CSE 589
Applied Algorithms
Spring 1999

Arithmetic Coding
Dictionary Coding

Arithmetic Coding

- Huffman coding works well for larger alphabets and gets to within one bit of the entropy lower bound. Can we do better. Yes
- Basic idea in arithmetic coding:
 - represent each string x of length n by an interval $[l, r)$ in $[0, 1)$.
 - The width $r - l$ of the interval $[l, r)$ represents the probability of x occurring.
 - The interval $[l, r)$ can itself be represented by any number, called a tag, within the half open interval.
 - The k significant bits of the tag $t_1 t_2 \ldots t_k$ is the code of x. That is, $t_1 t_2 \ldots t_k 000\ldots$ is in the interval $[l, r)$.

Example of Arithmetic Coding (1)

- $P(a) = 1/3$, $P(b) = 2/3$.

<table>
<thead>
<tr>
<th>a</th>
<th>$0/27$</th>
<th>$0.00000000\ldots$</th>
<th>$0.0001001\ldots$</th>
<th>0</th>
<th>aaa</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>$0.00011000\ldots$</td>
<td>$0.00001010\ldots$</td>
<td>$0.00001100\ldots$</td>
<td>001</td>
<td>abb</td>
</tr>
<tr>
<td>abb</td>
<td>$0.01001101\ldots$</td>
<td>$0.01001010\ldots$</td>
<td>$0.01001110\ldots$</td>
<td>011</td>
<td>bab</td>
</tr>
<tr>
<td>bbb</td>
<td>$0.10101000\ldots$</td>
<td>$0.10101100\ldots$</td>
<td>$0.10101110\ldots$</td>
<td>101</td>
<td>bba</td>
</tr>
<tr>
<td>bba</td>
<td>$0.11011000\ldots$</td>
<td>$0.11011110\ldots$</td>
<td>$0.11101011\ldots$</td>
<td>111</td>
<td>bbb</td>
</tr>
<tr>
<td>bba</td>
<td>$0.11011110\ldots$</td>
<td>$0.11011111\ldots$</td>
<td>$0.11101010\ldots$</td>
<td>111</td>
<td>bbb</td>
</tr>
</tbody>
</table>

SomeTags are Better than Others

- $P(a) = 1/3$, $P(b) = 2/3$.

<table>
<thead>
<tr>
<th>a</th>
<th>$0/27$</th>
<th>$0.00000000\ldots$</th>
<th>$0.0001001\ldots$</th>
<th>0</th>
<th>aaa</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>$0.00011000\ldots$</td>
<td>$0.00001010\ldots$</td>
<td>$0.00001100\ldots$</td>
<td>001</td>
<td>abb</td>
</tr>
<tr>
<td>abb</td>
<td>$0.01001101\ldots$</td>
<td>$0.01001010\ldots$</td>
<td>$0.01001110\ldots$</td>
<td>011</td>
<td>bab</td>
</tr>
<tr>
<td>bbb</td>
<td>$0.10101000\ldots$</td>
<td>$0.10101100\ldots$</td>
<td>$0.10101110\ldots$</td>
<td>101</td>
<td>bba</td>
</tr>
<tr>
<td>bba</td>
<td>$0.11011000\ldots$</td>
<td>$0.11011110\ldots$</td>
<td>$0.11101011\ldots$</td>
<td>111</td>
<td>bbb</td>
</tr>
</tbody>
</table>

Code Generation from Tag

- If binary tag is $t_1 t_2 \ldots t_k = (l-r)/2$ in $[l, r)$ then we want to choose k to form the code $t_1 t_2 \ldots t_k$.
- Short code:
 - choose k to be as small as possible so that $l < t_1 t_2 \ldots t_k 000\ldots < r$.
- Guaranteed code:
 - choose $k = \lceil \log_2 \left(\frac{r-l}{2} \right) \rceil + 1$
 - $l < t_1 t_2 \ldots t_k b_1 b_2 b_3 \ldots < r$ for any bits $b_1 b_2 b_3 \ldots$
 - for fixed length strings provides a good prefix code.
- Example: $0.00000000\ldots 0.00001001\ldots$, tag $= 0.00001001\ldots$
 - Short code: 0
 - Guaranteed code: 000001
Arithmetic Coding Algorithm

- \(P(a_1), P(a_2), \ldots, P(a_m) \)
- \(C(a_i) = P(a_1) + P(a_2) + \ldots + P(a_{i-1}) \)
- Encode \(x_1x_2\ldots x_n \)

\[
\text{Initialize } l := 0 \text{ and } r := 1; \\
\text{for } i = 1 \text{ to } n \text{ do } \\
w := r - l; \\
l := l + wC(x_i); \\
r := l + wP(x_i); \\
t := (l+r)/2; \\
\text{choose code for the tag}
\]

Arithmetic Coding Example

- \(P(a) = 1/4, P(b) = 1/2, P(c) = 1/4 \)
- \(C(a) = 0, C(b) = 1/4, C(c) = 3/4 \)
- \(abca \)

<table>
<thead>
<tr>
<th>symbol</th>
<th>(w)</th>
<th>(l)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1/8</td>
<td>5/32</td>
<td>6/32</td>
</tr>
<tr>
<td>b</td>
<td>1/4</td>
<td>1/16</td>
<td>3/16</td>
</tr>
<tr>
<td>c</td>
<td>1/8</td>
<td>5/32</td>
<td>6/32</td>
</tr>
</tbody>
</table>

\[t = \frac{(l+r)/2}{5/32 + 21/128} = 41/256 = .001010010... \]
\[l = .001010000... \]
\[r = .001010100... \]
\[\text{code} = 00101 \]
\[\text{prefix code} = 00101001 \]

Decoding (1)

- Assume the length is known to be 3.
- 0001 which converts to the tag .0001000...

\[
\text{output a}
\]

Decoding (2)

- Assume the length is known to be 3.
- 0001 which converts to the tag .0001000...

\[
\text{output a}
\]

Decoding (3)

- Assume the length is known to be 3.
- 0001 which converts to the tag .0001000...

\[
\text{output a}
\]

Arithmetic Decoding Algorithm

- \(P(a_1), P(a_2), \ldots, P(a_m) \)
- \(C(a_i) = P(a_1) + P(a_2) + \ldots + P(a_{i-1}) \)
- Decode \(b_1b_2\ldots b_m \), number of symbols is \(n \)

\[
\text{Initialize } l := 0 \text{ and } r := 1; \\
t := b_1b_2\ldots b_m000... \\
\text{for } i = 1 \text{ to } n \text{ do } \\
w := r - l; \\
\text{find } j \text{ such that } l + wC(a_j) \leq t < l + w(C(a_j)+P(a_j)) \\
\text{output } a_j; \\
l := l + wC(a_j); \\
r := l + wP(a_j); \\
\]

CSE 589 - Lecture 12 - Spring 1999
Decoding Example

- P(a) = 1/4, P(b) = 1/2, P(c) = 1/4
- C(a) = 0, C(b) = 1/4, C(c) = 3/4
- 00101

```
tag = .00101000... = 5/32
w   l    r    output
  0   1
 1/4 1/16 3/16 b
 1/8 5/32 6/32 c
1/32 5/32 21/128 a
```

Practical Arithmetic Coding

- Scaling:
 - By scaling we can keep l and r in a reasonable range of values so that w = r - l does not underflow.
 - The code can be produced progressively, not at the end.
 - Complicates decoding some.
- Integer arithmetic coding avoids floating point altogether.

Coding with Scaling (1)

- Assume the length is known to be 3.
- bba

```
l = 1/9  r = 22/27
l = 2/9  r = 22/27
```

Coding with Scaling (2)

- Assume the length is known to be 3.
- bba 1

```
l = 5/9  r = 1
l = 1/9  r = 1
```

Coding with Scaling (3)

- Assume the length is known to be 3.
- bba 10

```
l = 1/9  r = 11/27
l = 2/9  r = 22/27
```

Coding with Scaling (4)

- Assume the length is known to be 3.
- bba 101

```
l = 2/9 = .000100101...
l = 2/9 = .000100001
(l+r)/2 = 14/27 = .100001001...
```
Notes on Arithmetic Coding

• Arithmetic codes come close to the entropy lower bound.
• Grouping symbols is effective for arithmetic coding.
• Arithmetic codes can be used effectively on small symbol sets. Advantage over Huffman.
• Context can be added so that more than one probability distribution can be used.
 – The best coders in the world use this method.
• There are very effective adaptive arithmetic coding methods.

Dictionary Coding

• Most popular methods are based on Ziv and Lempel's seminal work in 1977 and 1978.
• Basic idea: Maintain a dictionary of commonly used strings. Each commonly used string has an index.
 – Static dictionary, fixed and does not change.
 – Dynamic dictionary, adapts to the changing string.

Static Dictionary

<table>
<thead>
<tr>
<th>Number</th>
<th>Symbol</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>d</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>aa</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>ab</td>
<td>11</td>
</tr>
</tbody>
</table>

Encoding: from the current position find the longest string in source string that matches a string in the dictionary. Output its index.
Decoding: for each index output the corresponding string in the dictionary.

Static Dictionary Example

```
a a b c c a d b a a a d a     30 bits with 2 bits/symbol
a a
b c c
a
b
a a a a
b d a
```

4 7 8 9 10 11 11 11

28 bits at 4 bits/symbol

Dynamic Dictionary

• For a static dictionary both the encoder and decoder have to have the dictionary.
• Dynamic dictionary
 – The encoder builds the dictionary as it scans the input.
 – The decoder emulates the encoder, building the same dictionary as it decodes the string.

LZW Compression

• Invented by Ziv and Lempel in 1978 and improved upon by Welch in 1984.
• Unix compress and GIF are based on LZW
• In LZW both encoder and decoder share the same indexes of the symbol alphabet ahead of time.
 – For standard symbols sets like ASCII this is no problem.
LZW Encoding Algorithm

Repeat
find the longest match \(w \) in the dictionary
output the index of \(w \)
put \(wa \) in the dictionary where \(a \) was the
unmatched symbol

LZW Encoding Example (1)
Dictionary
\[
\begin{align*}
0 & : a \\
1 & : b \\
2 & : c \\
3 & : d \\
4 & : r \\
\end{align*}
\]
\text{abracadabra}

LZW Encoding Example (2)
Dictionary
\[
\begin{align*}
0 & : a \\
1 & : b \\
2 & : c \\
3 & : d \\
4 & : r \\
5 & : ab \\
\end{align*}
\]
\text{abracadabra}

LZW Encoding Example (3)
Dictionary
\[
\begin{align*}
0 & : a \\
1 & : b \\
2 & : c \\
3 & : d \\
4 & : r \\
5 & : ab \\
6 & : br \\
\end{align*}
\]
\text{abracadabra}

LZW Encoding Example (4)
Dictionary
\[
\begin{align*}
0 & : a \\
1 & : b \\
2 & : c \\
3 & : d \\
4 & : r \\
5 & : ab \\
6 & : br \\
7 & : ra \\
\end{align*}
\]
\text{abracadabra}

LZW Encoding Example (5)
Dictionary
\[
\begin{align*}
0 & : a \\
1 & : b \\
2 & : c \\
3 & : d \\
4 & : r \\
5 & : ab \\
6 & : br \\
7 & : ra \\
8 & : ac \\
\end{align*}
\]
\text{abracadabra}
LZW Encoding Example (6)

Dictionary
0 a 9 ca
1 b
2 c
3 d
4 r
5 ab
6 br
7 ra
8 ac

LZW Encoding Example (7)

Dictionary
0 a 9 ca
1 b 10 ad
2 c
3 d
4 r
5 ab
6 br
7 ra
8 ac

LZW Encoding Example (8)

Dictionary
0 a 9 ca
1 b 10 ad
2 c 11 da
3 d
4 r
5 ab
6 br
7 ra
8 ac

LZW Encoding Example (9)

Dictionary
0 a 9 ca
1 b 10 ad
2 c 11 da
3 d 12 aba
4 r
5 ab
6 br
7 ra
8 ac

LZW Encoding Example (10)

Dictionary
0 a 9 ca
1 b 10 ad
2 c 11 da
3 d 12 aba
4 r 13 ar
5 ab
6 br
7 ra
8 ac

LZW Encoding Example (11)

Dictionary
0 a 9 ca
1 b 10 ad
2 c 11 da
3 d 12 aba
4 r 13 ar
5 ab 14 rab
6 br
7 ra
8 ac
LZW Encoding Example (12)

Dictionary
0 a 9 ca 01402035076
1 b 10 ad
2 c 11 da
3 d 12 aba
4 r 13 ar
5 ab 14 rab
6 br 15 bra
7 ra
8 ac

LZW Encoding Example (13)

Dictionary
0 a 9 ca 014020350760
1 b 10 ad
2 c 11 da
3 d 12 aba
4 r 13 ar
5 ab 14 rab
6 br 15 bra
7 ra
8 ac

LZW Decoding Algorithm

- Emulate the Encoder in building the dictionary.
- Decode each index according to its index.
- Problem: the current index have an incomplete entry because it is currently being added to the dictionary.
 - The problem is solved because there is enough information in the incomplete entry to continue decoding.

LZW Decoding Example (1)

Dictionary
0 a 012436
1 b

LZW Decoding Example (2)

Dictionary
0 a 012436
1 b a
2 a...

LZW Decoding Example (3)

Dictionary
0 a 012436
1 b a b
2 ab
3 b...
LZW Decoding Example (4)

Dictionary
0 a
1 b
2 ab
3 ba
4 ab...

The next index is 4, but it is incomplete!

LZW Decoding Example (5)

Dictionary
0 a
1 b
2 ab
3 ba
4 aba

The entry has a first symbol which is all we need to complete it.

LZW Decoding Example (6)

Dictionary
0 a
1 b
2 ab
3 ba
4 aba
5 abab

LZW Decoding Example (7)

Dictionary
0 a
1 b
2 ab
3 ba
4 aba
5 abab
6 ba...

LZW Decoding Example (8)

Dictionary
0 a
1 b
2 ab
3 ba
4 aba
5 abab
6 bab
7 bab...

complete 6

LZW Decoding Example (9)

Dictionary
0 a
1 b
2 ab
3 ba
4 aba
5 abab
6 bab
7 bab...

0 1 2 3 6
a b ab aba

0 1 2 4 3 6
a b ab aba ba

0 1 2 4 3 6
a b ab aba ba bab
Trie Data Structure for Dictionary

- Fredkin (1960)

<table>
<thead>
<tr>
<th>0</th>
<th>a</th>
<th>9</th>
<th>ad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>10</td>
<td>da</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>11</td>
<td>aba</td>
</tr>
<tr>
<td>3</td>
<td>d</td>
<td>12</td>
<td>ar</td>
</tr>
<tr>
<td>4</td>
<td>r</td>
<td>13</td>
<td>ra</td>
</tr>
<tr>
<td>5</td>
<td>ab</td>
<td>14</td>
<td>abr</td>
</tr>
<tr>
<td>6</td>
<td>br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ca</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Depending on the size of the dictionary it might be wise to have two array levels to minimize searching.

Notes on Dictionary Coding

- Extremely effective when there are repeated patterns in the data that are widely spread. Where local context is not as significant.
 - text
 - some graphics
 - program sources or binaries
- Variants of LZW are pervasive.