Announcements

• Reading
 – For today, sections 4.5, 4.7, 4.8, 5.1, 5.2

Highlights from last lecture

• Greedy Algorithms
• Dijkstra’s Algorithm

Today

• Minimum spanning trees
• Applications of Minimum Spanning trees
• Huffman codes
• Homework solutions
• Recurrences

Minimum Spanning Tree

• Introduce Problem
• Demonstrate three different greedy algorithms
• Provide proofs that the algorithms work
Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest outgoing edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect the graph

Greedy Algorithm 1
Prim’s Algorithm

- Extend a tree by including the cheapest outgoing edge

Greedy Algorithm 2
Kruskal’s Algorithm

- Add the cheapest edge that joins disjoint components

Greedy Algorithm 3
Reverse-Delete Algorithm

- Delete the most expensive edge that does not disconnect the graph

Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct

Edge inclusion lemma

- Let S be a subset of V, and suppose e = (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G
 - Or equivalently, if e is not in T, then T is not a minimum spanning tree
Proof

• Suppose T is a spanning tree that does not contain e
• Add e to T, this creates a cycle
• The cycle must have some edge $e_i = (u_i, v_i)$ with u_i in S and v_i in $V - S$

$T_1 = T - \{e_i\} + \{e\}$ is a spanning tree with lower cost

• Hence, T is not a minimum spanning tree

Optimality Proofs

• Prim’s Algorithm computes a MST
• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and $V - S$ for some set S.

Prim’s Algorithm

$S = \{\}; \quad T = \{\};$
while $S \neq V$

choose the minimum cost edge $e = (u, v)$, with u in S, and v in $V - S$
add e to T
add v to S

Prove Prim’s algorithm computes an MST

• Show an edge e is in the MST when it is added to T

Dijkstra’s Algorithm for Minimum Spanning Trees

$S = \{\}; \quad d[u] = 0; \quad d[v] = \infty \text{ for } v \neq s$
While $S \neq V$

Choose v in $V - S$ with minimum $d[v]$
Add v to S
For each w in the neighborhood of v

d[w] = min(d[w], c(v, w))

Kruskal’s Algorithm

Let $C = \{(v_1), \{v_2\}, \ldots, \{v_n\}\}; \quad T = \{\}$
while $|C| > 1$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C
Replace C_i and C_j by $C_i \cup C_j$
Add e to T
Prove Kruskal’s algorithm computes an MST
• Show an edge e is in the MST when it is added to T

Reverse-Delete Algorithm
• Lemma: The most expensive edge on a cycle is never in a minimum spanning tree

Dealing with the assumption of no equal weight edges
• Force the edge weights to be distinct
 – Add small quantities to the weights
 – Give a tie breaking rule for equal weight edges

Application: Clustering
• Given a collection of points in an r-dimensional space, and an integer K, divide the points into K sets that are closest together

Distance clustering
• Divide the data set into K subsets to maximize the distance between any pair of sets
 – $\text{dist}(S_1, S_2) = \min \{ \text{dist}(x, y) \mid x \in S_1, y \in S_2 \}$

Divide into 2 clusters
Distance Clustering Algorithm

Let $C = \{(v_1), (v_2), \ldots, (v_n)\}; \ T = \{\}$

while $|C| > K$

1. Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

2. Replace C_i and C_j by $C_i \cup C_j$

K-clustering

Huffman Codes

- Given a set of symbols of known frequency, encode in binary to minimize the average length of a message

$S = \{a, b, c, d\}; \ f(a) = .4, f(b) = .3, f(c) = .2, f(d) = .1$

Prefix codes

- A code is a prefix code, if there is no pair of code words X and Y, where X is a prefix of Y
- A prefix code can be decoded with a left to right scan
- A binary prefix code can be represented as a binary tree
Optimal prefix code
- Given a set of symbols with frequencies for the symbols, design a prefix code with minimum average length
- \(\text{ABL}(\text{Code}) \): Average Bits per Letter

Properties of optimal codes
- The tree for an optimal code is full
- If \(f(x) \leq f(y) \) then \(\text{depth}(x) \geq \text{depth}(y) \)
- The two nodes of lowest frequency are at the same level
- There is an optimal code where the two lowest frequency words are siblings

Huffman Algorithm
- Pick the two lowest frequency items
- Replace with a new item with there combined frequencies
- Repeat until done

Correctness proof (sketch)
- Let \(y, z \) be the lowest frequency letters that are replaced by a letter \(w \)
- Let \(T \) be the tree constructed by the Huffman algorithm, and \(T' \) be the tree constructed by the Huffman algorithm when \(y, z \) are replaced by \(w \)
 - \(\text{ABL}(T') = \text{ABL}(T) - f(w) \)

Correctness proof (sketch)
- Proof by induction
- Base case, \(n = 2 \)
- Suppose Huffman algorithm is correct for \(n \) symbols
- Consider an \(n+1 \) symbol alphabet . . .

Homework problems
Exercise 8, Page 109

Prove that for any c, there is a graph G such that $\text{Diag}(G) \geq c \text{APD}(G)$.

Exercise 12, Page 112

- Given info of the form P_i died before P_j born and P_i and P_j overlapped, determine if the data is internally consistent.

Programming Problem

- Random out degree one graph

Question:
- What is the cycle structure as N gets large?
- How many cycles?
- What is the cycle length?

Topological Sort Approach

- Run topological sort
 - Determine cycles
 - Order vertices on branches
- Label vertices on the cycles
- Label vertices on branches computing cycle weight

Pointer chasing algorithm

- Label vertices with the number of their cycle
- Pick a vertex, follow chain of pointers
 - Until a labeled vertex is reached
 - Until a new cycle is discovered
- Follow chain of vertices a second time to set labels
The code ...

```c
void MarkCycle(int v, CycleStructure cycles, bool[] mark, sbyte[] cycle) {
    if (mark[v] == true) return;
    int y = v;
    do {
        x = y;
        y = next[x];
        mark[x] = true;
    } while (mark[y] == false);
    int cycleID;
    if (cycle[y] == -1) {
        cycleID = cycles.AddCycle();
        for (int a = y; a != x; a = next[a]) {
            cycle[a] = (sbyte) cycleID;
            cycles.AddCycleVertex(cycleID);
        }
        cycle[x] = (sbyte) cycleID;
        cycles.AddCycleVertex(cycleID);
    } else {
        cycleID = cycle[y];
        for (int a = v; cycle[a] == -1; a = next[a]) {
            cycle[a] = (sbyte) cycleID;
            cycles.AddBranchVertex(cycleID);
        }
    }
}
```

Results from Random Graphs

What is the length of the longest cycle?

How many cycles?

Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
 - Counting Inversions (5.3)
 - Closest Pair (5.4)
 - Multiplication (5.5)
 - FFT (5.6)

Array Mergesort(Array a){
 n = a.Length;
 if (n <= 1)
 return a;
 b = Mergesort(a[0 .. n/2]);
 c = Mergesort(a[n/2+1 .. n-1]);
 return Merge(b, c);
}

Algorithm Analysis

- Cost of Merge
- Cost of Mergesort
T(n) ≤ 2T(n/2) + cn; T(1) ≤ c;

Recurrence Analysis

• Solution methods
 – Unrolling recurrence
 – Guess and verify
 – Plugging in to a "Master Theorem"

Unrolling the recurrence

Substitution

Prove T(n) ≤ cn (log₂n + 1) for n ≥ 1

Induction:
Base Case:

Induction Hypothesis:

A better mergesort (?)

• Divide into 3 subarrays and recursively sort
• Apply 3-way merge

Unroll recurrence for T(n) = 3T(n/3) + dn
Recurrence Examples

- $T(n) = 2T(n/2) + cn$
 - $O(n \log n)$
- $T(n) = T(n/2) + cn$
 - $O(n)$

More useful facts:
- $\log_k n = \log_2 n / \log_2 k$
- $k \log n = n \log k$

Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>u</td>
<td>c</td>
</tr>
</tbody>
</table>

- $r = ae + bf$
- $s = ag + bh$
- $t = ce + df$
- $u = cg + dh$

A $N \times N$ matrix can be viewed as a 2 x 2 matrix with entries that are $(N/2) \times (N/2)$ matrices.
The recursive matrix multiplication algorithm recursively multiplies the $(N/2) \times (N/2)$ matrices and combines them using the equations for multiplying 2 x 2 matrices.

What is the run time for the recursive Matrix Multiplication Algorithm?

- Recurrence:
 - $T(n) = 4T(n/2) + cn$
Recurrences
- Three basic behaviors
 - Dominated by initial case
 - Dominated by base case
 - All cases equal – we care about the depth

What you really need to know about recurrences
- Work per level changes geometrically with the level
 - Geometrically increasing (x > 1)
 - The bottom level wins
 - Geometrically decreasing (x < 1)
 - The top level wins
 - Balanced (x = 1)
 - Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)
- \(T(n) = n + 5T(n/8) \)
- \(T(n) = n + 9T(n/8) \)
- \(T(n) = n^2 + 4T(n/2) \)
- \(T(n) = n^3 + 7T(n/2) \)
- \(T(n) = n^{1/2} + 3T(n/4) \)

Strassen’s Algorithm
Multiply 2 x 2 Matrices:
\[
\begin{pmatrix}
 r & s \\
 t & u
\end{pmatrix} \begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix} = \begin{pmatrix}
 e & g \\
 f & h
\end{pmatrix}
\]

Where:
- \(p_1 = (b + d)(f + g) \)
- \(p_2 = (c + d)e \)
- \(p_3 = a(g - h) \)
- \(p_4 = d(f - e) \)
- \(p_5 = (a - b)h \)
- \(p_6 = (c - d)(e + g) \)
- \(p_7 = (b - d)(f + h) \)
Recurrence for Strassen’s Algorithms

- $T(n) = 7T(n/2) + cn^2$
- What is the runtime?