The Basics of ZPL

Like sequential computation with its C programming language and von Neumann model of computation explaining the performance of programs, parallel computation needs a language calibrated to the CTA model. ZPL is the only such language.

Thread of CSE596

The reasoning bringing us to this point is:

- Model of computation: We cannot write fast programs without having some idea of how they will perform when they execute … CTA
- Shared memory (PRAM) seems like a natural programming generalization of sequential computation, but …
 - It “hides” performance-critical info (= locality) at “log cost”
 - Concurrency on shared memory is complex
 - Coherent shared memory OK for SMP, … but beyond???
- Only a global view of the computation is required
- Invent new abstractions for a global view … ZPL
ZPL -- A Practical Parallel Language

- ZPL was designed and built using the CTA model, so like C
 - Semantics are defined relative to the model
 - Compiler and run-time system assume the model
 ... so ZPL programs are efficient for any CTA computer

- ZPL designed from “1st principles” meaning...
 - ZPL is not an extension of existing language -- it’s new
 - Careful analysis of programming task: XYZ-levels
 - No programming “fads”: functional, OO, “miracle” solutions
 - Search for new ideas that help parallel programmers
 - Focus on “user needs,” e.g. scientific computation

ZPL is the third attempt -- Spot and Orca “failed”

ZPL ...

Is an array language -- whole arrays are manipulated with primitive operations

- Requires new thinking strategies --
 - Forget one-operation-a-time scalar programming
 - Think of the computation globally -- make the global logic work efficiently and leave the details to the compiler

- Is parallel, but there are no parallel constructs in the language; the compiler...
 - Finds all concurrency
 - Performs all interprocessor communication
 - Implements all necessary synchronization (almost none)
 - Performs extensive parallel and scalar optimizations
A Sample of ZPL Code

```zpl
program Jacobi;
config var n : integer = 512;
    eps : float = 0.00001;
region     R = [1..n, 1..n];
BigR = [0..n+1,0..n+1];
direction N = [-1, 0];  S = [ 1, 0];
    E = [ 0, 1];  W = [ 0,-1];
var     Temp : [R] float;
A : [BigR] float;
err : float;
procedure Jacobi();
    [R] begin
    [BigR] A := 0.0;
    [S of R] A := 1.0;
repeat
    Temp := (A@N + A@E + A@S + A@W)/4.0;
    err := max<< abs(Temp - A);
    A := Temp;
until err < eps;
end;
end;
```

ZPL is an imperative array language with the usual datatypes and operators, the familiar statement forms, and a few new concepts added. It is a mix of Pascal, C and new syntax.

New features

- config vars
- region
- direction
- prefixing []

assist with the global view of computation.
Jacobi Iteration: How does it work?

program Jacobi;
config var n : integer = 512;
 eps : float = 0.00001;

region R = [1..n, 1..n];
BigR = [0..n+1,0..n+1];
direction N = [-1, 0]; S = [1, 0];
E = [0, 1]; W = [0,-1];
var Temp : [R] float;
A : [BigR] float;
err : float;

procedure Jacobi();
[R] begin
[BigR] A := 0.0;
[S of R] A := 1.0;
repeat
 Temp := (A@N + A@E + A@S + A@W)/4.0;
 err := max<< abs(Temp - A);
 A := Temp;
 until err < eps;
end;
end;

Regions: A New Concept

program Jacobi;
config var n : integer = 512;
 eps : float = 0.00001;

region R = [1..n, 1..n];
BigR = [0..n+1,0..n+1];
direction N = [-1, 0]; S = [1, 0];
E = [0, 1]; W = [0,-1];
var Temp : [R] float;
A : [BigR] float;
err : float;

procedure Jacobi();
[R] begin
[BigR] A := 0.0;
[S of R] A := 1.0;
repeat
 Temp := (A@N + A@E + A@S + A@W)/4.0;
 err := max<< abs(Temp - A);
 A := Temp;
 until err < eps;
end;
end;
Directions: Another New Concept

```pascal
program Jacobi;
config var n : integer = 512;
eps : float = 0.00001;
region     R = [1..n, 1..n];
BigR = [0..n+1,0..n+1];
direction  N = [-1, 0];  S = [ 1, 0];
E = [ 0, 1];  W = [ 0,-1];
var     Temp : [R] float;
A : [BigR] float;
err : float;
procedure Jacobi();
[R] begin
[BigR] A := 0.0;
[S of R] A := 1.0;
repeat
Temp := (A@N + A@E + A@S + A@W)/4.0;
err  := max<< abs(Temp - A);
A    := Temp;
until err < eps;
end;
end;
```

Directions are vectors pointing in index space ... e.g.
S = [1, 0] points to row below

Operations on Regions

```pascal
program Jacobi;
config var n : integer = 512;
eps : float = 0.00001;
region     R = [1..n, 1..n];
BigR = [0..n+1,0..n+1];
direction  N = [-1, 0];  S = [ 1, 0];
E = [ 0, 1];  W = [ 0,-1];
var     Temp : [R] float;
A : [BigR] float;
err : float;
procedure Jacobi();
[R] begin
[BigR] A := 0.0;
[S of R] A := 1.0;
repeat
Temp := (A@N + A@E + A@S + A@W)/4.0;
err  := max<< abs(Temp - A);
A    := Temp;
until err < eps;
end;
end;
```

Transform regions using "prepositional" operators: of, in, at, by, etc. e.g.
[S of R] specifies region south of R of extent given by len., i.e. single row
Referencing 4 Nearest Neighbors

program Jacobi;
cfg var n : integer = 512;
eps : float = 0.00001;

:= (+ + +)/4.0;

procedure Jacobi();
[R] begin
[BigR] A := 0.0;
[S of R] A := 1.0;
repeat
Temp := (A@N + A@E + A@S + A@W)/4.0;
err := max<< abs(Temp - A);
A := Temp;
until err < eps;
end;
end;

The “High Level” Logic Of J-Iteration

program Jacobi;
cfg var n : integer = 512;
eps : float = 0.00001;

region R = [1..n, 1..n];
BigR = [0..n+1,0..n+1];
direction N = [-1, 0]; S = [1, 0];
E = [0, 1]; W = [0,-1];
var Temp : [R] float;
A : [BigR] float;
err : float;

procedure Jacobi();
[R] begin
[BigR] A := 0.0;
[S of R] A := 1.0;
repeat
Temp := (A@N + A@E + A@S + A@W)/4.0;
err := max<< abs(Temp - A);
A := Temp;
until err < eps;
end;
end;
ZPL In Detail ...

ZPL has the usual stuff

- **Datatypes:** boolean, float, double, quad, complex, signed and unsigned integers: byte, ubyte, integer, uinteger, char, ...

- **Operators:**
 - Unary: +, -, !
 - Binary: +, -, *, /, ^, %, &, |
 - Relational: <, <=, =, !=, >=, >=
 - Bit Operations: bnot(), band(), bor(), bxor(), bsl(), bsr()
 - Assignments: :=, +=, -=, *=, /=, %=, &=, |=

- **Control Structures:** if-then-[elseif]-else, repeat-until, while-do, for-do, exit, return, continue, halt, begin-end

ZPL Detail (continued)

- White space ignored
- All statements are terminated by semicolon (;)
- Comments are
 - `--` to the end of the line
 - `/* */` all text within pairs including newlines
- All variables must be declared using `var`
- Names are case sensitive
- Programs begin with
  ```plaintext
  program <name>;
  ```
 the procedure with `<name>` is the entry point
ZPL Detail (continued)

- The unary global operation reduction (<<) “reduces” an entire array to a single value using an associative operator: +<<, *<<, max<<, min<<, &<<, |<<

- For example, +<< is summation (Σ) and max<< is global maximum

 \[
 \text{err} := \text{max}<< \text{abs}(\text{Temp} - A);
 \]

Global sum was solved the first day with a tree algorithm; global maximum was solved with the tournament algorithm ... primitive in ZPL

Bounding Box

- Let X,Y be 1-dimensional n element arrays such that \((x_i, y_i)\) is a position in the plane
- The bounding box is the extreme coordinates in each dimension

 \[
 \begin{align*}
 \text{[1..n]} & \begin{align*}
 \text{rightedge} & := \text{max}<< X; \\
 \text{topedge} & := \text{max}<< Y; \\
 \text{leftedge} & := \text{min}<< X; \\
 \text{bottomedge} & := \text{min}<< Y;
 \end{align*}
 \end{align*}
 \]

end
Alternative Data Representation

- ZPL allows programmers to define a type
- Rather than using X and Y arrays, define

  ```pascal
  type cartPoint = record
      x : integer; -- x coordinate
      y : integer; -- y coordinate
    end;
  ...            
  var Pts : [1..n] cartPoint; -- an array of points
  rightedge := max<< Pts.x;
  topedge := max<< Pts.y;
  leftedge := min<< Pts.x;
  bottomedge := min<< Pts.y;
  ```

ZPL Inherits from C

- ZPL is translated into C
- Mathematical functions come from math.h
- ZPL’s Input and Output follow C conventions and formatting, though the behavior on parallel machines can differ

```
Configuration variables (config vars) are a list of command line assignable variables with specified defaults ... cannot be reset

config var prob_size : integer = 64;
```
Mean and Standard Deviation ...

Find μ and σ for array of Sample values

```plaintext
program Sample_Stats;
    config var n : integer = 100;
    region V = [1..n];

procedure Sample_Stats();
    var Sample : [V] float;
    mu,sigma: float;
    [V] begin
        read(Sample);
        mu := +<<Sample/n;
        sigma := sqrt(+<<((Sample-mu)^2)/n);
        write ("Mean: ", mu,"S.D. :", sigma);
    end;
end;
```

$\mu = \frac{\sum Sample_i}{n}$

$\sigma = \sqrt{\frac{\sum (Sample_i - \mu)^2}{n}}$

Basically, a direct translation into imperative form

Regions

- Regions are named sets of index tuples
- Regions are declared with syntax
  ```plaintext
  region <name> = [<ll>..<ul> {, <ll>..<ul>}]*
  ```
- For example
  ```plaintext
  region R = [1..n, 1..n]; -- Std 2-dim region
  region V = [0..m-1]; -- 0-origin
  ```
- Short names common; caps by convention
- Specify stride with **by** following the limits,
  ```plaintext
  region Evens = [0..n by 2]; -- 0, 2, 4, ...
  ```
Declaring Variables

- Variable declarations have the form of a list followed by colon (:) followed by a datatype
 \[\text{var } x, y, z : \text{double}; \]
- The type of an array is a pair
 \[[\text{<region>]} \text{ <data type>} \]
- The region can be named or explicit
 \[\text{var } A, B, C : [R] \text{ double;} \]
 \[\text{Small_data} : [1..n] \text{ byte;} \]
- Arrays passed as parameters must have this type given in the formal parameter

Regions Controlling Array Stmt Execution

Regions specify the indices over which computation will be performed

- Specify region in brackets as statement prefix
 \[[1..n,1..n] A := B; \]
- The n^2 elements of the region are replaced in A by their corresponding elements in B
- Regions are scoped
 \[[1..n,1] \text{ begin -- Work on first column only} \]
 \[A := 0; \]
 \[B := 2*C; \]
 \[\text{end;} \]
More About Regions

- With explicit indices leave a dimension blank to inherit from enclosing scope

  ```
  [1..n, 1] begin
  X := Y;  -- replace first column
  [*, 2]  X += X;  -- double second column
  end;
  ```

- Arrays must “conform” in rank and both define elements for indices of region
- “Applicable region” for assignments are (generally) the most tightly enclosing region of the rank of the left hand side

Directions

- Directions are vectors pointing in index space
- Declare directions using

  ```
  direction <name> = [ <tuple> ]
  ```

 where <tuple> is a sequence of indices separated by commas
- For example

  ```
  direction northwest = [-1, -1];
  right = [1];
  ```

- Short names are common and preferred
The @ Operator

The @ operator takes as operands an array variable and a direction, and returns an array whose values come from the given array offset from the prevailing region by direction

\[1..n,1..n-1 \] \(A := B@e; \quad \text{-- assume } e = [0,1] \)

- Assign \(A[r,s] \) the value \(B[r,s+1] \)
- That is, \(B@e \) contains the last \(n-1 \) columns of \(B \), which are assigned to the first \(n-1 \) columns of \(A \)

3 Identical Values In Sequence

region \(V = [1..n] \);
var Letters : [V] char;
 Seq : [V] boolean;
 triples : integer;
direction r = [1]; r2 = [2];
...
[1..n-2] begin
 Seq := (Letters = Letters@r)
 & (Letters = Letters@r2);
 triples := +<< Seq;
end;
What Happens

Send left
Compare +1
Compare +2
Local +
Accum Tree
Bdcast Tree

Region Operators

ZPL has region operators taking as operands a region and a direction, and producing a region
- `at` translates the region’s index set in the direction
- `of` defines a new region adjacent to the given region along direction edge and of direction extent

```plaintext
region R = [1..8,1..8];
C = [2..7,2..7];
var X, Y : [R] byte;
```

```plaintext
Direction e = [ 0,1];
n = [-1,0];
ne = [-1,1];
```

```
[C] X:=
[C at e] Y:=
[n of C] Y:=
[C] Y:=X@ne
```
Index1 ...

- ZPL comes with “constant arrays” of any size
- Index\text{i} means indices of the \text{i}\text{th} dimension

\[
[1..n,1..n] \text{ begin} \\
\text{Z := Index1; -- fill with first index} \\
\text{P := Index2; -- fill with second index} \\
\text{L := Z=P; -- define identity array} \\
\text{end;}
\]

- These array -- of arbitrary dimension -- are compiler created using no space

Scan

- Scan is the parallel prefix operation for associative operators: +, *, min, max, &,
- Scan is like reduction, but uses ||
- Prefix sum from the first lecture is + ||

\[
A \Leftrightarrow 2 4 6 8 0 \\
+ || A \Leftrightarrow 2 6 12 20 20
\]

- Yes, “or scan” is || || as in

\[
B \Leftrightarrow 0 0 0 1 1 0 1 1 \\
\text{Run := || B \Leftrightarrow 0 0 0 1 1 1 1 1} \\
[2..n] \text{ Run := (Run != Run@w)*Index1;} \\
\text{pos := max<< Run;}
\]

Think globably
Recall Cannon’s Algorithm

C is initialized to 0.0
Arrays A, B are skewed
A, B move “across” C one step at a time
Elements arriving at a place are multiplied, added in
Programming Cannon’s In ZPL

• Step 1: Handle the skewed arrays

```
c11 c12 c13          a11 a12 a13 a14
  c21 c22 c23        a21 a22 a23 a24
  c31 c32 c33    a31 a32 a33 a34
    c41 c42 c43  a41 a42 a43 a44
```

```
        b13  c11 c12 c13  a11 a12 a13 a14
       b12 b23  c21 c22 c23  a22 a23 a24 a21
   b11 b22 b33  c31 c32 c33  a33 a34 a31 a32
b21 b32 b43  c41 c42 c43  a44 a41 a42 a43
b31 b42   b11 b22 b33
   b41     b21 b32 b43
           b31 b42
```

Pack skewed arrays into dense arrays by rotation; process all \(n^2 \) elements at once.

Wrap-@

The @-operator has (recently) been extended to automatically wrap-around an array rather than “falling off” -- excellent for “periodic boundaries”:

```
var A : [1..n,1..n] double; -- array of doubles
...
A := A@’east; -- rotate columns left
```

“Falling off” relative to the declared dimensions
Skewing Computation for A

Skew by incrementally shifting last of array left, finishing 1 row / step

- Assume declarations
 - region Lop = [1..m, 1..n];
 - direction right = [0,1];

\[
\begin{array}{cccc}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{22} & a_{23} & a_{24} & a_{21} \\
 a_{33} & a_{34} & a_{31} & a_{32} \\
 a_{44} & a_{41} & a_{42} & a_{43} \\
\end{array}
\]

Intended Result

for i := 2 to m do
 [i..m, 1..n] A := A^right; -- Shift last i rows left
end;

Four Steps of Skewing A

for i := 2 to m do
 [i..m, 1..n] A := A^right; -- Shift last m-i rows left
end;

\[
\begin{array}{cccc}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44} \\
\end{array}
\]

Initial

\[
\begin{array}{cccc}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{22} & a_{23} & a_{24} & a_{21} \\
 a_{32} & a_{33} & a_{34} & a_{31} \\
 a_{42} & a_{43} & a_{44} & a_{41} \\
\end{array}
\]

Skew B vertically

\[
\begin{array}{cccc}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{22} & a_{23} & a_{24} & a_{21} \\
 a_{32} & a_{33} & a_{34} & a_{31} \\
 a_{44} & a_{41} & a_{42} & a_{43} \\
\end{array}
\]

\[
\begin{array}{cccc}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{22} & a_{23} & a_{24} & a_{21} \\
 a_{33} & a_{34} & a_{31} & a_{32} \\
 a_{44} & a_{41} & a_{42} & a_{43} \\
\end{array}
\]

\[
\begin{array}{cccc}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{22} & a_{23} & a_{24} & a_{21} \\
 a_{33} & a_{34} & a_{31} & a_{32} \\
 a_{44} & a_{41} & a_{42} & a_{43} \\
\end{array}
\]

i = 2 step

i = 3 step

i = 4 step
Cannon’s Declarations

For completeness, when A is m×n and B is n×p, the declarations are …

region Lop = [1..m, 1..n];
 Rop = [1..n, 1..p];
 Res = [1..m, 1..p];
direction right = [0, 1];
 below = [1, 0];
var A : [Lop] double;
 B : [Rop] double;
 C : [Res] double;

Cannon’s Algorithm

Skew A, Skew B, {Multiply, Accumulate, Rotate}

for i := 2 to m do -- Skew A
 [i..m, 1..n] A := A@^right;
end;
for i := 2 to p do -- Skew B
 [1..n, i..p] B := B@^below;
end;

[Res] C := 0.0; -- Initialize C
for i := 1 to n do -- For common dim
 [Res] C := C + A*B; -- For product
 [Lop] A := A@^right; -- Rotate A
 [Rop] B := B@^below; -- Rotate B
end;
Combining Arrays of Different Ranks

An apparent limitation of ZPL (so far) is: Only arrays of like rank can be combined

- Element-wise operators combine corresponding elements: \([R] \ A := B + C;\)
- Sometimes combining arrays of different rank is needed. E.g. Scale the elements of each row by the row maximum
 - Find the row maximum: 2 dimension reduced to 1 dimension
 - Divide each element of the row by its row max: 1 dimension applied to 2 dimensions

Don’t Change Rank

- Rather than change rank, use “singleton” values to collapse dimensions for lower rank
- For a region \(R = [1..m, 1..n]\), the rank 2 arrays \(R1 = [1..m, 1]\) and \(R2 = [1, 1..n]\) are regions corresponding to the first column and row
- ZPL is designed to exploit the similarity between an array with collapsed dimensions and a corresponding array of lower rank
The Reduction Case

- Partial reduction applies reduction to an array to produce a subarray ... two regions needed
 - “Statement region” specifies the shape of the result
 - “Expression region” specifies the shape of the operand
 - The subarray that is combined is the subarray of the operand formed by the singleton dimensions

\[[1..m, 1] \ Max1 := \max<< [1..m, 1..n] \ A; \]

Partial Reduction (continued)

- All associative operators can be used in partial form: +, *, max, min, &, |
- The “singleton” dimension is “meaningful” in that the values are stored with like indices
 - E.g. \[1..m, 1\] is stored with other first column values
- Arrays can have arbitrary dimension values if they have the right rank & elements defined...
 - E.g. Add row elements 2..n and store sum in 1st position

\[[1..m, 1] \ A := +<< [1..m, 2..n] \ A; \]
Flood Regions and Arrays

Flood regions recognize that reducing into a specific column over specifies the situation. Need a *generic* column -- or a column that does not have a specific position ... use ‘*’ as value.

region FlCol = [1..m, *]; -- Flood regions
FlRow = [*, 1..n];
var MaxCol : [FlCol] double; -- An m length col
 Row : [FlRow] double; -- An n length row
[1..m,*] MaxCol := max<< [1..m,1..n] A; -- Better

Flood (continued)

Since flood arrays have unspecified dimensions, they can be “promoted” in those dimensions, i.e logically replicated.

- The computation is completed ...

\[[1..m,*] \text{ MaxCol} := \max << [1..m,1..n] \text{ A}; \]
\[[1..m,1..n] \quad \text{A} := \text{A} / \text{MaxCol}; \quad \text{--Scale A}; \]

Flood makes combining different ranks “element-wise”

The promotion of flooded arrays is only logical.
The Flood Operator (>>)
An alternative is to save flooded vals -- dumb

- Flood (>>) replicates values of a subarray to fill a larger array
 - “Statement region” specifies the shape of the result
 - “Expression region” specifies the shape of the operand
 - The subarray is replicated in all of the operand’s singleton dimensions

\[
[1..m,1..n] \text{ Maxfill := } >>[1..m,1] \text{ Max1;}
\]

Explicit Solution vs Logical Solution

- Reducing into a specific position and then flooding works, but it explicitly replicates values

 \[
 [1..m,1] \text{ Max1 := max<<}[1..m,1..n] A; \quad \text{--Save Col}
 [1..m,1..n] \text{ Maxfill := } >>[1..m,1] \text{ Max1; \quad --Flood Col}
 [1..m,1..n] \quad A := A/\text{Maxfill; \quad --Div by col array}
 \]

- Flood logically replicates values...and it’s easier

 \[
 [1..m,*] \text{ MaxCol := max<< } [1..m,1..n] A;
 [1..m,1..n] \quad A := A / \text{MaxCol; \quad --Scale A;}
 \quad \text{-- or --}
 [1..m,1..n] \quad A := A/(>>[1..m,*] \quad \text{max<< } [1..m,1..n] A);
 \]
Partial Scan

- Partial scan would seem to be an easy generalization of partial reduce, but since it doesn’t “collapse” dimensions, it is not necessary to specify a region, only a dimension

\[
\begin{align*}
A & := \text{Index1}; \\
B & := + \mid [2] \ A;
\end{align*}
\]

\[
\begin{array}{ccc}
A: & B: \\
1 & 1 & 1 & 1 & 2 & 3 \\
2 & 2 & 2 & 2 & 4 & 6 \\
3 & 3 & 3 & 3 & 6 & 9
\end{array}
\]

Remembering Reduce, Scan & Flood

- The operators for reduce, scan and flood are suggestive …
 - Reduce \ll produces a result of smaller size
 \[
 \begin{array}{c}
 \ll
 \end{array}
 \]
 - Scan $\mid \mid$ produces a result of the same size
 \[
 \begin{array}{c}
 \mid \mid
 \end{array}
 \]
 - Flood \gg produces a result of greater size
 \[
 \begin{array}{c}
 \gg
 \end{array}
 \]
To Illustrate Computing With Flood

- Recall the SUMMA Algorithm

\[
\begin{array}{ccc}
 & A & B \\
 b_{11} & a_{11} & a_{11}b_{12} & b_{11} \\
 b_{12} & a_{12} & a_{21}b_{11} & b_{12} \\
 a_{11} & a_{11} & a_{11}b_{12} & a_{11} \\
 a_{21} & a_{21} & a_{21}b_{11} & a_{21} \\
 a_{22} & a_{22} & a_{22}b_{12} & a_{22} \\
\end{array}
\]

Switch Orientation -- By using a column of A and a row of B broadcast to all, compute the “next” terms of the dot product.

SUMMA Algorithm

- A column broadcast is simply a column flood and similarly for row broadcast is a row flood
- Define variables

```plaintext
var   Col : [1..m,*] double; -- Col flood array
Row : [*1..p] double; -- Row flood array
A : [1..m,1..n] double;
B : [1..n,1..p] double;
C : [1..m,1..p] double;
```
SUMMA Algorithm (continued)

For each col-row in the common dimension, flood the item and combine it

```
[1..m,1..p] C := 0.0; -- Initialize C
for k := 1 to n do
  [1..m,*] Col := A(:,k); -- Flood kth col of A
  [*,1..p] Row := B(k,:); -- Flood kth row of B
  [1..m,1..p] C += Col*Row; -- Combine elements
end;
```

SUMMA is the easiest MM algorithm to program in ZPL

SUMMA, The First Step

c11 c12 c13	a11 a12 a13 a14
c21 c22 c23	a21 a22 a23 a24
c31 c32 c33	a31 a32 a33 a34
c41 c42 c43	a41 a42 a43 a44
b11 b12 b13	
b21 b22 b23	
b31 b32 b33	
b41 b42 b43	

Col | a11 a11 a11 a11 a12 a12 a12 a12 a21 a21 a21 a21 a31 a31 a31 a31 a41 a41 a41 a41 |
Row | b11 b11 b11 b11 b12 b12 b12 b12 b13 |

C: a11b11 a11b12 a11b13 a21b11 a21b12 a21b13 a31b11 a31b12 a31b13 a41b11 a41b12 a41b13
Cannon’s or SUMMA?

Which algorithm is better for MM?
- Cannon’s algorithm uses the simpler concepts and simpler operations
- SUMMA is conceptually cleaner, but requires ideas like flood arrays
- We will analyze the two algorithms when we have a performance model defined

Still Another MM Algorithm

If flooding is so good for columns/rows, why not use it for whole planes?

region IK = [1..n,* ,1..n]
 JK = [* ,1..n,1..n];
 IJ = [1..n,1..n,*];
 IJK = [1..n,1..n,1..n];

[IK] A2 := <###[Index1,Index3,Index2] A;

\[\begin{align*}
\text{Input} & \quad \text{A2} \quad \text{B2} \\
\text{C} &
\end{align*} \]
ZPL Procedures

- Procedures have form:

  ```
  procedure <name> ({<params>}) {<Type>};
  <statement>;
  ```

- Parameters are listed with their type separated by commas:

  ```
  procedure F(A, B : [R] byte, x : float): float;
  ```

- Values are returned with `return` ...

- Parameters are "called by value" as the default, but by prefixing with `var` they can be called by reference

  ```
  procedure G(var A : [R] integer, big : integer);
  ```

A Procedure for Matrix Multiplication

```plaintext
procedure MM (n: integer,
var A:[1..m,1..n] double,
var B:[1..n,1..p] double,
var C:[1..m,1..p] double);
var i : integer;
[1..m,1..p] begin
  for k := 1 to n do
    C += (>>[ ,k] A)*(>>[k, ]B);
  end;
end;
MM(n, E, F, G);
```
Rank Defined Formal Parameters

It is sufficient for the compiler to know the ranks of the arrays, not their specific dimensional values … rank-defined parameters

• Use commas to imply the rank (r-1)
• Call the procedure in the context of the proper region

procedure MM(n:integer, var A,B,C :[,] double);
var i : integer;
begin
 for k := 1 to n do
 C += (>>[,k] A)*(>>[k,]B);
end;
end;

Promoting Scalar Procedures

• Procedures that only use scalar parameters, operations, etc. can be promoted to arrays
 • Cannot use regions, array operations or other array-based notation

procedure sign (x: double) : integer;
 if x < 0 then return -1
 elseif x = 0 then return 0
 else return 1;
end;

[1..m, 1..n] A := sign(B);

Inherit regions … call is
[1..m,1..p] MM(n,E,F,G);

Importing scalar computations from C is an application
Shattered Control Flow

ZPL logically executes one instruction at a time
• There is a natural generalization in which statements are controlled by arrays rather than scalars

 if A < 0 then A := -A; -- define absolute

• Convenient for iterations
 Let N and Nfact be defined [1..n]

 Nfact := 1;
 for i := 2 to N do
 Nfact := Nfact * i; -- Compute N!
 end;

Exercise: Game of Life

• Write a ZPL program for the game of life on a toroidal world, i.e. top wraps to bottom, left wraps to right

• The world is populated by organisms -- bits
 • Any 1 bit with exactly 2 neighbors in this generation lives on in the next generation; all other 1s go to 0
 • Any 0 bit with exactly 3 neighbors is born in the next generation; all other 0s stay 0

Expect a homework assignment via email
Summary

- ZPL is an array programming language
- Array programming emphasizes large operations in which the compiler specifies the looping and indexing
- One new idea is the region -- set of indices
- Programming in ZPL emphasizes thinking about the task at a high level rather than at the detailed scalar level