L. Snyder: Spring 2007

CSE524P: Term Project Specification

Learning Objective: The project uses a parallel program (you pick the language) as a means of applying ideas from class about parallel computation. The problem domain, computation, implementation and evaluation are not constrained, so you can explore and be creative. Focus on what interests you, and try hard to put the parallelism ideas into practice.

Project Goals: Your goals in the project are (a) to challenge yourself in designing and implementing a parallel computation, and (b) to reveal to me (mostly in the report) some of what you've learned in the class.

Tasks

1. Select a computation that interests you and that would benefit from parallelism, i.e. its serial time complexity is superlinear. A few topics are listed below, and there are many similar topics to be found on the Web, but the best topic is one that interests you and about which you may have some special knowledge.

2. Select a language to write the program in. There is basic information in the book on PThreads, MPI and ZPL. The latter two are more appropriate for the cluster computer at our disposal, but if you have another parallel computer with a shared address space, PThreads is fine. There are various other languages which you can try at your own risk, including OpenMP, Java threads, UPC, Titanium, etc.

3. Write an initial program for the problem; call it P1. The purpose of P1 is to have a solution from which you can revise and improve the computation. Do not be ambitious, but get a solution working quickly for the core computation. Accept a possibly naïve parallel solution. (A sequential solution is unacceptable except for unimportant parts of the computation like initialization.) Avoid embellishments and fancy I/O; accept constraints on the solution ("n is a power of 2").

4. Using the CTA performance model presented in the book, your understanding of parallel computers, your knowledge of parallel algorithms, and your general CS smarts critique the P1 program. That is, identify places where there are inefficiencies. Improve P1 to create P2, or for some projects, create a competitive P2.

5. Gather evidence about the performance of P1 and P2 to test your understanding of whether the "improvement" actually improved the program. Generally, this evidence will involve running your program on the cluster machine or other parallel processor.

6. Write a short report (1-3 pages, but if you need more, take it) describing what you did, how you analyzed your program (Task 4), how you improved it and why, and what the experimental evidence was. Include a listing of your commented program.

Due Date: 12:00 Noon PST 4 June 2007. Send to Nathan

Possible Topic Areas

Your Topic Here

The best project topic is one that interests you. If you have a topic you like, think about how a project might go, then send me an email outline of what you'd like to try.

Commonly Cited Parallel Applications

The online literature is filled with examples that are generally thought to be good candidates for parallel solution: MPEG compression, Smith-Waterman genome matching computation, many body (gravitation) simulation, etc. The examples usually involve large amounts of data or computation, or both. The experiments needed to assess P1 versus P2 do not have to be large, only large enough to demonstrate whatever point is being made.

Game Searches

Because board games have a succinct description, they are a common example of a work queue approach; moreover, searching is a task that is often improved by parallelism. If you have an interest in games, implement a search for a board configuration with a certain property.

Graph Computations

The All Pairs Shortest Path was an easy computation in ZPL. Find a computation on a graph and develop a ZPL solution. For example, the closest pair of points (Euclidean) is a computation that often uses a k-d tree partitioning of the point space. A regular k-d tree is a structure that can easily be imposed on a linear array of points. Once partitioned, the points can be moved to individual processors with remap, and the closest computation performed locally, and with neighbors for points close to the boundaries.

Compete Against a Benchmark

There are a variety of parallel benchmark suites to be found on the Web, such as the NAS Parallel Benchmarks (NPB), SPEC HPC2002, Cray’s Application Kernel Matrix (AKM), etc. Some of these computations can be large, but one approach is to formulate your parallel solution using the principles from class, and lift the scalar code from the benchmark (assuming a compatible base language). In creating your P1 and P2 programs, you need to apply a significant, new idea that is not part of published examples of the benchmark. In addition to comparing your P1 and P2 performance, compare your result to a solution from the suite’s site.

Milestones

For the last 3 lectures, in lieu of homework, turn in a page detailing recent project progress. I’m interested in how you are doing, of course, but this is mostly a means to spread out the work. We don’t want the inevitable bugs and the jockeying for “measurement use” of the cluster to convert the last two days of the project into a panic.

When Am I Finished?

The project assignment is to work through the five tasks given above, but it has purposely been designed to be open-ended to give you ample opportunity to show your stuff. Do more if you’ve got the time and the interest; more ambitious projects are worthy of more points. But, life is finite and we all have other obligations, so be realistic.

Scoring

Roughly 20% of the project score is for project design—what did you do, does it make sense, did you run rational experiments, etc.? Roughly 50% of the score is for the algorithm design, programming, organization, commenting, etc. of the ZPL programs. Roughly 30% is dedicated to the write-up: clear exposition, clear references to key ideas in parallel computing as they apply to your task, etc.

