Recursive Mergesort

A[1..n] is to be sorted;
B[1..n] is an auxiliary array;

Mergesort(i,j) \{ sorts the subarray A[i..j] \}
if i < j then
 k := (i+j)/2;
 Mergesort(i,k);
 Mergesort(k+1,j);
 Merge A[i..k] with A[k+1..j] into B[i..j];
 Copy B[i..j] into A[i..j];

Mergesort Call Tree

Merging Pattern of Recursive Mergesort

1/2 cache size

Notes on Recursive Mergesort

• Oblivious recursion.
 – The subarrays that are merged do not depend on
 the particular keys, just on the number of keys.
• Lots of copying from the auxiliary array to the
 source arrays.
• Recursion is elegant, but is it really needed?
• Sorting very small arrays should be done in-
 place.

Reorder the Merging Steps
Interactive Mergesort

- Sort small groups in-place.
- Alternate the roles of A and B as the source of the merging passes.
- Copy B to A if needed at the end.

in-place sort groups of 4; merge sorted groups of 4 in A into sorted groups of 8 in B; merge sorted groups of 8 in B into sorted groups of 16 in A; merge sorted groups of 16 in A into sorted groups of 32 in B.

in the end if the sorted array is B then copy it to A;

Interactive Mergesort Access Pattern

Analysis of Access Pattern

- one pass to sort into groups of 4.
 - Pass touches n key locations.
- \(\log_2(n/4) \) merge passes.
 - Each pass touches 2n key locations, n in the source array and n in the destination array.
- One copy pass if \(\log_2(n/4) \) is odd.
 - Pass touches 2n key locations.

Performance of Iterative Mergesort

Cache Performance Matters

- Processor speeds increasing faster than memory speeds.
- Cache miss penalties can be 100 cycles and are growing.
- Algorithm design can be used to reduce cache misses and improve overall performance.
Cache Miss Terminology

- Types of misses
 - Compulsory miss: first time a memory block is read.
 - Capacity miss: accessed data does not fit in cache.
 - Conflict miss: several active memory blocks map to the same place in the cache.
- Locality reduces cache misses
 - Temporal locality: a location that was recently accessed is accessed again.
 - Spatial locality: data on the same block are accessed together.

Cache Conscious Mergesort

- Partition problem into “tiles” that fit in the cache.
- Mergesort the tiles.
- Merge the tiles.
- Avoid copying by sorting in-place into groups of 2 or 4 depending on whether $\log_2(n/4)$ is odd or even.

Traversal Analysis

Not in cache

In cache

1/B misses per access where B is number of access per line

Traversal Longer than Cache

Cache size
Analysis of Cache Misses

- Parameters
 - B keys per cache line
 - C cache lines in the cache
 - n keys with n >> BC

- Iterative Mergesort
 \[
 \frac{1}{B} + \frac{2}{B} \log_2 \left(\frac{n}{B} \right) + \frac{2}{B} \left(\frac{\log_2 \left(\frac{n}{B} \right) \mod 2 \right) \text{ cache misses per key}
 \]
 - in-place sort
 - merge passes
 - copy

Iterative Mergesort Cache Misses

Cache Conscious Merge Sort Analysis

\[
\frac{2}{B} + \frac{2}{B} \left(\frac{\log_2 \left(\frac{n}{B} \right)}{BC} \right) \text{ cache misses per key}
\]
- sort each tile
- final merge passes

Tile size is BC/2.
\[
\frac{n}{(BC/2)} \text{ tiles to be merged in the end.}
\]
This takes \(\log_2 \left(\frac{n}{(BC/2)} \right) \) passes.

Simulated Cache Performance

Instruction Counts

- Iterative mergesort
- Cache conscious mergesort

Atom cache simulation
- 2MB L2 cache
- 32 Byte cache line
- 4 keys/cache line

- Iterative mergesort
- Cache conscious mergesort

Atom simulation
- number of keys
What About Recursive Mergesort?

Notes on Cache Performance
- Before trying cache conscious algorithm design you should ask if performance is really a problem.
 - if not, then don't tinker
 - if so, then check out the algorithm and data structures first. Going from an \(n^2 \) algorithm to a \(n \log n \) algorithm can make a world of difference.
- if the algorithm and data structures are basically good then consider a cache conscious design.

Some Guiding Principles
- Sacrifice instructions for better cache performance.
- Knowing architectural constants can lead to better algorithms. Cache capacity, line size.
- Small memory footprints are good.
 - Reduces capacity misses
- Block data into cache size pieces.
 - Reduces capacity misses
- Fully utilize cache lines.
 - Improves spatial locality

Heapsort
- Classic in-place, \(O(n \log n) \) sorting algorithm.
- Uses the binary heap, an elegant priority queue data structure (insert and delete-max)

Insert
- Add a new leaf and percolate up.

Insert (2)
- Add a new leaf and percolate up.
Insert (3)
• Add a new leaf and percolate up.

Delete-Max
• Remove the root then percolate last leaf down.

Delete-Max (2)
• Remove the root then percolate last leaf down.

Delete-Max (3)
• Remove the root then percolate last leaf down.

Delete-Max (4)
• Remove the root then percolate last leaf down.
Delete-Max (5)

- Remove the root then percolate last leaf down.

Analysis of the Heap Operation

- Insert - $O(\log n)$ worst case.
 - Each percolate up goes up at most $\log n$ levels.
 - Often $O(1)$ in practice because keys do not percolate far.
- Delete-Max - $O(\log n)$ worst case.
 - Percolates down tend to go close to the leaves of the heap.

Implicit Pointers

- Parent of i is $(i-1)/2$
- Children of i are $2i+1$, $2i+2$

Heapsort

We will sort the array $A[0..n-1]$ in-place
Build a heap in-place
For $i = n-1$ to 1
 $A[i] :=$ delete-max;

Invariants

- Heap
- Sorted
- \leq