3-Colorability

- Input: Graph $G = (V,E)$ and a number k.
- Output: Determine if all vertices can be colored with 3 colors such that no two adjacent vertices have the same color.

Properties of the Gadget

- Three colorable if and only if outer vertices not all the same color.

3-CNF-Sat \leq_p 3-Color

- Given a 3-CNF formula F we have to show how to construct in polynomial time a graph G such that:
 - F is satisfiable implies G is 3-colorable
 - G is 3-colorable implies F is satisfiable

Reduction by Example

$F = (x \lor y \lor z) \land (\neg x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z)$

The Gadget

- This is a classic reduction that uses a “gadget”.
- Assume the outer vertices are colored at most two colors. The gadget is 3-colorable if and only if the outer vertices are not all the same color.
Satisfaction Example

\[F = (x \lor y \lor z) \land (\neg v \lor y \lor z) \land (\neg v \lor \neg y \lor \neg z) \]

\[x = 1 \quad y = 1 \quad z = 0 \]

Non-Satisfaction Example

\[F = (x \lor y \lor z) \land (\neg v \lor y \lor z) \land (\neg v \lor \neg y \lor \neg z) \]

\[x = 0 \quad y = 0 \quad z = 0 \]

Naming the Gadget

General Construction

\[F = \bigwedge_{i=1}^{n} (a_i \lor \neg a_i) \]

where \(a_i \in \{x_1, \neg v_1, \ldots, x_n, \neg v_n\} \)

\[G = (V, E) \]

where

\[V = \{x, b\} \cup \{x_1, \neg x_1, \ldots, x_n, \neg x_n\} \cup \{O, U, T, I, N, R : 1 \leq i \leq k\} \]

\[E = \{(x, b), (x, \neg x_1)\} \]

\[\cup \{(x_i, \neg x_i), (x_i, \neg x_i)\} \]

\[\cup \{(x_0, b), (x_0, h), \ldots, (x_n, b), (x_n, h)\} \]

\[\cup \{(O, I), (O, N), (T, R), (T, N), (N, R), (N, I) : 1 \leq i \leq k\} \]

\[\cup \{(a_0, O), (a_i, U), (a_i, T) : 1 \leq i \leq k\} \]

\[\cup \{(O, g), (U, g), (T, g) : 1 \leq i \leq k\} \]

Reductions

- CNF-Sat
- 3-CNF-Sat
- Clique
- 3-Partition
- 3-Color
- Exact Cover
- Subset Sum
- Bin Packing
Exact Cover

- Input: A set \(U = \{a_1, a_2, \ldots, a_n\} \) and subsets \(S_1, S_2, \ldots, S_m \subseteq U \)
- Output: Determine if there is set of pairwise disjoint set that union to \(U \), that is, a set \(X \) such that:
 \[
 X \subseteq \{1, 2, \ldots, m\} \\
 i, j \in X \text{ and } i \neq j \text{ implies } S_i \cap S_j = \emptyset \\
 \bigcup_{i \in X} S_i = U
 \]

Example of Exact Cover

\(U = \{a, b, c, d, e, f, g, h, i\} \)
\[\{a, e\}, \{a, f, g\}, \{b, d\}, \{b, f, h\}, \{e, h, i\}, \{f, h, i\}, \{d, g, i\}\]

3-Partition

- Input: A set of numbers \(A = \{a_1, a_2, \ldots, a_n\} \) and number \(B \) with the properties that \(B/4 < a_i < B/2 \) and \(\sum a_i = mB \).
- Output: Determine if \(A \) can be partitioned into \(S_1, S_2, \ldots, S_m \) such that for all \(i \)
 \[
 \sum_{j \in S_i} a_j = B
 \]
 Note: each \(S_i \) must contain exactly 3 elements.

Example of 3-Partition

\(A = \{26, 29, 33, 33, 33, 34, 35, 36, 41\} \)
\(B = 100, m = 3 \)
- 3-Partition
 - 26, 33, 41
 - 29, 36, 35
 - 33, 33, 34

Bin Packing

- Input: A set of numbers \(A = \{a_1, a_2, \ldots, a_n\} \) and numbers \(B \) (capacity) and \(K \) (number of bins).
- Output: Determine if \(A \) can be partitioned into \(S_1, S_2, \ldots, S_K \) such that for all \(i \)
 \[
 \sum_{j \in S_i} a_j \leq B
 \]

Bin Packing Example

\(A = \{2, 2, 3, 3, 4, 4, 5, 5, 5\} \)
\(B = 10, K = 4 \)
- Bin Packing
 - 3, 3, 4
 - 2, 3, 5
 - 5, 5
 - 2, 4, 4
 Perfect fit!
Coping with NP-Completeness

• Given a problem appears to be hard what do you do?
 – Try to find a good algorithm for it.
 – Try to show its decision version is NP-complete or NP-hard.
 – Failing both, the problem probably is a hard one.
 – For a hard problem there are many things to try.
 • Branch-and-bound algorithm - for exact solution
 • Approximate algorithm - heuristic

Load Balanced Spanning Tree Cost Criteria

• Given a graph \(G = (V,E) \) and a spanning tree \(T \).
 – \(d(T) \) = max degree of any vertex of \(T \)
 – \(c(T) \) = sum of the squares of the degrees

\[
\begin{align*}
d(T) &= 3 \\
c(T) &= 4 \times 1^2 + 1 \times 4^2 + 2 \times 9^2 = 26
\end{align*}
\]

Advantage of \(c(T) \) is that it has finer gradations.

Deriving \(c(T) \)

• Every spanning tree on \(n \) vertices has \(n-1 \) edges. Hence, the average number of edges per vertex is \(\bar{d} = \frac{2(n-1)}{n} \), about 2.
• Let \(d_i \) be the degree of vertex \(i \). The variance in degree is

\[
\sum_{i=1}^{n} (d_i - \bar{d})^2 / n = (\sum_{i=1}^{n} d_i^2 - n \bar{d}^2) / n
\]

• Minimizing the variance is equivalent to minimizing

\[
\sum_{i=1}^{n} d_i^2
\]

Examples of \(c(T) \)

\[
\begin{align*}
c(T) &= 9 \times 1^2 + 1 \times 9^2 = 90 \\
c(T) &= 2 \times 1^2 + 8 \times 2^2 = 34
\end{align*}
\]

Another Example

\[
\begin{align*}
c(T) &= 3 \times 1 + 3 \times 4 + 1 \times 9 = 24 \\
c(T) &= 2 \times 1 + 5 \times 4 = 22
\end{align*}
\]

Load Balanced Spanning Tree with Minimum Variance

• Input: Undirected graph \(G = (V,E) \).
• Output: A spanning tree that minimizes the sum of the squares of the degrees of the vertices in the tree.
Branch and Bound

- Start with an initial tree T with cost c(T).
- Systematically search through all forests by recursively (branching) adding new edges to the current forest.
- Discontinue a search if the forest cannot be contained in a spanning tree of smaller cost. (This is the bounding step).
- This is better than exhaustive search, but it is still only valuable on very small problems.

Bounding Condition

- Let \(c(F) \) be the cost of the current forest of \(k \) trees where tree \(T_i \) had minimum degree vertex \(d_i \) sorted smallest to largest. Let \(B \) be the best cost of any tree so far.
- The lowest possible cost of any tree containing \(F \) is
 \[
 m(F) = c(F) + \sum_{i=1}^k (d_i + 1)^2 - 2 \sum_{i=1}^k d_i^2 + \sum_{i=1}^k (d_i + 1)^2 - \sum_{i=1}^k d_i^2
 \]
- If \(m(F) \geq B \) then do not continue searching from \(F \).

Example of Bounding

\[
\begin{align*}
 d_1 &= 0, 1, 1, 1 \\
 c(F) &= 1*0 + 8*1 + 1*16 = 24 \\
 m(F) &= 24 + 2(1*1 + 1*4) - 2(1*0 + 1*1) \\
 &+ (1*1 + 1*4) - (1*0 + 1*1) \\
 &= 36
\end{align*}
\]

Branch and Bound Control

The edges of G are in an array E[1..m]
F is a set of indices of edges, initially empty
There is an initial Best-Tree with Best-Cost

LBST-Search(F)
if F is a tree then
 if c(F) < Best-Cost then
 Best-Tree := F;
 Best-Cost := c(F);
 else
 (F is not a tree)
 for i = last-index-in(F) + 1 to m do
 if not(cycle(F,i)) and m(F,i) < Best-Cost then
 F := union(F,i);
 LBST-Search(F);
Notes on Branch and Bound

- Branch and bound is still an exponential search. To make it work well many efficiencies should be made.
 - Eliminate copy of the partial solution F on the recursive call.
 - Maintain cost of partial solution F and its sequence of minimum degrees to make computation of $m(F,i)$ fast.
 - Use up tree for cycle checking.
 - Reduce use of expensive bounding checks when possible.
 - Add more bounding checks