CSE 589
Applied Algorithms
Spring 1999

Prim’s Algorithm for MST
Load Balance Spanning Tree
Hamiltonian Path

Performance of W-Union / PC-Find
• The time complexity of PC-Find is $O(\log n)$.
• An up tree formed by W-Union of height h has at least 2^h nodes. Inductive Proof.

$$\text{Weight}(T) > 2^h + 2^h = 2^{h+1}$$

Worst Case for PC-Find
\[\frac{n}{2} \text{ Weighted Unions} \]
\[\frac{n}{4} \text{ Weighted Unions} \]

Example of Worst Cast (cont’)
After $n-1 = \frac{n}{2} + \frac{n}{4} + \ldots + 1$ Weighted Unions

Amortized Complexity
• For disjoint union / find with weighted union and path compression.
 – average time per operation is essentially a constant.
 – worst case time for a PC-Find is $O(\log n)$.
• An individual operation can be costly, but over time the average cost per operation is not.

Recall Kruskal
Sort the edges by increasing cost;
Initialize A to be empty;
for each edge (i,j) chosen in increasing order do
 $u := \text{PC-Find}(i)$;
 $v := \text{PC-Find}(j)$;
 if not($u = v$) then
 add (i,j) to A;
 W-Union(u,v);
Evaluation of Kruskal

- Let G have n vertices and m edges.
- Sort the edges - $O(m \log m)$.
- Traverse the sorted edge list doing PC-Finds and W-Unions - $O(m \alpha(m,n))$.
- Total time is $O(m \log m)$.

Prim’s Algorithm

- We maintain a single tree.
- For each vertex not in the tree maintain the smallest edge to a vertex in the tree.
Prim’s Algorithm 6

Prim’s Algorithm 7

Data Structures for Prim

- Adjacency Lists - we need to look at all the edges from a newly added vertex.
- Array for the best edges in or to the tree.

Evaluation of Prim

- n vertices and m edges.
- Priority queue $O(\log n)$ per operation.
- $O(m)$ priority queue operations.
 - An edge is visited when a vertex incident to it joins the tree.
- Time complexity is $O(m \log n)$.
- Storage complexity is $O(m)$.

Kruskal vs Prim

- Kruskal
 - Simple
 - Good with sparse graphs - $O(m \log m)$
- Prim
 - More complicated
 - Perhaps better with dense graphs - $O(m \log n)$
Load Balanced Spanning Tree (LBST)

- **Input:** An undirected graph $G = (V,E)$ and number k.
- **Output:** Determine if there is a spanning tree (V,T) of G with the property that for each vertex v there are at most k edges in T incident to v. If there is such a spanning tree report it. We call such a tree a spanning tree of degree k.

Spanning Tree of Degree 3

Optimization Version of LBST

- **Input:** An undirected graph $G = (V,E)$.
- **Output:** A number k and a spanning tree (V,T) of degree k. Furthermore, there is no spanning tree of degree $< k$.

Equivalence of two versions

- Reporting version can be easily reduced to the optimization version.
- Optimization version can be reduced to the reporting version by searching. Assume a function LBST(G,k) that returns a spanning tree of degree k if there is one, else returns null.

```
k := 2;
repeat
  T := LBST(G,k);
  if T = null then k := k + 1
until not(T = null)
```

LBST Decision Problem

- **Input:** An undirected graph $G = (V,E)$ and number k.
- **Output:** Determine if G has a spanning tree of degree k.

 - We expect a yes/no answer only without reporting a solution if the answer is yes.
Classes of Problems

- Decision Problem: just yes or no. Is there a solution or not.
- Reporting Problem: yes or no, and if yes then report a solution.
- Optimization Problem: find a best solution for some notion of best.

Hamiltonian Path Decision Problem

- Input: Undirected Graph $G = (V, E)$.
- Output: Determine if there is a path in G that visits each node exactly once.

 - Decision problem: Yes or No answer.
 - This is a famous NP-complete problem.
 - NP-complete problems do not appear to have polynomial time algorithms.
 - NP-complete problems are hard to solve!

Hamiltonian Path is Reducible to Spanning Tree of Degree 2

- If there an algorithm to quickly determine if a graph has a spanning tree of degree 2 then there is an algorithm to quickly solve the Hamiltonian path problem.
 - A spanning tree of degree 2 is a Hamiltonian path!
 - These problems are essentially the same problem.

Hamiltonian Path is Reducible to Spanning Tree of Degree k for any k

- Let $G = (V, E)$ be an undirected graph. We can construct in polynomial time $G' = (V', E')$ with the property that G has a Hamiltonian path if and only if G' has a spanning tree of degree k.
- Thus, if there is a polynomial time algorithm for the spanning tree problem then there is also also for the Hamiltonian path problem.
- But there is likely no such algorithm!

HP reducible to LBST of Degree 4

G has a Hamiltonian Path if and only if G' has a spanning tree of degree 4.

HP reducible to LBST of Degree 4 (2)

G has a Hamiltonian Path if and only if G' has spanning tree of degree 4.
HP Reducible to LBST of Degree 4 (3)

\[G = (V, E) \quad V = \{u_1, u_2, \ldots, u_n\} \]
\[V' = V \cup \{v_{i,j} : 1 \leq i \leq n, 1 \leq j \leq k - 2\} \]
\[E' = E \cup \{\{u_i, v_{i,j}\} : 1 \leq i \leq n, 1 \leq j \leq k - 2\} \]
\[G' = (V', E') \]

\(G \) has a Hamiltonian Path if and only if \(G' \) a spanning tree of degree \(k \).

HP reducible to LBST of Degree 4 (4)

Key fact: Any spanning tree in \(G' \) must contain all the new edges.