CSEP 521
Applied Algorithms
Richard Anderson
Lecture 6
Dynamic Programming
Announcements

• Midterm today!
 – 60 minutes, start of class, closed book

• Reading for this week
 – 6.1, 6.2, 6.3., 6.4

• Makeup lecture
 – February 19, 6:30 pm.
 • Still waiting on confirmation on MS room.
Dynamic Programming

• Weighted Interval Scheduling
• Given a collection of intervals I_1, \ldots, I_n with weights w_1, \ldots, w_n, choose a maximum weight set of non-overlapping intervals.
Optimality Condition

- $\text{Opt}[j]$ is the maximum weight independent set of intervals I_1, I_2, \ldots, I_j
- $\text{Opt}[j] = \max(\text{Opt}[j - 1], w_j + \text{Opt}[p[j]])$
 - Where $p[j]$ is the index of the last interval which finishes before I_j starts
Algorithm

MaxValue(j) =
 if j = 0 return 0
else
 return max(MaxValue(j-1),
 w_j + MaxValue(p[j]))

Worst case run time: 2^n
A better algorithm

M[j] initialized to -1 before the first recursive call for all j

MaxValue(j) =
 if j = 0 return 0;
 else if M[j] != -1 return M[j];
 else
 M[j] = max(MaxValue(j-1), w_j + MaxValue(p[j]));
 return M[j];
Iterative version

MaxValue (j) {
 M[0] = 0;
 for (k = 1; k <= j; k++) {
 M[k] = max(M[k-1], w_k + M[P[k]]);
 }
 return M[j];
}
Fill in the array with the Opt values

$$\text{Opt}[j] = \max (\text{Opt}[j-1], w_j + \text{Opt}[p[j]])$$
Computing the solution

Opt\(j \) = \max (Opt\(j - 1 \), \(w_j + \text{Opt}[p[j]] \))

Record which case is used in Opt computation
Dynamic Programming

• The most important algorithmic technique covered in CSEP 521

• Key ideas
 – Express solution in terms of a polynomial number of sub problems
 – Order sub problems to avoid recomputation
Optimal linear interpolation

$$\text{Error} = \sum (y_i - ax_i - b)^2$$
What is the optimal linear interpolation with three line segments?
What is the optimal linear interpolation with two line segments?
What is the optimal linear interpolation with n line segments
Notation

- Points p_1, p_2, \ldots, p_n ordered by x-coordinate ($p_i = (x_i, y_i)$)
- $E_{i,j}$ is the least squares error for the optimal line interpolating p_i, \ldots, p_j
Optimal interpolation with two segments

• Give an equation for the optimal interpolation of p_1, \ldots, p_n with two line segments

• $E_{i,j}$ is the least squares error for the optimal line interpolating p_i, \ldots, p_j
Optimal interpolation with k segments

- Optimal segmentation with three segments
 - $\min_{i,j}\{E_{1,i} + E_{i,j} + E_{j,n}\}$
 - $O(n^2)$ combinations considered

- Generalization to k segments leads to considering $O(n^{k-1})$ combinations
Opt\(_k[j]\) : Minimum error approximating \(p_1 \ldots p_j\) with \(k\) segments

How do you express \(\text{Opt}_k[j]\) in terms of \(\text{Opt}_{k-1}[1], \ldots, \text{Opt}_{k-1}[j]\)?
Optimal sub-solution property

Optimal solution with k segments extends an optimal solution of $k-1$ segments on a smaller problem.
Optimal multi-segment interpolation

Compute $\text{Opt}[k, j]$ for $0 < k < j < n$

for $j := 1$ to n
 $\text{Opt}[1, j] = E_{1,j}$;
for $k := 2$ to $n-1$
 for $j := 2$ to n
 $t := E_{1,j}$
 for $i := 1$ to $j - 1$
 $t = \min(t, \text{Opt}[k-1, i] + E_{i,j})$
 $\text{Opt}[k, j] = t$
Determining the solution

- When Opt\([k, j]\) is computed, record the value of \(i\) that minimized the sum
- Store this value in an auxiliary array
- Use to reconstruct the solution
Variable number of segments

- Segments not specified in advance
- Penalty function associated with segments
- Cost = Interpolation error + C x #Segments
Penalty cost measure

• $\text{Opt}[j] = \min(E_{1,j}, \min_i(\text{Opt}[i] + E_{i,j} + P))$
Subset Sum Problem

- Let \(w_1, \ldots, w_n = \{6, 8, 9, 11, 13, 16, 18, 24\} \)
- Find a subset that has as large a sum as possible, without exceeding 50
Adding a variable for Weight

- \(\text{Opt}[j, K] \) the largest subset of \(\{w_1, \ldots, w_j\} \) that sums to at most \(K \)
- \(\{2, 4, 7, 10\} \)
 - \(\text{Opt}[2, 7] = \)
 - \(\text{Opt}[3, 7] = \)
 - \(\text{Opt}[3, 12] = \)
 - \(\text{Opt}[4, 12] = \)
Subset Sum Recurrence

• Opt[j, K] the largest subset of \{w_1, \ldots, w_j\} that sums to at most K
Subset Sum Grid

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – w_j] + w_j)

{2, 4, 7, 10}
Subset Sum Code
Knapsack Problem

• Items have weights and values
• The problem is to maximize total value subject to a bound on weight
• Items \{I_1, I_2, \ldots, I_n\}
 – Weights \{w_1, w_2, \ldots, w_n\}
 – Values \{v_1, v_2, \ldots, v_n\}
 – Bound K
• Find set S of indices to:
 – Maximize \sum_{i \in S} v_i\ such\ that\ \sum_{i \in S} w_i \leq K
Knapsack Recurrence

Subset Sum Recurrence:

$$\text{Opt}[j, K] = \max(\text{Opt}[j - 1, K], \text{Opt}[j - 1, K - w_j] + w_j)$$

Knapsack Recurrence:
Knapsack Grid

Opt\[j, K\] = max(Opt\[j - 1, K\], Opt\[j - 1, K - w_j\] + v_j)

Weights \{2, 4, 7, 10\} Values: \{3, 5, 9, 16\}
Dynamic Programming

Examples

• Examples
 – Optimal Billboard Placement
 • Text, Solved Exercise, Pg 307
 – Linebreaking with hyphenation
 • Compare with HW problem 6, Pg 317
 – String approximation
 • Text, Solved Exercise, Page 309
Billboard Placement

• Maximize income in placing billboards
 – $b_i = (p_i, v_i)$, v_i: value of placing billboard at position p_i

• Constraint:
 – At most one billboard every five miles

• Example
 – $\{(6,5), (8,6), (12, 5), (14, 1)\}$
Design a Dynamic Programming Algorithm for Billboard Placement

• Compute Opt[1], Opt[2], …, Opt[n]
• What is Opt[k]?

Input b_1, \ldots, b_n, where $b_i = (p_i, v_i)$, position and value of billboard i
Opt[k] = fun(Opt[0],...,Opt[k-1])

• How is the solution determined from subproblems?

Input \(b_1, \ldots, b_n \), where \(b_i = (p_i, v_i) \), position and value of billboard i
j = 0; // j is five miles behind the current position
// the last valid location for a billboard, if one placed at P[k]

for k := 1 to n
 while (P[j] < P[k] - 5)
 j := j + 1;
 j := j - 1;
 Opt[k] = Max(Opt[k-1], V[k] + Opt[j]);
Optimal line breaking and hyphenation

• Problem: break lines and insert hyphens to make lines as balanced as possible

• Typographical considerations:
 – Avoid excessive white space
 – Limit number of hyphens
 – Avoid widows and orphans
 – Etc.
Penalty Function

- Pen(i, j) – penalty of starting a line at position i, and ending at position j

Optimal line breaking and hyphenation is computed with dynamic programming

- Key technical idea
 - Number the breaks between words/syllables
String approximation

• Given a string S, and a library of strings B = \{b_1, \ldots b_m\}, construct an approximation of the string S by using copies of strings in B.

\[B = \{abab, bbbaaa, cccbb, ccaacc\} \]
\[S = abacccbbaaabbcccbbcccaabab \]
Formal Model

- Strings from B assigned to non-overlapping positions of S
- Strings from B may be used multiple times
- Cost of δ for unmatched character in S
- Cost of γ for mismatched character in S
 - MisMatch(i, j) – number of mismatched characters of b_j, when aligned starting with position i in s.
Design a Dynamic Programming Algorithm for String Approximation

• Compute Opt[1], Opt[2], . . . , Opt[n]
• What is Opt[k]?

Target string $S = s_1s_2...s_n$
Library of strings $B = \{b_1,...,b_m\}$
$\text{Mismatch}(i,j) =$ number of mismatched characters with b_j when aligned starting at position i of S.
Opt[k] = fun(Opt[0],...,Opt[k-1])

- How is the solution determined from subproblems?

Target string $S = s_1s_2...s_n$
Library of strings $B = \{b_1,...,b_m\}$
$\text{MisMatch}(i,j) = \text{number of mismatched characters with } b_j \text{ when aligned starting at position } i \text{ of } S.$
Solution

for $i := 1$ to n

\[\text{Opt}[k] = \text{Opt}[k-1] + \delta; \]

for $j := 1$ to $|B|$

\[p = i - \text{len}(b_j); \]

\[\text{Opt}[k] = \min(\text{Opt}[k], \text{Opt}[p-1] + \gamma \text{MisMatch}(p, j)); \]