Lossy Image Compression Methods

- Basic theory - trade-off between bit rate and distortion.
- Vector quantization (VQ).
 - A indices of set of representative blocks can be used to code an image, yielding good compression. Requires training.
- Wavelet Compression.
 - An image can be decomposed into a low resolution version and the detail needed to recover the original. Sending most significant bits of the wavelet coded yields excellent compression.

JPEG Standard

- JPEG - Joint Photographic Experts Group
 - JPEG 2000 will move to wavelet compression.
Distortion

- Lossy compression: \(x \neq \hat{x} \)
- Measure of distortion is commonly mean squared error (MSE). Assume \(x \) has \(n \) real components (pixels).

\[
MSE = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{x}_i)^2
\]

PSNR

- Peak Signal to Noise Ratio (PSNR) is the standard way to measure fidelity.

\[
PSNR = 10 \log_{10} \left(\frac{m^2}{MSE} \right)
\]
where \(m \) is the maximum value of a pixel possible.
For gray scale images (8 bits per pixel) \(m = 255 \).

- PSNR is measured in decibels (dB).
- .5 to 1 dB is said to be a perceptible difference.

Rate-Fidelity Curve

PSNR is not Everything

Properties:
- Increasing
- Slope decreasing

PSNR = 25.8 dB
PSNR = 25.8 dB
PSNR Reflects Fidelity (1)

VQ

PSNR 25.8
.63 bpp
12.8 : 1

PSNR Reflects Fidelity (2)

VQ

PSNR 24.2
.31 bpp
25.6 : 1

PSNR Reflects Fidelity (2)

VQ

PSNR 23.2
.16 bpp
51.2 : 1

Vector Quantization

- The image is partitioned into $a \times b$ blocks.
- The codebook has n representative $a \times b$ blocks called codewords, each with an index.
- Compression is
 \[
 \frac{\log_2 n}{ab} \text{ bpp}
 \]
- Example: $a = b = 4$ and $n = 1,024$
 - compression is $10/16 = .63$ bpp
 - compression ratio is $8 : .63 = 12.8 : 1$

Examples

- 4 x 4 blocks
 .63 bpp
- 4 x 8 blocks
 .31 bpp
- 8 x 8 blocks
 .16 bpp

Codebook size = 1,024
Encoding and Decoding

- Encoding:
 - Scan the \(a \times b \) blocks of the image. For each block find the nearest codeword in the code book and output its index.
 - Nearest neighbor search.

- Decoding:
 - For each index output the codeword with that index into the destination image.
 - Table lookup.

The Codebook

- Both encoder and decoder must have the same codebook.
- The codebook must be useful for many images and be stored somewhere.
- The codebook must be designed properly to be effective.
- Design requires a representative training set.
- These are major drawbacks to VQ.

Codebook Design Problem

- Input: A training set \(X \) of vectors of dimension \(d \) and a number \(n \) (\(d = a \times b \) and \(n \) is number of codewords)
- Output: \(n \) vectors \(c_1, c_2, ..., c_n \) that minimizes the sum of the distances from each member of the training set to its nearest codeword. That is minimizes

\[
\sum_{x \in X} \sum_{i=1}^{n} \left| x - c_i \right|^2
\]

where \(c_{n(x)} \) is the nearest codeword to \(x \).

Algorithms for Codebook Design

- The optimal codebook design problem appears to be a NP-hard problem.
- There is a very effective method, called the generalized Lloyd algorithm (GLA) for finding a good local minimum.
- GLA is also known in the statistics community as the k-means algorithm.
- GLA is slow.

GLA

- Start with an initial codebook \(c_1, c_2, ..., c_n \) and training set \(X \).
- Iterate:
 - Partition \(X \) into \(X_1, X_2, ..., X_n \) where \(X_i \) includes the members of \(X \) that are closest to \(c_i \).
 - Let \(x_i \) be the centroid of \(X_i \).

\[
x_i = \frac{1}{|X_i|} \sum_{x \in X_i} x
\]

- If \(\sum \left| x - c \right| \) is sufficiently small then quit.
 otherwise continue the iteration with the new codebook \(c_1, c_2, ..., c_n = x_1, x_2, ..., x_n \).
GLA Example (8)

GLA Example (9)

GLA Example (10)

Codebook

1 x 2 codewords
Note: codewords diagonally spread

GLA Advice

- Time per iteration is dominated by the partitioning step, which is \(m \) nearest neighbor searches where \(m \) is the training set size.
 - Average time per iteration \(O(m \log n) \) assuming \(d \) is small.
- Training set size.
 - Training set should be at least 20 training vectors per code word to get reasonable performance.
 - Too small a training set results in “overtraining”.
- Number of iterations can be large.

Nearest Neighbor Search

- Preprocess a set of \(n \) vectors \(V \) in \(d \) dimensions into a search data structure.
- Input: A query vector \(q \).
- Output: The vector \(v \) in \(V \) that is nearest to \(q \). That is, the vector \(v \) in \(V \) that minimizes
 \[
 \|q - v\|^2 = \sum_{i=1}^{d} ((v(i) - q(i))^2)
 \]
NNS in VQ

- Used in codebook design.
 - Used in GLA to partition the training set.
 - Since codebook design is seldom done then speed of NNS is not too big a issue.
- Used in VQ encoding.
 - Codebook size is commonly 1,000 or more.
 - Naive linear search would make encoding too slow.
 - Can we do better than linear search?

Naive Linear Search

- Keep track of the current best vector, best-v, and best distance squared, best-squared-d.
 - For an unsearched vector v compute \(|v - q|^2\) to see if it smaller than best-squared-d.
 - If so then replace best-v.
 - If d is moderately large it is a good idea not to compute the squared distance completely. Bail out when \(k < d\) and

\[\text{best - squared - } d \leq \sum (v(i) - q(i))^2 \]

Orchard's Method

- Invented by Orchard (1991)
- Uses a “guess codeword”. The guess codeword is the codeword of an adjacent coded vector.
- Orchard’s Principle.
 - if r is the distance between the guess codeword and the query vector q then the nearest codeword to q must be within a distance of 2r of the guess codeword.