Announcements

• Reading
 – For today, sections 4.5, 4.7, 4.8, 5.1, 5.2
Highlights from last lecture

- Greedy Algorithms
- Dijkstra’s Algorithm
Today

• Minimum spanning trees
• Applications of Minimum Spanning trees
• Huffman codes
• Homework solutions
• Recurrences
Minimum Spanning Tree

• Introduce Problem
• Demonstrate three different greedy algorithms
• Provide proofs that the algorithms work
Minimum Spanning Tree
Greedy Algorithms for Minimum Spanning Tree

- **[Prim]** Extend a tree by including the cheapest outgoing edge
- **[Kruskal]** Add the cheapest edge that joins disjoint components
- **[ReverseDelete]** Delete the most expensive edge that does not disconnect the graph
Greedy Algorithm 1

Prim’s Algorithm

• Extend a tree by including the cheapest outgoing edge

Construct the MST with Prim’s algorithm starting from vertex a
Label the edges in order of insertion
Greedy Algorithm 2
Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint components

Construct the MST with Kruskal’s algorithm
Label the edges in order of insertion
Greedy Algorithm 3
Reverse-Delete Algorithm

• Delete the most expensive edge that does not disconnect the graph

Construct the MST with the reverse-delete algorithm
Label the edges in order of removal
Why do the greedy algorithms work?

• For simplicity, assume all edge costs are distinct
Edge inclusion lemma

• Let S be a subset of V, and suppose $e = (u, v)$ is the minimum cost edge of E, with u in S and v in $V - S$
• e is in every minimum spanning tree of G
 – Or equivalently, if e is not in T, then T is not a minimum spanning tree
Proof

• Suppose T is a spanning tree that does not contain e
• Add e to T, this creates a cycle
• The cycle must have some edge $e_1 = (u_1, v_1)$ with u_1 in S and v_1 in $V-S$

$T_1 = T - \{e_1\} + \{e\}$ is a spanning tree with lower cost
• Hence, T is not a minimum spanning tree
Optimality Proofs

• Prim’s Algorithm computes a MST
• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and $V-S$ for some set S.
Prim’s Algorithm

$S = \{ \}; \quad T = \{ \}$;

while $S \neq V$

choose the minimum cost edge $e = (u,v)$, with u in S, and v in $V-S$

add e to T

add v to S
Prove Prim’s algorithm computes an MST

• Show an edge e is in the MST when it is added to T
Dijkstra’s Algorithm for Minimum Spanning Trees

S = {}; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]
Add v to S
For each w in the neighborhood of v

d[w] = min(d[w], c(v, w))
Kruskal’s Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}$; $T = \{\}$

while $|C| > 1$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i \cup C_j$

Add e to T
Prove Kruskal’s algorithm computes an MST

• Show an edge e is in the MST when it is added to T
Reverse-Delete Algorithm

- Lemma: The most expensive edge on a cycle is never in a minimum spanning tree
Dealing with the assumption of no equal weight edges

• Force the edge weights to be distinct
 – Add small quantities to the weights
 – Give a tie breaking rule for equal weight edges
Application: Clustering

- Given a collection of points in an r-dimensional space, and an integer K, divide the points into K sets that are closest together
Distance clustering

- Divide the data set into K subsets to maximize the distance between any pair of sets
 \[\text{dist} (S_1, S_2) = \min \{ \text{dist}(x, y) \mid x \in S_1, y \in S_2 \} \]
Divide into 2 clusters
Divide into 3 clusters
Divide into 4 clusters
Distance Clustering Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}$; $T = \{\}$

while $|C| > K$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i \cup C_j$
K-clustering
Huffman Codes

• Given a set of symbols of known frequency, encode in binary to minimize the average length of a message

\[S = \{a, b, c, d\}, \quad f(a) = .4, \quad f(b) = .3, \quad f(c) = .2, \quad f(d) = .1 \]
Prefix codes

• A code is a prefix code, if there is no pair of code words X and Y, where X is a prefix of Y
• A prefix code can be decoded with a left to right scan
• A binary prefix code can be represented as a binary tree
Optimal prefix code

• Given a set of symbols with frequencies for the symbols, design a prefix code with minimum average length

• ABL(Code): Average Bits per Letter
Properties of optimal codes

• The tree for an optimal code is full
• If \(f(x) \leq f(y) \) then \(\text{depth}(x) \geq \text{depth}(y) \)
• The two nodes of lowest frequency are at the same level
• There is an optimal code where the two lowest frequency words are siblings
Huffman Algorithm

- Pick the two lowest frequency items
- Replace with a new item with there combined frequencies
- Repeat until done
Correctness proof (sketch)

• Let y, z be the lowest frequency letters that are replaced by a letter w

• Let T be the tree constructed by the Huffman algorithm, and T' be the tree constructed by the Huffman algorithm when y, z are replaced by w

 - $\text{ABL}(T') = \text{ABL}(T) - f(w)$
Correctness proof (sketch)

• Proof by induction
• Base case, $n = 2$
• Suppose Huffman algorithm is correct for n symbols
• Consider an $n+1$ symbol alphabet . . .
Homework problems
Exercise 8, Page 109

Prove that for any c, there is a graph G such that $\text{Diag}(G) \geq c \text{ APD}(G)$
Exercise 12, Page 112

• Given info of the form P_i died before P_j born and P_i and P_j overlapped, determine if the data is internally consistent
Programming Problem
Random out degree one graph

Question:
What is the cycle structure as N gets large?
How many cycles?
What is the cycle length?
Topological Sort Approach

• Run topological sort
 – Determine cycles
 – Order vertices on branches
• Label vertices on the cycles
• Label vertices on branches computing cycle weight
Pointer chasing algorithm

- Label vertices with the number of their cycle
- Pick a vertex, follow chain of pointers
 - Until a labeled vertex is reached
 - Until a new cycle is discovered
- Follow chain of vertices a second time to set labels
The code . . .

```csharp
void MarkCycle(int v,
               CycleStructure cycles,
               bool[] mark,
               sbyte[] cycle) {
    if (mark[v] == true)
        return;

    int y = v;
    int x;
    do {
        x = y;
        y = next[x];
        mark[x] = true;
    } while (mark[y] == false);
}

int cycleID;
if (cycle[y] == -1) {
    cycleID = cycles.AddCycle();
    for (int a = y; a != x; a = next[a]) {
        cycle[a] = (sbyte) cycleID;
        cycles.AddCycleVertex(cycleID);
    }
    cycle[x] = (sbyte) cycleID;
    cycles.AddCycleVertex(cycleID);
} else
    cycleID = cycle[y];

for (int a = v; cycle[a] == -1; a = next[a]) {
    cycle[a] = (sbyte) cycleID;
    cycles.AddBranchVertex(cycleID);
}
```
Results from Random Graphs

What is the length of the longest cycle?

How many cycles?
Recurrences
Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
 - Counting Inversions (5.3)
 - Closest Pair (5.4)
 - Multiplication (5.5)
 - FFT (5.6)
Divide and Conquer

Array Mergesort(Array a){
 n = a.Length;
 if (n <= 1)
 return a;
 b = Mergesort(a[0 .. n/2]);
 c = Mergesort(a[n/2+1 .. n-1]);
 return Merge(b, c);
}

Algorithm Analysis

• Cost of Merge
• Cost of Mergesort
\[T(n) \leq 2T(n/2) + cn; \quad T(1) \leq c; \]
Recurrence Analysis

• Solution methods
 – Unrolling recurrence
 – Guess and verify
 – Plugging in to a “Master Theorem”
Unrolling the recurrence
Substitution

Prove $T(n) \leq cn (\log_2 n + 1)$ for $n \geq 1$

Induction:
Base Case:

Induction Hypothesis:
A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

What is the recurrence?
Unroll recurrence for
\[T(n) = 3T(n/3) + dn \]
Recurrence Examples

• $T(n) = 2 \ T(n/2) + cn$
 – $O(n \log n)$

• $T(n) = T(n/2) + cn$
 – $O(n)$

• More useful facts:
 – $\log_k n = \log_2 n / \log_2 k$
 – $k^{\log n} = n^{\log k}$
\[T(n) = aT(n/b) + f(n) \]
Recursive Matrix Multiplication

Multiply 2 x 2 Matrices:
\[
\begin{bmatrix}
 r & s \\
 t & u
\end{bmatrix}
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 e & g \\
 f & h
\end{bmatrix}
\]

\[
\begin{align*}
 r &= ae + bf \\
 s &= ag + bh \\
 t &= ce + df \\
 u &= cg + dh
\end{align*}
\]

A N x N matrix can be viewed as a 2 x 2 matrix with entries that are (N/2) x (N/2) matrices.

The recursive matrix multiplication algorithm recursively multiplies the (N/2) x (N/2) matrices and combines them using the equations for multiplying 2 x 2 matrices.
Recursive Matrix Multiplication

• How many recursive calls are made at each level?

• How much work in combining the results?

• What is the recurrence?
What is the run time for the recursive Matrix Multiplication Algorithm?

• Recurrence:
$T(n) = 4T(n/2) + cn$
\[T(n) = 2T(n/2) + n^2 \]
\[T(n) = 2T(n/2) + n^{1/2} \]
Recurrences

• Three basic behaviors
 – Dominated by initial case
 – Dominated by base case
 – All cases equal – we care about the depth
What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing ($x > 1$)
 - The bottom level wins
- Geometrically decreasing ($x < 1$)
 - The top level wins
- Balanced ($x = 1$)
 - Equal contribution
Classify the following recurrences (Increasing, Decreasing, Balanced)

• \(T(n) = n + 5T(n/8) \)

• \(T(n) = n + 9T(n/8) \)

• \(T(n) = n^2 + 4T(n/2) \)

• \(T(n) = n^3 + 7T(n/2) \)

• \(T(n) = n^{1/2} + 3T(n/4) \)
Strassen’s Algorithm

Multiply 2 x 2 Matrices:

\[
\begin{pmatrix}
 r & s \\
 t & u
\end{pmatrix}
=
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
\begin{pmatrix}
 e & g \\
 f & h
\end{pmatrix}
\]

\[
\begin{align*}
 r &= p_1 + p_4 - p_5 + p_7 \\
 s &= p_3 + p_5 \\
 t &= p_2 + p_5 \\
 u &= p_1 + p_3 - p_2 + p_7
\end{align*}
\]

Where:

\[
\begin{align*}
 p_1 &= (b + d)(f + g) \\
 p_2 &= (c + d)e \\
 p_3 &= a(g - h) \\
 p_4 &= d(f - e) \\
 p_5 &= (a - b)h \\
 p_6 &= (c - d)(e + g) \\
 p_7 &= (b - d)(f + h)
\end{align*}
\]
Recurrence for Strassen’s Algorithms

- \(T(n) = 7 \ T(n/2) + cn^2 \)
- What is the runtime?