Announcements

- Midterm today!
 - 60 minutes, start of class, closed book
- Reading for this week
 - 6.1, 6.2, 6.3., 6.4
- Makeup lecture
 - February 19, 6:30 pm.
 - Still waiting on confirmation on MS room.

Dynamic Programming

- Weighted Interval Scheduling
- Given a collection of intervals I₁, . . . , Iₙ, with weights w₁, . . . , wₙ, choose a maximum weight set of non-overlapping intervals

![Interval Scheduling Example](image)

Optimality Condition

- Opt[j] is the maximum weight independent set of intervals I₁, I₂, . . . , Iⱼ
- Opt[j] = max(Opt[j − 1], wⱼ + Opt[p[j]])
 - Where p[j] is the index of the last interval which finishes before Iⱼ starts

Algorithm

MaxValue(j) =
if j = 0 return 0
else
 return max(MaxValue(j−1), wⱼ + MaxValue(p[j]))

Worst case run time: 2^n

A better algorithm

M[j] initialized to -1 before the first recursive call for all j

MaxValue(j) =
if j = 0 return 0;
else if M[j] != -1 return M[j];
else
 M[j] = max(MaxValue(j-1), wⱼ + MaxValue(p[j]));
 return M[j];
Iterative version

MaxValue (j) {
 M[0] = 0;
 for (k = 1; k <= j; k++){
 M[k] = max(M[k-1], w_k + M[P[k]]);
 }
 return M[j];
}

Dynamic Programming

- The most important algorithmic technique covered in CSEP 521
- Key ideas
 - Express solution in terms of a polynomial number of sub problems
 - Order sub problems to avoid recomputation

Computing the solution

Opt[j] = max (Opt[j - 1], w_j + Opt[p[j]])

Record which case is used in Opt computation

What is the optimal linear interpolation with three line segments

Optimal linear interpolation

Error = \sum (y_i - ax_i - b)^2
What is the optimal linear interpolation with two line segments

What is the optimal linear interpolation with n line segments

Notation

- Points p_1, p_2, \ldots, p_n ordered by x-coordinate ($p_i = (x_i, y_i)$)
- E_{ij} is the least squares error for the optimal line interpolating p_i, \ldots, p_j

Optimal interpolation with two segments

- Give an equation for the optimal interpolation of p_1, \ldots, p_n with two line segments
- E_{ij} is the least squares error for the optimal line interpolating p_i, \ldots, p_j

Optimal interpolation with k segments

- Optimal segmentation with three segments
 - $\text{Min}_{i,j} (E_{1,i} + E_{i,j} + E_{j,n})$
 - $O(n^2)$ combinations considered
- Generalization to k segments leads to considering $O(n^{k-1})$ combinations

$\text{Opt}_{k}[j]$: Minimum error approximating $p_1 \ldots p_j$ with k segments

How do you express $\text{Opt}_{k}[j]$ in terms of $\text{Opt}_{k-1}[1], \ldots, \text{Opt}_{k-1}[j]$?
Optimal sub-solution property
Optimal solution with k segments extends an optimal solution of $k-1$ segments on a smaller problem.

Optimal multi-segment interpolation
Compute $Opt[k, j]$ for $0 < k < j < n$

- for $j := 1$ to n
- for $k := 2$ to $n-1$
- for $j := 2$ to n
 - $t := E_{1,j}$
 - for $i := 1$ to $j-1$
 - $t = \min (t, Opt[k-1, i] + E_{i,j})$
 - $Opt[k, j] = t$

Determining the solution
- When $Opt[k,j]$ is computed, record the value of i that minimized the sum
- Store this value in a auxiliary array
- Use to reconstruct solution

Variable number of segments
- Segments not specified in advance
- Penalty function associated with segments
- Cost = Interpolation error + $C \times \#$Segments

Penalty cost measure
- $Opt[j] = \min(E_{1,j}, \min_i(\text{Opt}[i] + E_{i,j} + P))$

Subset Sum Problem
- Let $w_1, \ldots, w_n = \{6, 8, 9, 11, 13, 16, 18, 24\}$
- Find a subset that has as large a sum as possible, without exceeding 50
Adding a variable for Weight

• \(\text{Opt}[j, K] \) the largest subset of \(\{w_1, \ldots, w_j\} \) that sums to at most \(K \)
• \{2, 4, 7, 10\}
 – \(\text{Opt}[2, 7] = \)
 – \(\text{Opt}[3, 7] = \)
 – \(\text{Opt}[3, 12] = \)
 – \(\text{Opt}[4, 12] = \)

Subset Sum Recurrence

• \(\text{Opt}[j, K] \) the largest subset of \(\{w_1, \ldots, w_j\} \) that sums to at most \(K \)

Subset Sum Grid

\[
\begin{array}{ccccccccc}
4 & 3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\
3 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\(\{2, 4, 7, 10\} \)

Subset Sum Code

\[\text{Opt}[j, K] = \max(\text{Opt}[j - 1, K], \text{Opt}[j - 1, K - w_j] + w_j) \]

Knapsack Problem

• Items have weights and values
• The problem is to maximize total value subject to a bound on weight
• Items \(\{I_1, I_2, \ldots, I_n\} \)
 – Weights \(\{w_1, w_2, \ldots, w_n\} \)
 – Values \(\{v_1, v_2, \ldots, v_n\} \)
 – Bound \(K \)
• Find set \(S \) of indices to:
 – Maximize \(\sum_{i \in S} v_i \) such that \(\sum_{i \in S} w_i \leq K \)

Knapsack Recurrence

\[
\text{Opt}[j, K] = \max(\text{Opt}[j - 1, K], \text{Opt}[j - 1, K - w_j] + w_j)
\]

Knapsack Recurrence:

Subset Sum Recurrence:

\[
\text{Opt}[j, K] = \max(\text{Opt}[j - 1, K], \text{Opt}[j - 1, K - w_j] + w_j)
\]
Knapsack Grid

Opt[j, K] = \max(\text{Opt}[j - 1, K], \text{Opt}[j - 1, K - w_j] + v_j)

Weights \{2, 4, 7, 10\} Values: \{3, 5, 9, 16\}

Dynamic Programming Examples

- Examples
 - Optimal Billboard Placement
 - Text, Solved Exercise, Pg 307
 - Linebreaking with hyphenation
 - Compare with HW problem 6, Pg 317
 - String approximation
 - Text, Solved Exercise, Page 309

Billboard Placement

- Maximize income in placing billboards
 - \(b_i = (p_i, v_i)\), \(v_i\): value of placing billboard at position \(p_i\)
- Constraint:
 - At most one billboard every five miles
- Example
 - \{(6, 5), (8, 6), (12, 5), (14, 1)\}

Design a Dynamic Programming Algorithm for Billboard Placement

- Compute \text{Opt}[1], \text{Opt}[2], \ldots, \text{Opt}[n]
- What is \text{Opt}[k]?

\text{Input } b_1, \ldots, b_n \text{ where } b_i = (p_i, v_i), \text{ position and value of billboard } i

Opt[k] = \text{fun}(\text{Opt}[0], \ldots, \text{Opt}[k-1])

- How is the solution determined from subproblems?

\text{Input } b_1, \ldots, b_n \text{ where } b_i = (p_i, v_i), \text{ position and value of billboard } i

Solution

\begin{verbatim}
 j = 0; // j is five miles behind the current position
 // the last valid location for a billboard, if one placed at P[k]
 for k := 1 to n
 while (P[j] < P[k] - 5)
 j := j + 1;
 j := j + 1;
 \text{Opt}[k] = \max(\text{Opt}[k-1], V[k] + \text{Opt}[j]);
\end{verbatim}

\text{Input } b_1, \ldots, b_n \text{ where } b_i = (p_i, v_i), \text{ position and value of billboard } i
Optimal line breaking and hyphenation

- Problem: break lines and insert hyphens to make lines as balanced as possible
- Typographical considerations:
 - Avoid excessive white space
 - Limit number of hyphens
 - Avoid widows and orphans
 - Etc.

Penalty Function

- Pen(i, j) – penalty of starting a line at position i, and ending at position j

String approximation

- Given a string S, and a library of strings B = \{b_1, \ldots, b_m\}, construct an approximation of the string S by using copies of strings in B.

B = \{abab, bbbbaaa, cccbb, ccaacc\}
S = abaccbbbaabbccbbccaabab

Formal Model

- Strings from B assigned to non-overlapping positions of S
- Strings from B may be used multiple times
- Cost of \(\delta\) for unmatched character in S
- Cost of \(\gamma\) for mismatched character in S
 - MisMatch(i, j) – number of mismatched characters of \(b_j\), when aligned starting with position i in S.

Design a Dynamic Programming Algorithm for String Approximation

- Compute Opt[1], Opt[2], \ldots, Opt[n]
- What is Opt[k]?

Opt[k] = fun(Opt[0], \ldots, Opt[k-1])

- How is the solution determined from sub problems?
Solution

for i := 1 to n
 Opt[k] = Opt[k-1] + δ;
 for j := 1 to |B|
 p = i - len(b_j);
 Opt[k] = min(Opt[k], Opt[p-1] + MisMatch(p, j));