CSEP 521 Course Introduction

- CSEP 521, Applied Algorithms
 - Monday's, 6:30-9:20 pm
 - CSE 305 and Microsoft Building 99

- Instructor
 - Richard Anderson, anderson@cs.washington.edu
 - Office hours:
 - CSE 582
 - Monday, 4:00-5:00 pm or by appointment

- Teaching Assistant
 - Tanvir Aumi, tanvir@cs.washington.edu
 - Office hours:
 - TBD
Announcements

• It’s on the web.
• Homework due at start of class on Mondays
 - HW 1, Due January 14, 2013
 - It’s on the web

http://www.cs.washington.edu/education/courses/csep521/13wi/
Text book

• Algorithm Design
• Jon Kleinberg, Eva Tardos

• Read Chapters 1 & 2

• Expected coverage:
 - Chapter 1 through 7
Recorded lectures

- This is a distance course, so lectures are recorded and will be available online for later viewing.

- However, low attendance in the distance PMP course is a concern.
 - Various draconian measures are under discussion.

- We will make lectures available.
 - Please attend class, and participate.
 - Participation may be a component of the class grade.
Lecture schedule

- Monday holidays:
 - Monday, January 21, MLK
 - Monday, February 18, President’s day
- Make up lectures will be scheduled, which will be recorded for offline viewing
 - Hopefully, some students will attend, so there is a studio audience
 - First makeup lecture:
 - Thursday, January 17, 5:00-6:30 pm
- Additional makeup lectures to accommodate RJA’s travel schedule
Course Mechanics

- Homework
 - Due Mondays
 - Textbook problems and programming exercises
 - Choice of language
 - Expectation that Algorithmic Code is original
 - Target: 1 week turnaround on grading
 - Late Policy: Two assignments may be turned in up to one week late
- Exams (in class, tentatively)
 - Midterm, Monday, Feb 11 (60 minutes)
 - Final, Monday, March 18, 6:30-8:20 pm
- Approximate grade weighting
 - HW: 50, MT: 15, Final: 35
All of Computer Science is the Study of Algorithms
How to study algorithms

• Zoology
• Mine is faster than yours is
• Algorithmic ideas
 – Where algorithms apply
 – What makes an algorithm work
 – Algorithmic thinking
Introductory Problem: Stable Matching

• Setting:
 – Assign TAs to Instructors
 – Avoid having TAs and Instructors wanting changes
 • E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.
Formal notions

- Perfect matching
- Ranked preference lists
- Stability

\[
\begin{align*}
 m_1 & \leftrightarrow w_1 \\
 m_2 & \leftrightarrow w_2 \\
 m_1 & \in (w_1, w_2) \\
 m_2 & \notin (w_2, \bar{w}_1) \\
 w_1 & : m_1, m_2 \\
 w_2 & : M_2, M_1
\end{align*}
\]
Example (1 of 3)

\[m_1 : w_1 \, w_2 \]
\[m_2 : w_2 \, w_1 \]
\[w_1 : m_1 \, m_2 \]
\[w_2 : m_2 \, m_1 \]
Example (2 of 3)

\[m_1: w_1 \ w_2 \]
\[m_2: w_1 \ w_2 \]
\[w_1: m_1 \ m_2 \]
\[w_2: m_1 \ m_2 \]
Example (3 of 3)

\[m_1 : w_1 \ w_2 \]
\[m_2 : w_2 \ w_1 \]
\[w_1 : m_2 \ m_1 \]
\[w_2 : m_1 \ m_2 \]
Formal Problem

- **Input**
 - Preference lists for m_1, m_2, \ldots, m_n
 - Preference lists for w_1, w_2, \ldots, w_n

- **Output**
 - Perfect matching M satisfying stability property:

 If \((m', w') \in M\) and \((m'', w'') \in M\) then
 \((m' \text{ prefers } w' \text{ to } w'')\) or \((w'' \text{ prefers } m'' \text{ to } m')\)

Idea for an Algorithm

m proposes to w
 If w is unmatched, w accepts
 If w is matched to m₂
 If w prefers m to m₂ w accepts m, dumping m₂
 If w prefers m₂ to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to
Algorithm

Initially all m in M and w in W are free
While there is a free m
 w highest on m’s list that m has not proposed to
 if w is free, then match (m, w)
 else
 suppose (m_2, w) is matched
 if w prefers m to m_2
 unmatch (m_2, w)
 match (m, w)
Example

$w_1: m_2 \; m_3 \; m_1$
$w_2: m_3 \; m_1 \; m_2$
$w_3: m_3 \; m_1 \; m_2$

Diagram: $m_1 \rightarrow w_1 \quad m_1 \rightarrow w_2 \quad m_3 \rightarrow w_3$
Does this work?

- Does it terminate?
- Is the result a stable matching?

- Begin by identifying invariants and measures of progress
 - m’s proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w’s partners get better (have lower w-rank)
Claim: The algorithm stops in at most n^2 steps

At each step, some m advance in its preference list.
When the algorithms halts, every w is matched

Why?

Hence, the algorithm finds a perfect matching
The resulting matching is stable

Suppose

\[(m_1, w_1) \in M, (m_2, w_2) \in M\]

\[m_1\] prefers \[w_2\] to \[w_1\]

How could this happen?
Result

- Simple, $O(n^2)$ algorithm to compute a stable matching
- Corollary
 - A stable matching always exists
A closer look

Stable matchings are not necessarily fair

\[
\begin{align*}
 m_1 &: w_1 \ w_2 \ w_3 \\
 m_2 &: w_2 \ w_3 \ w_1 \\
 m_3 &: w_3 \ w_1 \ w_2 \\
 w_1 &: m_2 \ m_3 \ m_1 \\
 w_2 &: m_3 \ m_1 \ m_2 \\
 w_3 &: m_1 \ m_2 \ m_3
\end{align*}
\]

How many stable matchings can you find?
Algorithm under specified

- Many different ways of picking m’s to propose
- Surprising result
 - All orderings of picking free m’s give the same result

- Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something mores specific
 - Show property of the solution – so it computes a specific stable matching
Proposal Algorithm finds the best possible solution for M

Formalize the notion of best possible solution:

(m, w) is valid if (m, w) is in some stable matching

best(m): the highest ranked w for m such that (m, w) is valid

$S^* = \{(m, \text{best}(m))\}$

Every execution of the proposal algorithm computes S^*
Proof

See the text book – pages 9 – 12

Related result: Proposal algorithm is the worst case for W
Algorithm is the M-optimal algorithm
Proposal algorithms where w’s propose is W-Optimal
Design a configuration for a problem of size 4:

M proposal algorithm:
All m’s get first choice, all w’s get last choice

W proposal algorithm:
All w’s get first choice, all m’s get last choice
But there is a stable second choice

Design a configuration for problem of size 4:

M proposal algorithm:
All m’s get first choice, all w’s get last choice

W proposal algorithm:
All w’s get first choice, all m’s get last choice

There is a stable matching where everyone gets their second choice

\[
\begin{align*}
&\text{m}_1: w_1, w_3, w_4, w_2 \\
&\text{m}_2: w_2, w_4, w_3, w_1 \\
&\text{m}_3: w_3, w_1, w_2, w_4 \\
&\text{m}_4: w_4, w_2, w_1, w_3 \\
&\text{w}_1: m_2, m_3, m_4, m_1 \\
&\text{w}_2: m_1, m_4, m_3, m_2 \\
&\text{w}_3: m_4, m_1, m_2, m_3 \\
&\text{w}_4: m_3, m_2, m_1, m_4
\end{align*}
\]
Suppose there are n m’s, and n w’s

- What is the minimum possible M-rank? \sqrt{n}
- What is the maximum possible M-rank? n^2
- Suppose each m is matched with a random w, what is the expected M-rank?
Random Preferences

Suppose that the preferences are completely random

\[\begin{align*}
m_1: & \ w_8 \ w_3 \ w_1 \ w_5 \ w_9 \ w_2 \ w_4 \ w_6 \ w_7 \ w_{10} \\
m_2: & \ w_7 \ w_{10} \ w_1 \ w_9 \ w_3 \ w_4 \ w_8 \ w_2 \ w_5 \ w_6 \\
& \ldots
\end{align*}\]

\[\begin{align*}
w_1: & \ m_1 \ m_4 \ m_9 \ m_5 \ m_{10} \ m_3 \ m_2 \ m_6 \ m_8 \ m_7 \\
w_2: & \ m_5 \ m_8 \ m_1 \ m_3 \ m_2 \ m_7 \ m_9 \ m_{10} \ m_4 \ m_6 \\
& \ldots
\end{align*}\]

If there are \(n \) \(m \)'s and \(n \) \(w \)'s, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?
What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free
While there is a free m \[\text{Executed at most } n^2 \text{ times}\]
 w highest on m’s list that m has not proposed to
 if w is free, then match (m, w)
 else
 suppose (m_2, w) is matched
 if w prefers m to m_2
 unmatch (m_2, w)
 match (m, w)
O(1) time per iteration

- Find free m
- Find next available w
- If w is matched, determine m_2
- Test if w prefers m to m_2
- Update matching
What does it mean for an algorithm to be efficient?
Key ideas

- Formalizing real world problem
 - Model: graph and preference lists
 - Mechanism: stability condition
- Specification of algorithm with a natural operation
 - Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution
Introduction of five problems

- Show the types of problems we will be considering in the class
- Examples of important types of problems
- Similar looking problems with very different characteristics
- Problems
 - Scheduling
 - Weighted Scheduling
 - Bipartite Matching
 - Maximum Independent Set
 - Competitive Facility Location
What is a problem?

- Instance
- Solution
- Constraints on solution
- Measure of value

Minimum Spanning Tree

Graph + weights on edges
set of edges

Edge form a spanning tree

Sum of the edge costs

Diagram of a graph with labels 1, 2, 3, 4, 5, 6, 7, 8, and edges connecting them. The edge with the lowest weight is highlighted in red.
Problem: Scheduling

• Suppose that you own a banquet hall
• You have a series of requests for use of the hall:
 \((s_1, f_1), (s_2, f_2), \ldots\)

\[\begin{align*}
 &\quad \quad \quad \quad \quad \quad \quad \quad \quad \\
 \quad \quad \quad \quad \quad \quad \quad \quad \quad \\
 \quad \quad \quad \quad \quad \quad \quad \quad \quad \\
 \quad \quad \quad \quad \quad \quad \quad \quad \quad \\
\end{align*} \]

• Find a set of requests as large as possible with no overlap
What is the largest solution?

Choose min, overlap
Choose Short, Longer.
Greedy Algorithm

- Test elements one at a time if they can be members of the solution
- If an element is not ruled out by earlier choices, add it to the solution
- Many possible choices for ordering (length, start time, end time)
- For this problem, considering the jobs by increasing end time works
Suppose we add values?

- \((s_i, f_i, v_i)\), start time, finish time, payment
- Maximize value of elements in the solution

\[
\begin{array}{ccc}
5 & \red{6} & 2 \\
1 & 2 & 4 & 1 \\
3 & 1 & 6 & \red{1}
\end{array}
\]
Greedy Algorithms

- Earliest finish time

- Maximum value

- Give counter examples to show these algorithms don’t find the maximum value solution
Dynamic Programming

- Requests R_1, R_2, R_3, \ldots
- Assume requests are in increasing order of finish time ($f_1 < f_2 < f_3 \ldots$)
- Opt_i is the maximum value solution of $\{R_1, R_2, \ldots, R_i\}$ containing R_i
- $Opt_i = \text{Max}\{ j \mid f_j < s_i \}[Opt_j + v_i]$
Matching

- Given a bipartite graph $G=\{U, V, E\}$, find a subset of the edges M of maximum size with no common endpoints.

- Application:
 - U: Professors
 - V: Courses
 - (u,v) in E if Prof. u can teach course v
Find a maximum matching
Augmenting Path Algorithm
Reduction to network flow

- More general problem
- Send flow from source to sink
- Flow subject to capacities at edges
- Flow conserved at vertices
- Can solve matching as a flow problem
Maximum Independent Set

- Given an undirected graph $G = (V, E)$, find a set I of vertices such that there are no edges between vertices of I.
- Find a set I as large as possible.
Find a Maximum Independent Set
Verification: Prove the graph has an independent set of size 10
Key characteristic

- Hard to find a solution
- Easy to verify a solution once you have one
- Other problems like this
 - Hamiltonian circuit
 - Clique
 - Subset sum
 - Graph coloring
NP-Completeness

- Theory of Hard Problems
- A large number of problems are known to be equivalent
- Very elegant theory
Are there even harder problems?

- Simple game:
 - Players alternating selecting nodes in a graph
 - Score points associated with node
 - Remove nodes neighbors
 - When neither can move, player with most points wins
P- Space complete.
Competitive Facility Location

• Choose location for a facility
 – Value associated with placement
 – Restriction on placing facilities too close together

• Competitive
 – Different companies place facilities
 • E.g., KFC and McDonald’s
Complexity theory

- These problems are P-Space complete instead of NP-Complete
 - Appear to be much harder
 - No obvious certificate
 - G has a Maximum Independent Set of size 10
 - Player 1 wins by at least 10 points
An NP-Complete problem from Digital Public Health

- ASHAs use Pico projectors to show health videos to Mothers’ groups
- Limited number of Pico projectors, so ASHAs must travel to where the Pico projector is stored
- Identify storage locations for k Pico projectors to minimize the maximum distance an ASHA must travel
Summary

- Scheduling
- Weighted Scheduling
- Bipartite Matching
- Maximum Independent Set
- Competitive Scheduling