Announcements

• Reading for this week
 – 6.1-6.8
Review from last week
Weighted Interval Scheduling
Optimal linear interpolation

\[
\text{Error} = \sum (y_i - ax_i - b)^2
\]
Subset Sum Problem

- Let \(w_1, \ldots, w_n = \{6, 8, 9, 11, 13, 16, 18, 24\} \)
- Find a subset that has as large a sum as possible, without exceeding 50
Counting electoral votes
Dynamic Programming

Examples

• Examples
 – Optimal Billboard Placement
 • Text, Solved Exercise, Pg 307
 – Linebreaking with hyphenation
 • Compare with HW problem 6, Pg 317
 – String approximation
 • Text, Solved Exercise, Page 309
Billboard Placement

• Maximize income in placing billboards
 – $b_i = (p_i, v_i)$, v_i: value of placing billboard at position p_i

• Constraint:
 – At most one billboard every five miles

• Example
 – $\{(6,5), (8,6), (12, 5), (14, 1)\}$
Design a Dynamic Programming Algorithm for Billboard Placement

• Compute $\text{Opt}[1], \text{Opt}[2], \ldots, \text{Opt}[n]$
• What is $\text{Opt}[k]$?

Input b_1, \ldots, b_n, where $b_i = (p_i, v_i)$, position and value of billboard i.
$\text{Opt}[k] = \text{fun}(\text{Opt}[0], \ldots, \text{Opt}[k-1])$

- How is the solution determined from subproblems?

Input b_1, \ldots, b_n, where $b_i = (p_i, v_i)$, position and value of billboard i
j = 0; // j is five miles behind the current position
// the last valid location for a billboard, if one placed at P[k]

for k := 1 to n
 while (P[j] < P[k] - 5)
 j := j + 1;
 j := j - 1;

 Opt[k] = Max(Opt[k-1], V[k] + Opt[j]);
Optimal line breaking and hyphenation

- Problem: break lines and insert hyphens to make lines as balanced as possible

- Typographical considerations:
 - Avoid excessive white space
 - Limit number of hyphens
 - Avoid widows and orphans
 - Etc.
Penalty Function

- $\text{Pen}(i, j)$ – penalty of starting a line at position i, and ending at position j

Optimal line breaking and hyphenation is computed with dynamic programming

- Key technical idea
 - Number the breaks between words/syllables
String approximation

• Given a string S, and a library of strings $B = \{b_1, \ldots b_m\}$, construct an approximation of the string S by using copies of strings in B.

$B = \{abab, bbbbaaa, ccbb, ccaacc\}$

$S = abacccbbbaabbccbbbbcacaabab$
Formal Model

• Strings from B assigned to non-overlapping positions of S
• Strings from B may be used multiple times
• Cost of δ for unmatched character in S
• Cost of γ for mismatched character in S
 – $\text{MisMatch}(i, j)$ – number of mismatched characters of b_j, when aligned starting with position i in s.
Design a Dynamic Programming Algorithm for String Approximation

• Compute Opt[1], Opt[2], . . . , Opt[n]
• What is Opt[k]?

Target string $S = s_1s_2...s_n$
Library of strings $B = \{b_1,...,b_m\}$
$\text{Mismatch}(i,j) =$ number of mismatched characters with b_j when aligned starting at position i of S.
Opt[k] = fun(Opt[0],...,Opt[k-1])

• How is the solution determined from subproblems?

Target string $S = s_1s_2...s_n$
Library of strings $B = \{b_1,...,b_m\}$
$MisMatch(i,j) = \text{number of mismatched characters with } b_j \text{ when aligned starting at position } i \text{ of } S.$
for i := 1 to n
 Opt[k] = Opt[k-1] + \delta;
for j := 1 to |B|
 p = i - \text{len}(b_j);
 Opt[k] = \min(Opt[k], \ Opt[p-1] + \gamma \text{MisMatch}(p, j));
Longest Common Subsequence
Longest Common Subsequence

- $C = c_1 \ldots c_g$ is a subsequence of $A = a_1 \ldots a_m$ if C can be obtained by removing elements from A (but retaining order).
- $\text{LCS}(A, B)$: A maximum length sequence that is a subsequence of both A and B.

```
ocurrance
occurrence
attacggcct
attacgacca
```
Determine the LCS of the following strings

BARTHOлемEWSIMPSON

KRУSTYTHeCLOWN
String Alignment Problem

• Align sequences with gaps

CAT TGA AT

CAGAT AGGA

• Charge δ_x if character x is unmatched
• Charge γ_{xy} if character x is matched to character y

Note: the problem is often expressed as a minimization problem, with $\gamma_{xx} = 0$ and $\delta_x > 0$
LCS Optimization

- $A = a_1a_2\ldots a_m$
- $B = b_1b_2\ldots b_n$

- $\text{Opt}[j, k]$ is the length of $\text{LCS}(a_1a_2\ldots a_j, b_1b_2\ldots b_k)$
Optimization recurrence

If \(a_j = b_k \), \(\text{Opt}[j,k] = 1 + \text{Opt}[j-1,k-1] \)

If \(a_j \neq b_k \), \(\text{Opt}[j,k] = \max(\text{Opt}[j-1,k], \text{Opt}[j,k-1]) \)
Give the Optimization Recurrence for the String Alignment Problem

- Charge δ_x if character x is unmatched
- Charge γ_{xy} if character x is matched to character y

\[
\text{Opt}[j, k] =
\]

Let $a_j = x$ and $b_k = y$
Express as minimization
Dynamic Programming
Computation
Code to compute $\text{Opt}[j,k]$
Storing the path information

A[1..m], B[1..n]

for i := 1 to m Opt[i, 0] := 0;
for j := 1 to n Opt[0,j] := 0;
Opt[0,0] := 0;
for i := 1 to m
 for j := 1 to n
else if Opt[i-1, j] >= Opt[i, j-1]
 { Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; }
else { Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; }
How good is this algorithm?

- Is it feasible to compute the LCS of two strings of length 100,000 on a standard desktop PC? Why or why not.
Observations about the Algorithm

- The computation can be done in $O(m+n)$ space if we only need one column of the Opt values or Best Values.

- The algorithm can be run from either end of the strings.
Computing LCS in $O(nm)$ time and $O(n+m)$ space

- Divide and conquer algorithm
- Recomputing values used to save space
Divide and Conquer Algorithm

• Where does the best path cross the middle column?

• For a fixed i, and for each j, compute the LCS that has a_i matched with b_j
Constrained LCS

• $\text{LCS}_{i,j}(A,B)$: The LCS such that
 – a_1, \ldots, a_i paired with elements of b_1, \ldots, b_j
 – a_{i+1}, \ldots, a_m paired with elements of b_{j+1}, \ldots, b_n

• $\text{LCS}_{4,3}(abbacbb, cbbaa)$
A = RRSSRTTRTS
B = RTSRRSTST

Compute LCS_{5,0}(A,B), LCS_{5,1}(A,B), \ldots, LCS_{5,9}(A,B)
$$A = \text{RRSSRRTTRTS}$$
$$B = \text{RTSRRSTST}$$

Compute $LCS_{5,0}(A,B)$, $LCS_{5,1}(A,B)$, \ldots, $LCS_{5,9}(A,B)$

<table>
<thead>
<tr>
<th>j</th>
<th>left</th>
<th>right</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>
Computing the middle column

- From the left, compute LCS($a_1 \ldots a_{m/2}, b_1 \ldots b_j$)
- From the right, compute LCS($a_{m/2+1} \ldots a_m, b_{j+1} \ldots b_n$)
- Add values for corresponding j’s

- Note – this is space efficient
Divide and Conquer

• $A = a_1, \ldots, a_m$ \hspace{1cm} $B = b_1, \ldots, b_n$

• Find j such that
 – $LCS(a_1 \ldots a_{m/2}, b_1 \ldots b_j)$ and
 – $LCS(a_{m/2+1} \ldots a_m, b_{j+1} \ldots b_n)$ yield optimal solution

• Recurse
Algorithm Analysis

- $T(m,n) = T(m/2, j) + T(m/2, n-j) + cnm$
Prove by induction that
\[T(m,n) \leq 2cmn \]
Memory Efficient LCS Summary

• We can afford $O(nm)$ time, but we can’t afford $O(nm)$ space
• If we only want to compute the length of the LCS, we can easily reduce space to $O(n+m)$
• Avoid storing the value by recomputing values
 – Divide and conquer used to reduce problem sizes
Shortest Paths with Dynamic Programming
Shortest Path Problem

• Dijkstra’s Single Source Shortest Paths Algorithm
 – $O(m \log n)$ time, positive cost edges

• General case – handling negative edges

• If there exists a negative cost cycle, the shortest path is not defined

• Bellman-Ford Algorithm
 – $O(mn)$ time for graphs with negative cost edges
Lemma

- If a graph has no negative cost cycles, then the **shortest** paths are **simple** paths.

- Shortest paths have at most $n-1$ edges.
Shortest paths with a fixed number of edges

• Find the shortest path from v to w with exactly k edges
Express as a recurrence

- $\text{Opt}_k(w) = \min_x [\text{Opt}_{k-1}(x) + c_{xw}]$
- $\text{Opt}_0(w) = 0$ if $v=w$ and infinity otherwise
Algorithm, Version 1

foreach w
 \[M[0, w] = \text{infinity}; \]
M[0, v] = 0;
for i = 1 to n-1
 foreach w
 \[M[i, w] = \min_x(M[i-1,x] + \text{cost}[x,w]); \]
Algorithm, Version 2

foreach w

 M[0, w] = infinity;

M[0, v] = 0;

for i = 1 to n-1

 foreach w

 M[i, w] = min(M[i-1, w], min_x(M[i-1,x] + cost[x,w]))
Algorithm, Version 3

foreach w
 \(M[w] = \text{infinity}; \)
M[v] = 0;
for i = 1 to n-1
 foreach w
 \(M[w] = \min(M[w], \min_x(M[x] + \text{cost}[x,w])) \)
Correctness Proof for Algorithm 3

• Key lemma – at the end of iteration i, for all w, \(M[w] \leq M[i, w] \);

• Reconstructing the path:
 – Set \(P[w] = x \), whenever \(M[w] \) is updated from vertex \(x \)
If the pointer graph has a cycle, then the graph has a negative cost cycle

- If \(P[w] = x \) then \(M[w] \geq M[x] + \text{cost}(x, w) \)
 - Equal when \(w \) is updated
 - \(M[x] \) could be reduced after update

- Let \(v_1, v_2, \ldots v_k \) be a cycle in the pointer graph with \((v_k, v_1)\) the last edge added
 - Just before the update
 - \(M[v_j] \geq M[v_{j+1}] + \text{cost}(v_{j+1}, v_j) \) for \(j < k \)
 - \(M[v_k] > M[v_1] + \text{cost}(v_1, v_k) \)
 - Adding everything up
 - \(0 > \text{cost}(v_1, v_2) + \text{cost}(v_2, v_3) + \ldots + \text{cost}(v_k, v_1) \)
Negative Cycles

• If the pointer graph has a cycle, then the graph has a negative cycle
• Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles
Finding negative cost cycles

• What if you want to find negative cost cycles?
Foreign Exchange Arbitrage

<table>
<thead>
<tr>
<th></th>
<th>USD</th>
<th>EUR</th>
<th>CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD</td>
<td>------</td>
<td>0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>EUR</td>
<td>1.2</td>
<td>------</td>
<td>1.6</td>
</tr>
<tr>
<td>CAD</td>
<td>0.8</td>
<td>0.6</td>
<td>------</td>
</tr>
</tbody>
</table>