotations, CAPS, …

 Others (for which I don’t have a neat unifying category)
• Global Arrays, Charm++, ParalleX, Cilk, TBB, PPL, parallel Matlabs,

Star-P, PLINQ, Map-Reduce, DPJ, Yada, …

Cray

Distributed Memory Programming

 Characteristics:
• execute multiple binaries simultaneously & cooperatively

• each binary has its own local namespace

• binaries transfer data via communication calls

 Examples: MPI, PVM, SHMEM, …

MEM MEM MEM MEM

X X X X

MPI (Message Passing Interface) Evaluation

MPI strengths
+ users can get real work done with it

+ it is extremely general

+ it runs on most parallel platforms

+ it is relatively easy to implement (or, that’s the conventional wisdom)

+ for many architectures, it can result in near-optimal performance

+ it can serve as a strong foundation for higher-level technologies

MPI weaknesses
– encodes too much about “how” data should be transferred rather than

simply “what data” (and possibly “when”)

 can mismatch architectures with different data transfer capabilities

– only supports parallelism at the “cooperating executable” level

 applications and architectures contain parallelism at many levels

 doesn’t reflect how one abstractly thinks about parallel algorithm

– no abstractions for distributed data structures

 places a significant bookkeeping burden on the programmer

Cray

Panel Question: What problems are poorly served by MPI?

My reaction: What problems are well-served by MPI?
“well-served”: MPI is a natural/productive way of expressing them

• embarrassingly parallel: arguably

• data parallel: not particularly, due to cooperating executable issues

 bookkeeping details related to manual data decomposition

 data replication, communication, synchronization

 local vs. global indexing issues

• task parallel: even less so

 e.g., write a divide-and-conquer algorithm in MPI…

…without MPI-2 dynamic process creation – yucky

…with it, your unit of parallelism is the executable – weighty

 Its base languages have issues as well
• Fortran: age leads to baggage + failure to track modern concepts

• C/C++: impoverished support for arrays, pointer aliasing issues

(Traditional) PGAS Programming Models

 Characteristics:
• execute an SPMD program (Single Program, Multiple Data)

• all binaries share a namespace

 namespace is partitioned, permitting reasoning about locality

 binaries also have a local, private namespace

• compiler introduces communication to satisfy remote references

 Examples: UPC, Co-Array Fortran, Titanium

MEM MEM MEM MEM

y

X X X X

z

Cray

PGAS: What’s in a Name?

MPI

OpenMP

P
G

A
S

L
a
n
g
u
a
g
e
s

Chapel

memory

model

CAF

UPC

Titanium

PGAS

programming

model

execution

model

Single Program, Multiple Data

(SPMD)

co-arrays

1D blk-cyc arrays/

distributed pointers

class-based arrays/

distributed pointers

co-array refs

implicit

method-based

communication

data

structures

PGAS: What’s in a Name?

MPI

OpenMP

P
G

A
S

L
a
n
g
u
a
g
e
s

Chapel

memory

model

CAF

UPC

Titanium

PGAS

distributed

memory

shared

memory

PGAS

programming

model

execution

model

global-view

parallelism

global-view

parallelism

shared memory

multithreaded

distributed

memory

multithreaded

cooperating executables

(often SPMD in practice)

Single Program, Multiple Data

(SPMD)

co-arrays

1D blk-cyc arrays/

distributed pointers

class-based arrays/

distributed pointers

co-array refs

implicit

method-based

N/A

implicit

APIs

shared

memory

arrays

manually

fragmented

global-view

distributed

arrays

communication

data

structures

Cray

PGAS Evaluation

PGAS strengths
+ Implicit expression of communication through variable names

 decouples data transfer from synchronization

+ Ability to reason about locality/affinity supports scalable performance

Traditional PGAS language strengths
+ Elegant, reasonably minimalist extensions to established languages

+ Raises level of abstraction over MPI

+ Good support for distributed pointer-based data structures

+ Some support for distributed arrays

Traditional PGAS language weaknesses
– all: Imposes an SPMD programming + execution model on the user

– CAF: Problems that don’t divide evenly impose bookkeeping details

– UPC: Like C, 1D arrays seem impoverished for many HPC codes

– Titanium: Perhaps too pure an OO language for HPC

– e.g., arrays should have value rather than reference semantics

post-SPMD/Asynchronous PGAS (APGAS)

 Characteristics:
• uses the PGAS memory model

• distinct concepts for locality vs. parallelism

• programming/execution models are richer than SPMD

 each unit of locality can execute multiple tasks/threads

 nodes can create work for one another

 Examples: Chapel, X10, Fortress

MEM MEM MEM MEM

task queues/pools:

Cray

ZPL

Main concepts:
• abstract machine model: CTA

• data parallel programming via global-view abstractions

 regions: first-class index sets

• WYSIWYG performance model

ZPL Concepts: Regions

regions: distributed index sets…
region R = [1..m, 1..n];

InnerR = [2..m-1, 2..n-1];

…used to declare distributed arrays…
var A, B: [R] real;

…and computation over distributed arrays
[InnerR] A = B;

R

InnerR

A
B

AInnerR BInnerR

Cray

ZPL Concepts: Array Operators

array operators: describe nontrivial array indexing

translation via at operator (@)
[InnerR] A = B@[0,1];

replication via flood operator (>>)
[R] A = >>[1, 1..n] B;

reduction via reduction operator (op<<)
[R] sumB = +<< B;

parallel prefix via scan operator (op||)
[R] A = +|| B;

arbitrary indexing via remap operator (#)
[R] A = B#[X,Y];

+

1 1 1 1 …1 2 3 4 …

sumB

Ai,j

BX(i,j),Y(i,j)

ZPL Concepts: Syntactic Performance Model

array operators: describe nontrivial array indexing

translation via at operator (@)
[InnerR] A = B@[0,1];

replication via flood operator (>>)
[R] A = >>[1, 1..n] B;

reduction via reduction operator (op<<)
[R] sumB = +<< B;

parallel prefix via scan operator (op||)
[R] A = +|| B;

arbitrary indexing via remap operator (#)
[R] A = B#[X,Y];

+

1 1 1 1 …1 2 3 4 …

sumB

Ai,j

BX(i,j),Y(i,j)

[InnerR] A = B;

No Array Operators

No Communication

At Operator

Point-to-Point Communication

Flood Operator Broadcast

(log-tree) Communication

Reduce Operator Reduction

(log-tree) Communication

Scan Operator Parallel-Prefix

(log-tree) Communication

Remap Operator Arbitrary

(all-to-all) Communication

Cray

Why Aren’t We Done? (ZPL’s Limitations)

 Only supports a single level of data parallelism
• imposed by execution model: single-threaded SPMD

• not well-suited for task parallelism, dynamic parallelism

• no support for nested parallelism

 Distinct types & operators for distributed and local arrays
• supports ZPL’s WYSIWYG syntactic model

• impedes code reuse (and has potential for bad cross-products)

• annoying

 Only supports a small set of built-in distributions for arrays
• e.g., Block, Cut (irregular block), …

• if you need something else, you’re stuck

ZPL’s Successes

 First-class concept for representing index sets
 makes clouds of scalars in array declarations and loops concrete

 supports global-view of data and control; improved productivity

 useful abstraction for user and compiler
The Design and Implementation of a Region-Based Parallel Language. Bradford L. Chamberlain.

PhD thesis, University of Washington, November 2001

 Semantics constraining alignment of interacting arrays
 communication requirements visible to user and compiler in syntax
ZPL's WYSIWYG performance model. Bradford L. Chamberlain, Sung-Eun Choi, E Christopher

Lewis, Calvin Lin, Lawrence Snyder, and W. Derrick Weathersby. In Proceedings of the IEEE
Workshop on High-Level Parallel Programming Models and Supportive Environments, 1998.

 Implementation-neutral expression of communication
 supports implementation on each architecture using best paradigm
A compiler abstraction for machine independent parallel communication generation. Bradford L.

Chamberlain, Sung-Eun Choi, and Lawrence Snyder. In Proceedings of the Workshop on

Languages and Compilers for Parallel Computing, 1997.

 A good start on supporting distributions, task parallelism
Steven J. Deitz. High-Level Programming Language Abstractions for Advanced and Dynamic

Parallel Computations. PhD thesis, University of Washington, February 2005.

Cray

Chapel and ZPL

 Base Chapel’s data parallel features on ZPL’s successes…
• carry first-class index sets forward

 unify with local arrays for consistency, sanity

 no syntactic performance model

 generalize to support richer data aggregates: sets, graphs, maps

• remove alignment requirement on arrays for programmability

 no syntactic performance model

 yet, preserve user/compiler ability to reason about aligned arrays

• preserve implementation-neutral expression of communication

• support user-defined distributions for arrays

 …while expanding to several areas beyond ZPL’s scope
• task parallelism, concurrency, synchronization, nested parallelism,

OOP, generic programming, modern syntax, type inference, …

A Design Principle HPC should revisit

“Support the general case, optimize for the common case”

Claim: a lot of suffering in HPC is due to programming models

that focus too much on common cases:
• e.g., only supporting a single mode of parallelism

• e.g., exposing too much about target architecture and implementation

Impacts:
• hybrid models needed to target all modes of parallelism (HW & SW)

• challenges arise when architectures change (e.g., multicore, GPUs)

• presents challenges to adoption (“linguistic dead ends”)

That said, this approach is also pragmatic
• particularly given community size, (relatively) limited resources

• and frankly, we’ve achieved a lot of great science when things fit

But we shouldn’t stop striving for more general approaches

Chamberlain (27)

