CSE 589
Applied Algorithms
Spring 1999

Minimum Spanning Tree
Disjoint Union / Find

ST using Breadth First Search 1

- Uses a queue to order search

Breadth First Search 2

Queue = 2, 6, 5

Breadth First Search 3

Queue = 6, 5, 7, 3

Breadth First Search 4

Queue = 5, 7, 3

Breadth First Search 5

Queue = 7, 3, 4
Breadth First Search 6

Queue = 3, 4

Breadth First Search 7

Queue = 4

Breadth First Search 8

Queue =

Spanning Tree using Breadth First Search

Initialize T to be empty;
Initialize Q to be empty;
Enqueue(1, Q) and mark 1;
while Q is not empty do
 i := Dequeue(Q);
 for each j adjacent to i do
 if j is not marked then
 add {i, j} to T;
 Enqueue(j, Q) and mark j

Depth First vs Breadth First

• Depth First
 – Stack or recursion
 – Many applications
• Breadth First
 – Queue (recursion no help)
 – Can be used to find shortest paths from the start vertex

Best Spanning Tree

• Each edge has the probability that it won’t fail
• Find the spanning tree that is least likely to fail
Example of a Spanning Tree

Minimum Spanning Tree Problem

- Input: Undirected Graph $G = (V,E)$ and a cost function C from E to the reals. $C(e)$ is the cost of edge e.
- Output: A spanning tree T with minimum total cost. That is: T that minimizes $\sum_{e \in T} C(e)$

Reducing Best to Minimum

Let $P(e)$ be the probability that an edge doesn’t fail. Define:

$$C(e) = -\log_{10}(P(e))$$

Minimizing $\sum_{e \in T} C(e)$ is equivalent to maximizing $\prod_{e \in T} P(e)$ because $\prod_{e \in T} P(e) = 10^{\sum_{e \in T} C(e)}$

Example of Reduction

Minimum Spanning Tree

- Boruvka 1926
- Kruskal 1956
- Prim 1957 also by Jarnik 1930
- Karger, Klein, Tarjan 1995
 - Randomized linear time algorithm
 - Probably not practical, but very interesting

MST Optimality Principle

- $G = (V,E)$ with costs C. G connected.
- Let (V,A) be a subgraph of G that is contained in a minimum spanning tree. Let U be a set such that no edge in A has one end in U and one end in $V-U$. Let $C\{(u,v)\}$ minimal and u in U and v in $V-U$. Let $A’$ be A with (u,v) added. Then $(V,A’)$ is contained in a minimum spanning tree.
Proof of Optimality Principle 1

$$C(u, v)$$ is minimal

Proof of Optimality Principle 2

$$C(u, v)$$ is minimal

$$C(u, v) \leq C(x, y)$$

Proof of Optimality Principle 3

$$T'$$ is also a minimum spanning tree

$$C(T') = C(T) + C(u, v) - C(x, y)$$

$$C(T') < C(T)$$

Kruskal’s Greedy Algorithm

Sort the edges by increasing cost;
Initialize A to be empty;
For each edge e chosen in increasing order do
if adding e does not form a cycle then
add e to A

Invariant: A is always contained in some minimum spanning tree

Example of Kruskal 1

Example of Kruskal 2
Example of Kruskal 7

Data Structures for Kruskal

- Sorted edge list
 \[\{(7,4), (2,1), (7,5), (5,6), (5,4), (1,6), (2,7), (2,3), (3,4), (1,5)\}\]

- Disjoint Union / Find
 - Union(a, b) - union the disjoint sets named by a and b
 - Find(a) returns the name of the set containing a

Example of DU/F 1

Example of DU/F 2

Example of DU/F 3
Kruskal’s Algorithm with DU / F

Sort the edges by increasing cost; Initialize A to be empty; for each edge \((i,j)\) chosen in increasing order do
- \(u := \text{Find}(i)\);
- \(v := \text{Find}(j)\);
- if not\((u = v)\) then
 - add \((i,j)\) to \(A\);
 - \(\text{Union}(u,v)\);

Up Tree for DU/F

Initial state

Intermediate state

Final state

DU/F Operation

- **Find**(\(i\)) - follow pointer to root and return the root.
- **Union**(\(i,j\)) - assuming \(i\) and \(j\) roots, point \(i\) to \(j\).

Union(1,7)

Weighted Union

- **Weighted Union**
 - Always point the smaller tree to the root of the larger tree

W-Union(1,7)

Path Compression

- On a Find operation point all the nodes on the search path directly to the root.

Find(6)

Elegant Array Implementation

up

weight
Up Tree Pseudo-Code

PC-Find(i : index)
 r := i;
 while not(up[r] = 0) do
 r := up[r];
 k := up[i];
 while not(k = r) do
 up[i] := r;
 i := k;
 k := up[k]
 return(r)
end{Find}

W-Union(i,j : index)
// i and j are roots
wi := weight[i];
wj := weight[j];
if wi < wj then
 up[i] := j;
 weight[i] := wi + wj;
else
 up[j] := i;
 weight[j] := wi +wj;
end{W-Union}

Disjoint Union / Find Notes

• Weighted union and path compression analyzed by Tarjan in 1975
 – Worst case time complexity for a W-Union
 is O(1) and for a PC-Find is O(log n).
 – Time complexity for m operations on n
 elements is O(m α(m,n)) where α is a very
 slow growing function α(m,n) ≤ 4 for all
 practical m and n. α is called inverse
 Ackermann’s function. Essentially
 constant time per operation!