Announcements

• Reading
 – Chapter 2.1, 2.2
 – Chapter 3
 – Chapter 4

• Homework Guidelines
 – Prove that your algorithm works
 • A proof is a “convincing argument”
 – Give the run time for your algorithm
 • Justify that the algorithm satisfies the runtime bound
 – You may lose points for style
Announcements

• Monday, January 21 is a holiday
 – No class
• Makeup lecture, Thursday, January 17, 5:00 pm – 6:30 pm
 – UW and Microsoft
 – View off line if you cannot attend
• Homework 2 is due January 21
 – Electronic turn in only
What does it mean for an algorithm to be efficient?
Definitions of efficiency

- Fast in practice

- Qualitatively better worst case performance than a brute force algorithm
Polynomial time efficiency

• An algorithm is efficient if it has a polynomial run time

• Run time as a function of problem size
 – Run time: count number of instructions executed on an underlying model of computation
 – $T(n)$: maximum run time for all problems of size at most n
Polynomial Time

- Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)
Why Polynomial Time?

• Generally, polynomial time seems to capture the algorithms which are efficient in practice

• The class of polynomial time algorithms has many good, mathematical properties
Polynomial vs. Exponential Complexity

- Suppose you have an algorithm which takes $n!$ steps on a problem of size n
- If the algorithm takes one second for a problem of size 10, estimate the run time for the following problems sizes:

 12 14 16 18 20
Ignoring constant factors

- Express run time as $O(f(n))$
- Emphasize algorithms with slower growth rates
- Fundamental idea in the study of algorithms
- Basis of Tarjan/Hopcroft Turing Award
Why ignore constant factors?

• Constant factors are arbitrary
 – Depend on the implementation
 – Depend on the details of the model

• Determining the constant factors is tedious and provides little insight
Why emphasize growth rates?

- The algorithm with the lower growth rate will be faster for all but a finite number of cases
- Performance is most important for larger problem size
- As memory prices continue to fall, bigger problem sizes become feasible
- Improving growth rate often requires new techniques
Formalizing growth rates

• $T(n)$ is $O(f(n))$ \([T : \mathbb{Z}^+ \rightarrow \mathbb{R}^+]\]
 – If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
 – Exist c, n_0, such that for $n > n_0$, $T(n) < c f(n)$

• $T(n)$ is $O(f(n))$ will be written as: $T(n) = O(f(n))$
 – Be careful with this notation
Prove $3n^2 + 5n + 20$ is $O(n^2)$

Let $c = $

Let $n_0 = $

$T(n)$ is $O(f(n))$ if there exist c, n_0, such that for $n > n_0$, $T(n) < c f(n)$
Order the following functions in increasing order by their growth rate

a) \(n \log^4 n \)
b) \(2n^2 + 10n \)
c) \(2^{n/100} \)
d) \(1000n + \log^8 n \)
e) \(n^{100} \)
f) \(3^n \)
g) \(1000 \log^{10} n \)
h) \(n^{1/2} \)
Lower bounds

• $T(n)$ is $\Omega(f(n))$
 – $T(n)$ is at least a constant multiple of $f(n)$
 – There exists an n_0, and $\varepsilon > 0$ such that $T(n) > \varepsilon f(n)$ for all $n > n_0$

• Warning: definitions of Ω vary

• $T(n)$ is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $T(n)$ is $\Omega(f(n))$
Useful Theorems

• If \(\lim (f(n) / g(n)) = c \) for \(c > 0 \) then
 \(f(n) = \Theta(g(n)) \)

• If \(f(n) \) is \(O(g(n)) \) and \(g(n) \) is \(O(h(n)) \) then
 \(f(n) \) is \(O(h(n)) \)

• If \(f(n) \) is \(O(h(n)) \) and \(g(n) \) is \(O(h(n)) \) then
 \(f(n) + g(n) \) is \(O(h(n)) \)
Ordering growth rates

• For $b > 1$ and $x > 0$
 – $\log^b n$ is $O(n^x)$

• For $r > 1$ and $d > 0$
 – n^d is $O(r^n)$
Stable Matching
Reported Results

<table>
<thead>
<tr>
<th>Student</th>
<th>n</th>
<th>M / n</th>
<th>W / n</th>
<th>M / n * W / n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanislav</td>
<td>10,000</td>
<td>9.96</td>
<td>1020</td>
<td>10159</td>
</tr>
<tr>
<td>Andy</td>
<td>4,096</td>
<td>8.77</td>
<td>472</td>
<td>4139</td>
</tr>
<tr>
<td>Boris</td>
<td>5,000</td>
<td>10.06</td>
<td>499</td>
<td>5020</td>
</tr>
<tr>
<td>Huy</td>
<td>10,000</td>
<td>10.68</td>
<td>969</td>
<td>10349</td>
</tr>
<tr>
<td>Hans</td>
<td>10,000</td>
<td>9.59</td>
<td>1046</td>
<td>10031</td>
</tr>
<tr>
<td>Vijayanand</td>
<td>1,000</td>
<td>8.60</td>
<td>114</td>
<td>980</td>
</tr>
<tr>
<td>Robert</td>
<td>20,000</td>
<td>12.40</td>
<td>1698</td>
<td>21055</td>
</tr>
<tr>
<td>Zain</td>
<td>2,825</td>
<td>8.61</td>
<td>331</td>
<td>2850</td>
</tr>
<tr>
<td>Uzair</td>
<td>8,192</td>
<td>9.10</td>
<td>883</td>
<td>8035</td>
</tr>
<tr>
<td>Anand</td>
<td>10,000</td>
<td>9.58</td>
<td>1045</td>
<td>10011</td>
</tr>
</tbody>
</table>
Why is $M/n \sim \log n$?
Why is $W/n \sim n / \log n$?
Graph Theory
Graph Theory

- $G = (V, E)$
 - V – vertices
 - E – edges

- Undirected graphs
 - Edges sets of two vertices \{u, v\}

- Directed graphs
 - Edges ordered pairs (u, v)

- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops
Definitions

• Path: v_1, v_2, \ldots, v_k, with (v_i, v_{i+1}) in E
 – Simple Path
 – Cycle
 – Simple Cycle

• Distance

• Connectivity
 – Undirected
 – Directed (strong connectivity)

• Trees
 – Rooted
 – Unrooted
Graph search

• Find a path from s to t

\[
S = \{s\} \\
\text{While there exists } (u, v) \text{ in } E \text{ with } u \text{ in } S \text{ and } v \text{ not in } S \\
\quad \text{Pred}[v] = u \\
\quad \text{Add } v \text{ to } S \\
\quad \text{if } (v = t) \text{ then path found}
\]
Breadth first search

• Explore vertices in layers
 – s in layer 1
 – Neighbors of s in layer 2
 – Neighbors of layer 2 in layer 3 . . .
Key observation

• All edges go between vertices on the same layer or adjacent layers
Bipartite Graphs

- A graph V is bipartite if V can be partitioned into V_1, V_2 such that all edges go between V_1 and V_2
- A graph is bipartite if it can be two colored
Can this graph be two colored?
Algorithm

• Run BFS
• Color odd layers red, even layers blue
• If no edges between the same layer, the graph is bipartite
• If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite
Theorem: A graph is bipartite if and only if it has no odd cycles.
Lemma 1

• If a graph contains an odd cycle, it is not bipartite
Lemma 2

- If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level
Lemma 3

• If a graph has no odd length cycles, then it is bipartite
Connected Components

- Undirected Graphs
Computing Connected Components in $O(n+m)$ time

- A search algorithm from a vertex v can find all vertices in v’s component
- While there is an unvisited vertex v, search from v to find a new component
Directed Graphs

- A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.
Identify the Strongly Connected Components
Strongly connected components can be found in $O(n+m)$ time

- But it’s tricky!
- Simpler problem: given a vertex v, compute the vertices in v’s scc in $O(n+m)$ time
Topological Sort

• Given a set of tasks with precedence constraints, find a linear order of the tasks
Find a topological order for the following graph
If a graph has a cycle, there is no topological sort

• Consider the first vertex on the cycle in the topological sort
• It must have an incoming edge
Lemma: If a graph is acyclic, it has a vertex with in degree 0

- Proof:
 - Pick a vertex v_1, if it has in-degree 0 then done
 - If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
 - If not, let (v_3, v_2) be an edge . . .
 - If this process continues for more than n steps, we have a repeated vertex, so we have a cycle
Topological Sort Algorithm

While there exists a vertex v with in-degree 0

Output vertex v

Delete the vertex v and all outgoing edges
Details for $O(n+m)$ implementation

• Maintain a list of vertices of in-degree 0
• Each vertex keeps track of its in-degree
• Update in-degrees and list when edges are removed
• m edge removals at $O(1)$ cost each
Random Graph models
Random out degree one graph

Question:
What is the cycle structure as N gets large?
How many cycles?
What is the cycle length?
Greedy Algorithms
Greedy Algorithms

• Solve problems with the simplest possible algorithm
• The hard part: showing that something simple actually works
• Pseudo-definition
 – An algorithm is Greedy if it builds its solution by adding elements one at a time using a simple rule
Scheduling Theory

• **Tasks**
 – Processing requirements, release times, deadlines

• **Processors**

• **Precedence constraints**

• **Objective function**
 – Jobs scheduled, lateness, total execution time
Interval Scheduling

- Tasks occur at fixed times
- Single processor
- Maximize number of tasks completed

 __________ ______ __
 __________ ______ __
 ____ ____ ______

- Tasks \{1, 2, \ldots N\}
- Start and finish times, s(i), f(i)
What is the largest solution?
Greedy Algorithm for Scheduling

Let T be the set of tasks, construct a set of independent tasks I, A is the rule determining the greedy algorithm

$I = \{ \} $

While (T is not empty)

Select a task t from T by a rule A

Add t to I

Remove t and all tasks incompatible with t from T
Simulate the greedy algorithm for each of these heuristics

Schedule earliest starting task

Schedule shortest available task

Schedule task with fewest conflicting tasks
Greedy solution based on earliest finishing time

Example 1

Example 2

Example 3
Theorem: Earliest Finish Algorithm is Optimal

• Key idea: Earliest Finish Algorithm stays ahead

• Let $A = \{i_1, \ldots, i_k\}$ be the set of tasks found by EFA in increasing order of finish times

• Let $B = \{j_1, \ldots, j_m\}$ be the set of tasks found by a different algorithm in increasing order of finish times

• Show that for $r \leq \min(k, m)$, $f(i_r) \leq f(j_r)$
Stay ahead lemma

• A always stays ahead of B, $f(i_r) \leq f(j_r)$
• Induction argument
 – $f(i_1) \leq f(j_1)$
 – If $f(i_{r-1}) \leq f(j_{r-1})$ then $f(i_r) \leq f(j_r)$
Completing the proof

• Let $A = \{i_1, \ldots, i_k\}$ be the set of tasks found by EFA in increasing order of finish times
• Let $O = \{j_1, \ldots, j_m\}$ be the set of tasks found by an optimal algorithm in increasing order of finish times
• If $k < m$, then the Earliest Finish Algorithm stopped before it ran out of tasks
Scheduling all intervals

• Minimize number of processors to schedule all intervals
How many processors are needed for this example?
Prove that you cannot schedule this set of intervals with two processors

_________ _________
______ __________ ______
_____________ ______
_____________ ______
Depth: maximum number of intervals active
Algorithm

- Sort by start times
- Suppose maximum depth is d, create d slots
- Schedule items in increasing order, assign each item to an open slot

- Correctness proof: When we reach an item, we always have an open slot
Scheduling tasks

• Each task has a length t_i and a deadline d_i
• All tasks are available at the start
• One task may be worked on at a time
• All tasks must be completed

• Goal minimize maximum lateness
 – Lateness = $f_i - d_i$ if $f_i \geq d_i$
<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lateness 1</th>
<th>Lateness 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Determine the minimum lateness

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>
Greedy Algorithm

• Earliest deadline first
• Order jobs by deadline

• This algorithm is optimal
Analysis

• Suppose the jobs are ordered by deadlines, \(d_1 \leq d_2 \leq \ldots \leq d_n \)

• A schedule has an *inversion* if job \(j \) is scheduled before \(i \) where \(j > i \)

• The schedule \(A \) computed by the greedy algorithm has no inversions.

• Let \(O \) be the optimal schedule, we want to show that \(A \) has the same maximum lateness as \(O \)
List the inversions

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>3</td>
</tr>
<tr>
<td>a₂</td>
<td>4</td>
</tr>
<tr>
<td>a₃</td>
<td>2</td>
</tr>
<tr>
<td>a₄</td>
<td>5</td>
</tr>
</tbody>
</table>
Lemma: There is an optimal schedule with no idle time

- It doesn’t hurt to start your homework early!

- Note on proof techniques
 - This type of can be important for keeping proofs clean
 - It allows us to make a simplifying assumption for the remainder of the proof
Lemma

- If there is an inversion i, j, there is a pair of adjacent jobs i', j' which form an inversion
Interchange argument

- Suppose there is a pair of jobs i and j, with \(d_i \leq d_j \), and j scheduled immediately before i. Interchanging i and j does not increase the maximum lateness.
Proof by Bubble Sort

Determine maximum lateness
Real Proof

• There is an optimal schedule with no inversions and no idle time.
• Let O be an optimal schedule k inversions, we construct a new optimal schedule with k-1 inversions
• Repeat until we have an optimal schedule with 0 inversions
• This is the solution found by the earliest deadline first algorithm
Result

• Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness
Homework Scheduling

• How is the model unrealistic?
Extensions

• What if the objective is to minimize the sum of the lateness?
 – EDF does not seem to work

• If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete

• What about the case with release times and deadlines where tasks are preemptable?