DNA Sequence Reconstruction

- DNA can only be sequenced in relatively small pieces, up to about 1,000 nucleotides.
- By chemistry a much longer DNA sequence can be broken up into overlapping sequences called clones. Clones are 10's of thousands of nucleotides long.

Contiguous Ordering - PQ Trees

Course Summary

Tagging the Clones

- By chemistry the clones can be tagged by identifying a region of the DNA uniquely.
- Each clone is then tagged correspondingly.

Problem to Solve

- Given a set of tagged clones, find a consistent ordering of the tags that determines a possible ordering of the DNA molecule.

Contiguous Ordering Solutions

Contiguous ordering problem

Solution

Alternate Solutions

Linear Time Algorithm

- Booth and Lueker, 1976, designed an algorithm that runs in time $O(n+m+s)$.
- It requires a novel data structure called the PQ tree that represents a set of orderings.
- PQ trees can also be used to test whether an undirected graph is planar.
PQ Trees

- PQ trees are built from three types of nodes

<table>
<thead>
<tr>
<th>P node</th>
<th>Q node</th>
<th>leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children can be reordered.</td>
<td>Children can be reversed.</td>
<td>Each leaf has a unique label.</td>
</tr>
</tbody>
</table>

Example PQ-Tree

T

The frontier of T defines the ordering \(F(T) = FCABDE \), just read the leaves left to right.

T' is equivalent to T if T can be transformed into T by reordering the children of P nodes and reversing the children of Q nodes.

Equivalent PQ Trees

T

FCABDE

T'

FEBDAC

Orderings Defined by a PQ Tree

- Given a PQ tree T the orderings defined by T is

\[\text{PQ}(T) = \{ F(T') : \text{T'} \text{ is equivalent to } T \} \]

There are \(6 \times 2 \times 2 = 24 \) distinct orderings in \(\text{PQ}(T) \).

Generally, if a PQ tree T has \(q \) Q node and \(p \) P nodes with number of children \(c_1, c_2, \ldots, c_p \), then the number of orderings in \(\text{PQ}(T) \) is

\[2^q \prod_{i=1}^{p} c_i! \]

\(n! = 1 \times 2 \times \ldots \times n \)

Example PQ Tree Solution for the Contiguous Ordering Problem

- Input: A universe \(U \) and a set \(S = \{ S_1, S_2, \ldots, S_m \} \) of subsets of \(U \).
- Output: A PQ tree T with leaves U with the property that \(\text{PQ}(T) \) is the set of all orderings of U where each set in S is contiguous in the ordering.

Example Solution

\(U = \{A, B, C, D, E, F\} \)

\(S = \{\{A, C, D\}, \{A, C, F\}, \{B, D, E\}\} \)

There are 8 orderings that are possible in keeping each of these sets contiguous.
PQ Tree Restriction

- Let \(U = \{A_1, A_2, \ldots, A_n\} \), \(S = \{A_1, A_2, \ldots, A_k\} \), and \(T \) a PQ tree.
- We will define a function Restrict with the following properties:
 - \(\text{Restrict}(T, S) \) is a PQ tree.
 - \(\text{PQ}(\text{Restrict}(T, S)) = \text{PQ}(T) \cap \text{PQ}(T') \) where

High Level PQ tree Algorithm

- Input is \(U = \{A_1, A_2, \ldots, A_n\} \), and subsets \(S_1, S_2, \ldots, S_m \) of \(U \).
- Initialization:
 - \(T = \text{P node with children } A_1, A_2, \ldots, A_n \)
- Calculate \(m \) restrictions:
 - for \(j = 1 \) to \(m \)
 - \(T := \text{Restrict}(T, S_j) \)
- At the end of iteration \(k \):
 - \(\text{PQ}(T) = \text{the set of ordering of } U \) where each set \(S_1, S_2, \ldots, S_k \) are contiguous.

Marking Nodes

- Given a set \(S \) and PQ tree \(T \) we can mark nodes either full or partial.
 - A leaf is full if it is a member of \(S \).
 - A node is full if all its children are full.
 - A node is partial if either it has both full and non-full children or it has a partial child.
 - A node is doubly partial if it has two partial children.

Marks of Nodes

Mark the leaves in \(S \) full.
Bottom up mark the nodes full or partial.
The members of \(S \) will become contiguous.

Restrict\((T, S)\)

- Mark the full and partial nodes from the bottom up.
 - In the process the marked leaves become contiguous.
- Locate the key node.
 - Deepest node with the property that all its proper ancestors have exactly one partial child.
- Restrict the key node.
 - In the process of restricting the key node we will have to recursively direct partial nodes.
 - Directing a node returns a sequence of nodes.
Restricting a P Node with Partial Children

Restrict a P node

left partial

right partial

full

direct then attach

Directing a P Node

left direct a P node

Restricting a P node with no Partial Children

Restrict a P node

full

Restricting a Q node

left direct a Q node

Directing a Q Node

Example (1)

U = \{A,B,C,D,E,F,G,H,I,J\}
S_1 = \{A,C,E,G,I\}

mark

CSE 589 - Lecture 19 - Spring 1999
19

CSE 589 - Lecture 19 - Spring 1999
20

CSE 589 - Lecture 19 - Spring 1999
21

CSE 589 - Lecture 19 - Spring 1999
22

CSE 589 - Lecture 19 - Spring 1999
23

CSE 589 - Lecture 19 - Spring 1999
24
Example (2)

\[U = \{A, B, C, D, E, F, G, H, I, J\} \]
\[S_1 = \{A, C, E, G, I\} \]

special case because no partial child.

Example (3)

\[U = \{A, B, C, D, E, F, G, H, I, J\} \]
\[S_2 = \{C, D, F, G, I, J\} \]

Example (4)

\[U = \{A, B, C, D, E, F, G, H, I, J\} \]
\[S_3 = \{C, D, F, G, I, J\} \]

Example (5)

\[U = \{A, B, C, D, E, F, G, H, I, J\} \]
\[S_4 = \{C, D, F, G, I, J\} \]

Example (6)

\[U = \{A, B, C, D, E, F, G, H, I, J\} \]
\[S_5 = \{C, D, F, G, I, J\} \]

Example (7)

\[U = \{A, B, C, D, E, F, G, H, I, J\} \]
\[S_6 = \{A, B, E, G\} \]
Example (8)

U = \{A,B,C,D,E,F,G,H,I,J\}
S_3 = \{A,B,E,G\}

No P node needed here

Example (9)

U = \{A,B,C,D,E,F,G,H,I,J\}
S_2 = \{A,B,E,G\}

direct Q node

Example (10)

U = \{A,B,C,D,E,F,G,H,I,J\}
S_3 = \{A,B,E,G\}

direct P node

Example (11)

U = \{A,B,C,D,E,F,G,H,I,J\}
S_3 = \{A,B,E,G\}

attach

Example (12)

U = \{A,B,C,D,E,F,G,H,I,J\}
S_1 = \{A,C,E,G,I\}
S_2 = \{C,D,F,G,I,J\}
S_3 = \{A,B,E,G\}

Linear Number of Nodes Processed

- Let n be the size of the universe, m the number of sets, and s the sum of the sizes of the sets.
 - Number of full nodes processed \(\leq 2s \).
 - Number of key nodes processed = m.
 - Number of partial nodes with partial children processed below the key node \(\leq m + n \).
 - Number of partial nodes with no partial children \(\leq 2m \).
 - Number of partial nodes processed above the key node \(\leq m + n \).
Number of Processed Nodes Amortized

- Partially with partial children \(\leq m+n \)
- Full \(\leq 2s \)
- Root partially with no partial children \(\leq 2m \)

Partials with Partial Children Below the Key Node
- Amortized complexity argument.
- Consider the quantities:
 - \(q \) = number of Q nodes,
 - \(cp \) = number of children of P nodes.
- We examine the quantity \(x = q + cp \).
- \(x \) is initially \(n \) and never negative.
- Each restrict of a key node increases \(x \) by at most 1.
- Each direct of a partial node with a partial child decreases \(x \) by at least 1.
- Since there are \(m \) restricts of a key node then there are most \(n + m \) directs of partials with partial children.

Restricting a P Node with Partial Children

- Restrict a P node
- Change in \(q + cp \) is at most +1.

Restricting a P node with no Partial Children

- Restrict a P node
- Change in \(q + cp \) is exactly +1.

Restricting a Q node

- Restrict a Q node
- No change in \(q, cp \)

Directing a P Node

- Assume partial child
- Left direct a P node
- Change in \(q + cp \) is -1
Directing a Q Node

change in q + cp is -1

PQ Tree Notes

- In algorithmic design only a linear number of nodes are ever processed.
- Designing the data structures to make the linear time processing a reality is very tricky.
- PQ trees solve the idealized DNA ordering problem.
- In reality, because of errors, the DNA ordering problem is NP-hard and other techniques are use.

Example of Data Structure Trick

- Linking the children of a Q node

Applied Algorithms in a Nutshell (1)

- There are genuinely hard problems that require approximate solutions.
 - NP-completeness
 - Branch and Bound for small input size
 - Local search techniques
 - Specialized techniques like GLA.
- Some apparently hard problems are not really so.
 - minimum spanning tree
 - contiguous ordering

Applied Algorithms in a Nutshell (2)

- Cache performance matters.
 - Understanding and controlling cache performance is possible.
- Data compression involves interesting algorithms and theory.
 - Entropy
 - Huffman and arithmetic coding
 - Dictionary coding
 - Sequitur
 - VQ - nearest neighbor search
 - Wavelet compression and SPIHT

Applied Algorithms in a Nutshell (3)

- Computational biology also has interesting algorithms.
 - Approximate matching using dynamic programming.
 - Contiguous ordering using PQ trees.
- Fundamental algorithms should always be available.
 - depth-first search
 - breadth-first search
 - disjoint union/find
 - priority queues (d-heaps)
 - sorting
Applied Algorithms in a Nutshell (4)

- Algorithm evaluation and analysis are critical for understanding correctness and performance.
 - Correctness
 - high level thinking about design.
 - development of good invariants.
 - Analysis of algorithms
 - time and storage analysis.
 - amortized analysis.
 - cache performance analysis.