Announcements

• Reading
 – For today, sections 4.5, 4.7, 4.8, 5.1, 5.2
Highlights from last lecture

- Greedy Algorithms
- Dijkstra’s Algorithm
Today

- Minimum spanning trees
- Applications of Minimum Spanning trees
- Huffman codes
- Homework solutions
- Recurrences
Minimum Spanning Tree

- Introduce Problem
- Demonstrate three different greedy algorithms
- Provide proofs that the algorithms work
Minimum Spanning Tree

Undirected Graph
Edges Weights
Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest outgoing edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect the graph
Greedy Algorithm 1
Prim’s Algorithm

- Extend a tree by including the cheapest outgoing edge

Construct the MST with Prim’s algorithm starting from vertex a
Label the edges in order of insertion
Greedy Algorithm 3
Reverse-Delete Algorithm

- Delete the most expensive edge that does not disconnect the graph

Construct the MST with the reverse-delete algorithm
Label the edges in order of removal
Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct
Edge inclusion lemma

- Let S be a subset of V, and suppose $e = (u, v)$ is the minimum cost edge of E, with u in S and v in $V - S$
- e is in every minimum spanning tree of G
 - Or equivalently, if e is not in T, then T is not a minimum spanning tree
Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge $e_1 = (u_1, v_1)$ with u_1 in S and v_1 in $V-S$

$$T_1 = T - \{e_1\} + \{e\}$$ is a spanning tree with lower cost

Hence, T is not a minimum spanning tree
Optimality Proofs

• Prim’s Algorithm computes a MST
• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.
Prim’s Algorithm

\[S = \{ \}; \quad T = \{ \}; \]
\[\text{while } S \neq V \]

choose the minimum cost edge \
\[e = (u,v), \text{ with } u \in S, \text{ and } v \in V - S \]
add \(e \) to \(T \)
add \(v \) to \(S \)
Prove Prim’s algorithm computes an MST

- Show an edge e is in the MST when it is added to T
Kruskal’s Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}$; $T = \{\}$

while $|C| > 1$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i \cup C_j$

Add e to T

Sort the edges by weight

Complexity - $O(m \log m)$
Prove Kruskal’s algorithm computes an MST

- Show an edge e is in the MST when it is added to T
Reverse-Delete Algorithm

- Lemma: The most expensive edge on a cycle is never in a minimum spanning tree.
Dealing with the assumption of no equal weight edges

- Force the edge weights to be distinct
 - Add small quantities to the weights
 - Give a tie breaking rule for equal weight edges
Application: Clustering

- Given a collection of points in an r-dimensional space, and an integer K, divide the points into K sets that are closest together
Distance clustering

- Divide the data set into K subsets to maximize the distance between any pair of sets
 \[\text{dist} (S_1, S_2) = \min \{ \text{dist}(x, y) \mid x \text{ in } S_1, \ y \text{ in } S_2 \} \]
Divide into 2 clusters
Divide into 3 clusters
Divide into 4 clusters
Distance Clustering Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}$; $T = \{\}$

while $|C| > K$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i \cup C_j$
K-clustering
Huffman Codes

- Given a set of symbols of known frequency, encode in binary to minimize the average length of a message

\[S = \{a, b, c, d\}, \; f(a) = .4, \; f(b) = .3, \; f(c) = .2, \; f(d) = .1 \]

\[\sum_{c} \text{len}(c) \cdot f(c) = \text{ABL} \]
Prefix codes

- A code is a prefix code, if there is no pair of code words X and Y, where X is a prefix of Y
- A prefix code can be decoded with a left to right scan
- A binary prefix code can be represented as a binary tree
Optimal prefix code

- Given a set of symbols with frequencies for the symbols, design a prefix code with minimum average length
- ABL(Code): Average Bits per Letter
Properties of optimal codes

- The tree for an optimal code is full.
- If $f(x) \leq f(y)$ then $\text{depth}(x) \geq \text{depth}(y)$.
- The two nodes of lowest frequency are at the same level.
- There is an optimal code where the two lowest frequency words are siblings.
Huffman Algorithm

- Pick the two lowest frequency items
- Replace with a new item with their combined frequencies
- Repeat until done
Correctness proof (sketch)

- Let y, z be the lowest frequency letters that are replaced by a letter w
- Let T be the tree constructed by the Huffman algorithm, and T' be the tree constructed by the Huffman algorithm when y, z are replaced by w
 - $ABL(T') = ABL(T) - f(w)$
Correctness proof (sketch)

- Proof by induction
- Base case, $n = 2$
- Suppose Huffman algorithm is correct for n symbols
- Consider an $n+1$ symbol alphabet . . .

Huffman replaces y, z by ω

Complements T' - optimal.

Tree T

$$ABL(T) = ABL(T') + f_\omega$$
Homework problems
Exercise 8, Page 109

Prove that for any c, there is a graph G such that $\text{Diag}(G) \geq c \text{ APD}(G)$

$K = N^{1/2}$

Sum of Distances $\leq 2N^2 + N^{3/2}$

Average ≤ 3
Exercise 12, Page 112

- Given info of the form P_i died before P_j born and P_i and P_j overlapped, determine if the data is internally consistent.

A died before B
B died before C
A and C lived at the same time

Run Topological Sort
Programming Problem
Random out degree one graph

Question:
What is the cycle structure as N gets large?
How many cycles?
What is the cycle length?
Topological Sort Approach

- Run topological sort
 - Determine cycles
 - Order vertices on branches
- Label vertices on the cycles
- Label vertices on branches computing cycle weight
Pointer chasing algorithm

- Label vertices with the number of their cycle
- Pick a vertex, follow chain of pointers
 - Until a labeled vertex is reached
 - Until a new cycle is discovered
- Follow chain of vertices a second time to set labels
void MarkCycle(int v,
 CycleStructure cycles,
 bool[] mark,
 sbyte[] cycle) {
 if (mark[v] == true)
 return;

 int y = v;
 int x;
 do {
 x = y;
 y = next[x];
 mark[x] = true;
 } while (mark[y] == false);

 int cycleID;
 if (cycle[y] == -1) {
 cycleID = cycles.AddCycle();
 for (int a = y; a != x; a = next[a]) {
 cycle[a] = (sbyte) cycleID;
 cycles.AddCycleVertex(cycleID);
 }
 cycle[x] = (sbyte) cycleID;
 cycles.AddCycleVertex(cycleID);
 } else
 cycleID = cycle[y];

 for (int a = v; cycle[a] == -1; a = next[a]) {
 cycle[a] = (sbyte) cycleID;
 cycles.AddBranchVertex(cycleID);
 }
}
Results from Random Graphs

What is the length of the longest cycle? \sqrt{n}

How many cycles?
Recurrences
Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
 - Counting Inversions (5.3)
 - Closest Pair (5.4)
 - Multiplication (5.5)
 - FFT (5.6)
Array Mergesort(Array a) {
 n = a.Length;
 if (n <= 1)
 return a;
 b = Mergesort(a[0 .. n/2]);
 c = Mergesort(a[n/2+1 .. n-1]);
 return Merge(b, c);
}

$O(n)$
Algorithm Analysis

- Cost of Merge: $O(n)$
- Cost of Mergesort: 4 calls to MS of size $n/2$
\[T(n) \leq 2T(n/2) + cn; \quad T(1) \leq c; \]
Recurrence Analysis

- Solution methods
 - Unrolling recurrence
 - Guess and verify
 - Plugging in to a "Master Theorem"
Unrolling the recurrence

\[T(n) = 2T\left(\frac{n}{2}\right) + cn \]

Work per level
\[\frac{cn}{c_n} \times \text{# levels} \]

\[\frac{c_n}{2} + \frac{c_n}{2} = c_n \]

\[4 \cdot \frac{n}{4} = c_n \]

\[8 \cdot \frac{n}{8} = c_n \]

\[cn \cdot \log n \]
Substitution

Prove $T(n) \leq cn (\log_2 n + 1)$ for $n \geq 1$

Induction:
Base Case:
Assume $T(n/2) \leq c \frac{n}{2} (\log_2 \frac{n}{2} + 1)$

Induction Hypothesis:

$T(n) = 2T(n/2) + cn$

$\leq 2c \frac{n}{2} (\log_2 \frac{n}{2} + 1) + cn$

$= cn \left[\log_2 n - 1 + 1 \right] + cn$

$= cn (\log_2 n + 1)$
A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

\[T(n) = 3T\left(\frac{n}{3}\right) + d\log n \]
Unroll recurrence for
\[T(n) = 3T(n/3) + dn \]
Recurrence Examples

- \(T(n) = 2 \cdot T(n/2) + cn \)
 - \(O(n \log n) \)
- \(T(n) = T(n/2) + cn \)
 - \(O(n) \)

More useful facts:
- \(\log_k n = \frac{\log_2 n}{\log_2 k} \)
- \(k \log n = n \log k \)
$T(n) = aT(n/b) + f(n)$
Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:
\[
\begin{vmatrix}
 r & s \\
 t & u
\end{vmatrix}
= \begin{vmatrix}
 a & b \\
 c & d
\end{vmatrix}
\begin{vmatrix}
 e & g \\
 f & h
\end{vmatrix}
\]

- \(r = ae + bf \)
- \(s = ag + bh \)
- \(t = ce + df \)
- \(u = cg + dh \)

A \(N \times N \) matrix can be viewed as a 2 x 2 matrix with entries that are \((N/2) \times (N/2) \) matrices.

The recursive matrix multiplication algorithm recursively multiplies the \((N/2) \times (N/2) \) matrices and combines them using the equations for multiplying 2 x 2 matrices.

\[
\begin{bmatrix}
 \frac{N}{2} \\
 N
\end{bmatrix}
\begin{bmatrix}
 \frac{N}{2} \\
 N
\end{bmatrix}
\]
Recursive Matrix Multiplication

- How many recursive calls are made at each level?

- How much work is done in combining the results?

- What is the recurrence?

\[T(n) = 8 T\left(\frac{n}{2}\right) + c n^2 \]

\[T(1) = c \]
What is the run time for the recursive Matrix Multiplication Algorithm?

- Recurrence:

\[T(n) = 8 \cdot T \left(\frac{n}{2} \right) + n^2 \]
\[T(n) = 4T(n/2) + cn \]
\[T(n) = 2T\left(\frac{n}{2}\right) + n^2 \]
\[T(n) = 2T(n/2) + n^{1/2} \]
Recurrences

• Three basic behaviors
 – Dominated by initial case
 – Dominated by base case
 – All cases equal – we care about the depth
What you really need to know about recurrences

• Work per level changes geometrically with the level
• Geometrically increasing \((x > 1)\)
 – The bottom level wins
• Geometrically decreasing \((x < 1)\)
 – The top level wins
• Balanced \((x = 1)\)
 – Equal contribution
Classify the following recurrences (Increasing, Decreasing, Balanced)

- $T(n) = n + 5T(n/8)$
- $T(n) = n + 9T(n/8)$
- $T(n) = n^2 + 4T(n/2)$
- $T(n) = n^3 + 7T(n/2)$
- $T(n) = n^{1/2} + 3T(n/4)$
Strassen’s Algorithm

\[O(n^{2.83}) \]

Multiply 2 x 2 Matrices:

\[
\begin{vmatrix}
 r & s \\
 t & u
\end{vmatrix} =
\begin{vmatrix}
 a & b \\
 c & d
\end{vmatrix}
\begin{vmatrix}
 e & g \\
 f & h
\end{vmatrix}
\]

Where:

\[
p_1 = (b + d)(f + g)
\]
\[
p_2 = (c + d)e
\]
\[
p_3 = a(g - h)
\]
\[
p_4 = d(f - e)
\]
\[
p_5 = (a - b)h
\]
\[
p_6 = (c - d)(e + g)
\]
\[
p_7 = (b - d)(f + h)
\]

\[
r = p_1 + p_4 - p_5 + p_7
\]
\[
s = p_3 + p_5
\]
\[
t = p_2 + p_5
\]
\[
u = p_1 + p_3 - p_2 + p_7
\]