Divide and Conquer
Richard Anderson
With Special Cameo Appearance by Larry Ruzzo
Divide and Conquer Algorithms

Split into sub problems
Recursively solve the problem
Combine solutions

Make progress in the split and combine stages
 Quicksort – progress made at the split step
 Mergesort – progress made at the combine step

D&C Algorithms
 Strassen’s Algorithm – Matrix Multiplication
 Inversions
 Median
 Closest Pair
 Integer Multiplication
 FFT
 …
Suppose we've already invented DumbSort, taking time n^2.

Try *Just One Level* of divide & conquer:

- DumbSort(first $n/2$ elements)
- DumbSort(last $n/2$ elements)

Merge results

Time: $2 \left(\frac{n}{2}\right)^2 + n = \frac{n^2}{2} + n \ll n^2$

Almost twice as fast!
d&c approach, cont.

Moral 1: “two halves are better than a whole”

Two problems of half size are better than one full-size problem, even given $O(n)$ overhead of recombining, since the base algorithm has super-linear complexity.

Moral 2: “If a little's good, then more's better”

Two levels of D&C would be almost 4 times faster, 3 levels almost 8, etc., even though overhead is growing. Best is usually full recursion down to some small constant size (balancing "work" vs "overhead").

In the limit: you’ve just rediscovered mergesort!
Mergesort: (recursively) sort 2 half-lists, then merge results.

\[T(n) = 2T(n/2) + cn, \quad n \geq 2 \]

\[T(1) = 0 \]

Solution: \(\Theta(n \log n) \) (details later)
What you really need to know about recurrences

Work per level changes geometrically with the level

Geometrically increasing ($x > 1$)
The bottom level wins – count leaves

Geometrically decreasing ($x < 1$)
The top level wins – count top level work

Balanced ($x = 1$)
Equal contribution – top \cdot levels (e.g. “$n \log n$”)
 Balanced: $a = b^c$

 Increasing: $a > b^c$

 Decreasing: $a < b^c$
Recurrences

Next: how to solve them
Mergesort: (recursively) sort 2 half-lists, then merge results.

\[T(n) = 2T(n/2) + cn, \quad n \geq 2 \]

\[T(1) = 0 \]

Solution: \(\Theta(n \log n) \)

(details later)

\[\text{now} \]
Solve:

\begin{align*}
T(1) &= c \\
T(n) &= 2 \cdot T(n/2) + cn
\end{align*}

\[n = 2^k \quad ; \quad k = \log_2 n \]

Total Work: \(c \cdot n \cdot (1 + \log_2 n) \) (add last col)

\[
\begin{array}{cccc}
\text{Level} & \text{Num} & \text{Size} & \text{Work} \\
0 & 1 = 2^0 & n & cn \\
1 & 2 = 2^1 & n/2 & 2cn/2 \\
2 & 4 = 2^2 & n/4 & 4cn/4 \\
\ldots & \ldots & \ldots & \ldots \\
i & 2^i & n/2^i & 2^i \cdot c \cdot n/2^i \\
\ldots & \ldots & \ldots & \ldots \\
k-1 & 2^{k-1} & n/2^{k-1} & 2^{k-1} \cdot c \cdot n/2^{k-1} \\
k & 2^k & n/2^k = 1 & 2^k \cdot T(1)
\end{array}
\]
Solve:

\[T(1) = c \]
\[T(n) = 4 \, T(n/2) + cn \]

\[n = 2^k \; ; \; k = \log_2 n \]

Total Work: \[T(n) = \sum_{i=0}^{k} 4^i \, cn / 2^i = O(n^2) \]
Solve: \[T(1) = c \]
\[T(n) = 3 \cdot T(n/2) + cn \]

\[n = 2^k ; k = \log_2 n \]

Total Work: \[T(n) = \sum_{i=0}^{k} \frac{3^i \cdot cn}{2^i} \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Num</th>
<th>Size</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(1 = 3^0)</td>
<td>(n)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>(3 = 3^1)</td>
<td>(n/2)</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>(9 = 3^2)</td>
<td>(n/4)</td>
</tr>
<tr>
<td>(\cdots)</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(i)</td>
<td>(3^i)</td>
<td>(n/2^i)</td>
<td>(3^i \cdot c \cdot n/2^i)</td>
</tr>
<tr>
<td>(\cdots)</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(k-1)</td>
<td>(3^{k-1})</td>
<td>(n/2^{k-1})</td>
<td>(3^{k-1} \cdot c \cdot n/2^{k-1})</td>
</tr>
<tr>
<td>(k)</td>
<td>(3^k)</td>
<td>(n/2^k = 1)</td>
<td>(3^k \cdot T(1))</td>
</tr>
</tbody>
</table>
Theorem:

\[1 + x + x^2 + x^3 + \ldots + x^k = \frac{x^{k+1}-1}{x-1} \]

proof:

\[y = 1 + x + x^2 + x^3 + \ldots + x^k \]

\[xy = x + x^2 + x^3 + \ldots + x^k + x^{k+1} \]

\[xy-y = x^{k+1} - 1 \]

\[y(x-1) = x^{k+1} - 1 \]

\[y = \frac{x^{k+1}-1}{x-1} \]
Solve:
\[T(1) = c \]
\[T(n) = 3 \, T(n/2) + cn \]
(cont.)

\[T(n) = \sum_{i=0}^{k} 3^i \frac{cn}{2^i} \]
\[= cn \sum_{i=0}^{k} \frac{3^i}{2^i} \]
\[= cn \sum_{i=0}^{k} \left(\frac{3}{2} \right)^i \]
\[= cn \frac{\left(\frac{3}{2} \right)^{k+1} - 1}{\left(\frac{3}{2} \right)^1 - 1} \]
Solve: \[T(1) = c \]
\[T(n) = 3 \, T(n/2) + cn \]

(cont.)

\[
cn \frac{\left(\frac{3}{2}\right)^{k+1}}{\left(\frac{3}{2}\right)^k - 1} = 2cn \left(\left(\frac{3}{2}\right)^{k+1} - 1\right)
\]

\[
< 2cn \left(\frac{3}{2}\right)^{k+1}
\]

\[
= 3cn \left(\frac{3}{2}\right)^k
\]

\[
= 3cn \frac{3^k}{2^k}
\]
Solve:

\[T(1) = c \]

\[T(n) = 3 \cdot T(n/2) + cn \] (cont.)

\[
3cn \frac{3^k}{2^k} = 3cn \frac{3^{\log_2 n}}{2^{\log_2 n}}
\]

\[
= 3cn \frac{3^{\log_2 n}}{n}
\]

\[
= 3c3^{\log_2 n}
\]

\[
= 3c(n^{\log_2 3})
\]

\[= O(n^{1.585...}) \]
divide and conquer – master recurrence

\[T(n) = aT(n/b) + cn^k \text{ for } n > b \text{ then} \]

\[a > b^k \Rightarrow T(n) = \Theta(n^{\log_b a}) \] \[\text{[many subprobs \rightarrow leaves dominate]} \]

\[a < b^k \Rightarrow T(n) = \Theta(n^k) \] \[\text{[few subprobs \rightarrow top level dominates]} \]

\[a = b^k \Rightarrow T(n) = \Theta(n^k \log n) \] \[\text{[balanced \rightarrow all log n levels contribute]} \]

Fine print:
\[a \geq 1; \ b > 1; \ c, d, k \geq 0; \ T(1) = d; \ n = b^t \text{ for some } t > 0; \]
\[a, b, k, t \text{ integers. True even if it is } \lceil n/b \rceil \text{ instead of } n/b. \]
Expanding recurrence as in earlier examples, to get

\[T(n) = n^h \ (d + c \ S) \]

where \(h = \log_b(a) \) (tree height) and \(S = \sum_{j=1}^{\log_b(n)} x^j \), where \(x = b^k/a \).

If \(c = 0 \) the sum \(S \) is irrelevant, and \(T(n) = O(n^h) \): all the work happens in the base cases, of which there are \(n^h \), one for each leaf in the recursion tree.

If \(c > 0 \), then the sum matters, and splits into 3 cases (like previous slide):
- if \(x < 1 \), then \(S < x/(1-x) = O(1) \). [\(S \) is just the first log \(n \) terms of the infinite series with that sum].
- if \(x = 1 \), then \(S = \log_b(n) = O(\log n) \). [all terms in the sum are 1 and there are that many terms].
- if \(x > 1 \), then \(S = x \cdot (x^{1+\log_b(n)} - 1)/(x-1) \). After some algebra, \(n^h \cdot S = O(n^k) \).
Example:

Matrix Multiplication –

Strassen’s Method
Multiplying Matrices

\[
\begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix} \times
\begin{bmatrix}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix}
\]

\[
\begin{bmatrix}
a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} \\
a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} \\
a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} \\
a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41}
\end{bmatrix} \times
\begin{bmatrix}
a_{12}b_{12} + a_{13}b_{22} + a_{14}b_{32} + a_{14}b_{42} \\
a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} \\
a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} \\
a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42}
\end{bmatrix} =
\begin{bmatrix}
a_{11}b_{14} + a_{12}b_{24} + a_{13}b_{34} + a_{14}b_{44} \\
a_{21}b_{14} + a_{22}b_{24} + a_{23}b_{34} + a_{24}b_{44} \\
a_{31}b_{14} + a_{32}b_{24} + a_{33}b_{34} + a_{34}b_{44} \\
a_{41}b_{14} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44}
\end{bmatrix}
\]

\(n^3\) multiplications, \(n^3 - n^2\) additions
Simple Matrix Multiply

for i = 1 to n
 for j = 1 to n
 C[i,j] = 0
 for k = 1 to n

n^3 multiplications, n^3-n^2 additions
Multiplying Matrices

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\times
\begin{bmatrix}
 b_{11} & b_{12} & b_{13} & b_{14} \\
 b_{21} & b_{22} & b_{23} & b_{24} \\
 b_{31} & b_{32} & b_{33} & b_{34} \\
 b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix}
= \begin{bmatrix}
 (a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41}) \\
 (a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41}) \\
 (a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41}) \\
 (a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41})
\end{bmatrix}
\times
\begin{bmatrix}
 a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} \\
 a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} \\
 a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} \\
 a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 a_{11}b_{14} + a_{12}b_{24} + a_{13}b_{34} + a_{14}b_{44} \\
 a_{21}b_{14} + a_{22}b_{24} + a_{23}b_{34} + a_{24}b_{44} \\
 a_{31}b_{14} + a_{32}b_{24} + a_{33}b_{34} + a_{34}b_{44} \\
 a_{41}b_{14} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44}
\end{bmatrix}
\]
Multiplying Matrices

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\times
\begin{bmatrix}
 b_{11} & b_{12} & b_{13} & b_{14} \\
 b_{21} & b_{22} & b_{23} & b_{24} \\
 b_{31} & b_{32} & b_{33} & b_{34} \\
 b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix}
=
\begin{bmatrix}
 a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} \\
 a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} \\
 a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} \\
 a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41}
\end{bmatrix}
\times
\begin{bmatrix}
 a_{12}b_{12} + a_{13}b_{22} + a_{14}b_{32} + a_{14}b_{42} \\
 a_{22}b_{12} + a_{23}b_{22} + a_{24}b_{32} + a_{24}b_{42} \\
 a_{32}b_{12} + a_{33}b_{22} + a_{34}b_{32} + a_{34}b_{42} \\
 a_{42}b_{12} + a_{43}b_{22} + a_{44}b_{32} + a_{44}b_{42}
\end{bmatrix}
=
\begin{bmatrix}
 a_{11}b_{14} + a_{12}b_{24} + a_{13}b_{34} + a_{14}b_{44} \\
 a_{21}b_{14} + a_{22}b_{24} + a_{23}b_{34} + a_{24}b_{44} \\
 a_{31}b_{14} + a_{32}b_{24} + a_{33}b_{34} + a_{34}b_{44} \\
 a_{41}b_{14} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44}
\end{bmatrix}
\]
Multiplying Matrices

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\times
\begin{bmatrix}
 b_{11} & b_{12} & b_{13} & b_{14} \\
 b_{21} & b_{22} & b_{23} & b_{24} \\
 b_{31} & b_{32} & b_{33} & b_{34} \\
 b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix}
=
\begin{bmatrix}
 a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} + a_{14}b_{41} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} + a_{14}b_{42} & a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33} + a_{14}b_{43} & a_{11}b_{14} + a_{12}b_{24} + a_{13}b_{34} + a_{14}b_{44} \\
 a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} + a_{24}b_{42} & a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33} + a_{24}b_{43} & a_{21}b_{14} + a_{22}b_{24} + a_{23}b_{34} + a_{24}b_{44} \\
 a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} + a_{34}b_{41} & a_{31}b_{12} + a_{32}b_{22} + a_{33}b_{32} + a_{34}b_{42} & a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33} + a_{34}b_{43} & a_{31}b_{14} + a_{32}b_{24} + a_{33}b_{34} + a_{34}b_{44} \\
 a_{41}b_{11} + a_{42}b_{21} + a_{43}b_{31} + a_{44}b_{41} & a_{41}b_{12} + a_{42}b_{22} + a_{43}b_{32} + a_{44}b_{42} & a_{41}b_{13} + a_{42}b_{23} + a_{43}b_{33} + a_{44}b_{43} & a_{41}b_{14} + a_{42}b_{24} + a_{43}b_{34} + a_{44}b_{44}
\end{bmatrix}
\]
Multiplying Matrices

\[
\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
=
\begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

Counting arithmetic operations:

\[T(n) = 8T(n/2) + 4(n/2)^2 = 8T(n/2) + n^2\]
Multiplying Matrices

\[T(n) = \begin{cases}
1 & \text{if } n = 1 \\
8T(n/2) + n^2 & \text{if } n > 1
\end{cases} \]

By Master Recurrence, if \(T(n) = aT(n/b) + cn^k \) & \(a > b^k \) then

\[T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_2 8}) = \Theta(n^3) \]
Strassen’s algorithm

Multiply 2x2 matrices using 7 instead of 8 multiplications (and lots more than 4 additions)

\[T(n) = 7 \times T(n/2) + cn^2 \]

\[7 > 2^2 \] so \(T(n) \) is \(\Theta(n^{\log_2{7}}) \) which is \(O(n^{2.81}) \)

Asymptotically fastest know algorithm uses \(O(n^{2.376}) \) time

not practical but Strassen’s may be practical provided calculations are exact and we stop recursion when matrix has size about 100 (maybe 10)
The algorithm

\[P_1 = A_{12} (B_{11} + B_{21}) \]
\[P_3 = (A_{11} - A_{12}) B_{11} \]
\[P_5 = (A_{22} - A_{12}) (B_{21} - B_{22}) \]
\[P_6 = (A_{11} - A_{21}) (B_{12} - B_{11}) \]
\[P_7 = (A_{21} - A_{12}) (B_{11} + B_{22}) \]
\[P_2 = A_{21} (B_{12} + B_{22}) \]
\[P_4 = (A_{22} - A_{21}) B_{22} \]

\[C_{11} = P_1 + P_3 \]
\[C_{21} = P_1 + P_4 + P_5 + P_7 \]
\[C_{12} = P_2 + P_3 + P_6 - P_7 \]
\[C_{22} = P_2 + P_4 \]
Example: Counting Inversions
Inversion Problem

Let a_1, \ldots, a_n be a permutation of $1, \ldots, n$

(a_i, a_j) is an inversion if $i < j$ and $a_i > a_j$

4, 6, 1, 7, 3, 2, 5

Problem: given a permutation, count the number of inversions

This can be done easily in $O(n^2)$ time

Can we do better?
Counting inversions can be used to measure closeness of ranked preferences. People rank 20 movies, based on their rankings you cluster people who like the same types of movies. Can also be used to measure nonlinear correlation.
Inversion Problem

Let a_1, \ldots, a_n be a permutation of $1 \ldots n$

(a_i, a_j) is an inversion if $i < j$ and $a_i > a_j$

4, 6, 1, 7, 3, 2, 5

Problem: given a permutation, count the number of inversions

This can be done easily in $O(n^2)$ time

Can we do better?
Counting Inversions

Count inversions on lower half
Count inversions on upper half
Count the inversions between the halves
Count the Inversions
Problem – how do we count inversions between sub problems in \(O(n) \) time?

Solution – Count inversions while merging

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 7 & 11 & 12 & 15 \\
\end{array}
\quad
\begin{array}{cccccccc}
5 & 6 & 8 & 9 & 10 & 13 & 14 & 16 \\
\end{array}
\]

Standard merge algorithm – add to inversion count when an element is moved from the upper array to the solution
Counting inversions while merging

Indicate the number of inversions for each element detected when merging
Inversions

Counting inversions between two sorted lists
O(1) per element to count inversions

Algorithm summary
Satisfies the “Standard recurrence”
T(n) = 2 T(n/2) + cn
A Divide & Conquer Example:
Closest Pair of Points
closest pair of points: non-geometric version

Given n points and arbitrary distances between them, find the closest pair. (E.g., think of distance as airfare – definitely not Euclidean distance!)

Must look at all n choose 2 pairwise distances, else any one you didn’t check might be the shortest.

Also true for Euclidean distance in 1-2 dimensions?
Given n points on the real line, find the closest pair

Closest pair is *adjacent* in ordered list
Time $O(n \log n)$ to sort, if needed
Plus $O(n)$ to scan adjacent pairs
Key point: do *not* need to calc distances between all pairs: exploit geometry + ordering
Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.

Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

I-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same x coordinate.

\[
\uparrow
\]

Just to simplify presentation
closest pair of points. 2d, Euclidean distance: 1st try

Divide. Sub-divide region into 4 quadrants.
Closest pair of points: 1st try

Divide. Sub-divide region into 4 quadrants. Obstacle. Impossible to ensure n/4 points in each piece.
Algorithm.
Divide: draw vertical line L with $\approx n/2$ points on each side.
Algorithm.
Divide: draw vertical line L with $\approx n/2$ points on each side.
Conquer: find closest pair on each side, recursively.
Algorithm.

Divide: draw vertical line L with $\approx n/2$ points on each side.

Conquer: find closest pair on each side, recursively.

Combine: find closest pair with one point in each side.

Return best of 3 solutions.
Find closest pair with one point in each side, assuming distance < \(\delta \).
Find closest pair with one point in each side, *assuming distance < \(\delta \).

Observation: suffices to consider points within \(\delta \) of line \(L \).
Find closest pair with one point in each side, assuming distance < δ.

Observation: suffices to consider points within δ of line L.

Almost the one-D problem again: Sort points in 2δ-strip by their y coordinate.
Find closest pair with one point in each side, assuming distance < δ.

Observation: suffices to consider points within δ of line L.

Almost the one-D problem again: Sort points in 2δ-strip by their y coordinate. Only check pts within 8 in sorted list!

$\delta = \min(12, 21)$
Def. Let s_i have the i^{th} smallest y-coordinate among points in the 2δ-width-strip.

Claim. If $|i - j| > 8$, then the distance between s_i and s_j is $> \delta$.

Pf: No two points lie in the same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box:

$$\sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{1}{4}} = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2} \approx 0.7 < 1$$

so ≤ 8 boxes within $+\delta$ of $y(s_i)$.

closest pair of points
Closest-Pair(p₁, ..., pₙ) {
 if(n <= ??) return ??

 Compute separation line L such that half the points are on one side and half on the other side.

 \(\delta_1 = \text{Closest-Pair(left half)} \)
 \(\delta_2 = \text{Closest-Pair(right half)} \)
 \(\delta = \min(\delta_1, \delta_2) \)

 Delete all points further than \(\delta \) from separation line L

 Sort remaining points p[1]...p[m] by y-coordinate.

 for i = 1..m
 k = 1
 while i+k <= m && p[i+k].y < p[i].y + \(\delta \)
 \(\delta = \min(\delta, \text{distance between p}[i]\text{ and p}[i+k]) \);
 k++;

 return \(\delta \).
}
Analysis, I: Let $D(n)$ be the number of pairwise distance calculations in the Closest-Pair Algorithm when run on $n \geq 1$ points

$$D(n) \leq \begin{cases}
0 & n = 1 \\
2D(n/2) + 7n & n > 1
\end{cases} \implies D(n) = O(n \log n)$$

BUT – that’s only the number of distance calculations

What if we counted comparisons?
Analysis, II: Let $C(n)$ be the number of comparisons between coordinates/distances in the Closest-Pair Algorithm when run on $n \geq 1$ points

\[
C(n) \leq \begin{cases}
0 & n = 1 \\
2C(n/2) + kn \log n & n > 1
\end{cases}
\Rightarrow C(n) = O(n \log^2 n)
\]

for some constant k

Q. Can we achieve $O(n \log n)$?

A. Yes. Don't sort points from scratch each time.

Sort by x at top level only.

Each recursive call returns δ and list of all points sorted by y

Sort by merging two pre-sorted lists.

\[T(n) \leq 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)\]
is it worth the effort?

Code is longer & more complex

$O(n \log n)$ vs $O(n^2)$ may hide 10x in constant?

How many points?

<table>
<thead>
<tr>
<th>n</th>
<th>Speedup: $n^2 / (10n \log_2 n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>1.5</td>
</tr>
<tr>
<td>1,000</td>
<td>10</td>
</tr>
<tr>
<td>10,000</td>
<td>75</td>
</tr>
<tr>
<td>100,000</td>
<td>602</td>
</tr>
<tr>
<td>1,000,000</td>
<td>5,017</td>
</tr>
<tr>
<td>10,000,000</td>
<td>43,004</td>
</tr>
</tbody>
</table>
Going From Code to Recurrence
going from code to recurrence

Carefully define what you’re counting, and write it down!

“Let $C(n)$ be the number of comparisons between sort keys used by MergeSort when sorting a list of length $n \geq 1$”

In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.

Write Recurrence(s)
merge sort

Base Case

Recursive calls

One Recursive Level

Operations being counted

MS(A: array[1..n]) returns array[1..n] {
If(n=1) return A;
New L:array[1:n/2] = MS(A[1..n/2]);
New R:array[1:n/2] = MS(A[n/2+1..n]);
Return(Merge(L,R));
}

Merge(A,B: array[1..n]) {
New C: array[1..2n];
a=1; b=1;
For i = 1 to 2n {
 C[i] = “smaller of A[a], B[b] and a++ or b++”;
}
Return C;
$$C(n) = \begin{cases}
0 & \text{if } n = 1 \\
2C(n/2) + (n - 1) & \text{if } n > 1
\end{cases}$$

Total time: proportional to C(n)
(loops, copying data, parameter passing, etc.)
Carefully define what you’re counting, and write it down!

“Let $D(n)$ be the number of pairwise distance calculations in the Closest-Pair Algorithm when run on $n \geq 1$ points”

In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.

Write Recurrence(s)
Closest-Pair(p₁, …, pₙ) {
 if(n <= 1) return ∞
 Compute separation line L such that half the points are on one side and half on the other side.
 δ₁ = Closest-Pair(left half)
 δ₂ = Closest-Pair(right half)
 δ = min(δ₁, δ₂)
 Delete all points further than δ from separation line L
 Sort remaining points p[1]…p[m] by y-coordinate.
 for i = 1..m
 k = 1
 while i+k <= m && p[i+k].y < p[i].y + δ
 δ = min(δ, distance between p[i] and p[i+k]);
 k++;
 return δ.
}

Basic operations: distance calcs
Recursive calls (2)

Base Case

Delete all points further than δ from separation line L

Basic operations at this recursive level

One recursive level

2D(n / 2)

7n

0
Analysis, I: Let $D(n)$ be the number of pairwise distance calculations in the Closest-Pair Algorithm when run on $n \geq 1$ points.

$$D(n) \leq \begin{cases} 0 & n = 1 \\ 2D(n/2) + 7n & n > 1 \end{cases}$$

$\Rightarrow D(n) = O(n \log n)$

BUT – that’s only the number of distance calculations.

What if we counted comparisons?
Carefully define what you’re counting, and write it down!

“Let $D(n)$ be the number of comparisons between coordinates/distances in the Closest-Pair Algorithm when run on $n \geq 1$ points”

In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.

Write Recurrence(s)
Closest-Pair(p_1, …, p_n) {
 if($n \leq 1$) return ∞
 Compute separation line L such that half the points are on one side and half on the other side.
 $\delta_1 = \text{Closest-Pair(left half)}$
 $\delta_2 = \text{Closest-Pair(right half)}$
 $\delta = \min(\delta_1, \delta_2)$
 Delete all points further than δ from separation line L
 Sort remaining points $p[1]…p[m]$ by y-coordinate.
 for $i = 1..m$
 $k = 1$
 while $i+k \leq m$ && $p[i+k].y < p[i].y + \delta$
 $\delta = \min(\delta, \text{distance between } p[i] \text{ and } p[i+k])$;
 $k++$;
 return δ.
}
Analysis, II: Let $C(n)$ be the number of comparisons of coordinates/distances in the Closest-Pair Algorithm when run on $n \geq 1$ points

$$C(n) \leq \begin{cases}
0 & n = 1 \\
2C(n/2) + k_4 n \log n & n > 1
\end{cases}$$

for some $k_4 \leq k_1 + k_2 + k_3 + 7$

\Rightarrow $C(n) = O(n \log^2 n)$

Q. Can we achieve time $O(n \log n)$?

A. Yes. Don't sort points from scratch each time.
Sort by x at top level only.
Each recursive call returns δ and list of all points sorted by y
Sort by merging two pre-sorted lists.

$$T(n) \leq 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)$$
Integer Multiplication
Add. Given two n-bit integers a and b, compute $a + b$.

$O(n)$ bit operations.

\[
\begin{array}{cccccccc}
\text{Add} & | & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
+ & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
\hline
& 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]
Add. Given two n-bit integers a and b, compute a + b.

O(n) bit operations.

Multiply. Given two n-bit integers a and b, compute a \times b. The “grade school” method:

\(\Theta(n^2) \) bit operations.
divide & conquer multiplication: warmup

To multiply two 2-digit integers:

Multiply four 1-digit integers.

Add, shift some 2-digit integers to obtain result.

Same idea works for long integers – can split them into 4 half-sized ints

\[
x = 10 \cdot x_1 + x_0 \\
y = 10 \cdot y_1 + y_0 \\
xy = (10 \cdot x_1 + x_0)(10 \cdot y_1 + y_0) \\
= 100 \cdot x_1y_1 + 10 \cdot (x_1y_0 + x_0y_1) + x_0y_0
\]
To multiply two n-bit integers:

Multiply four \(\frac{1}{2}n\)-bit integers.

Add two \(\frac{1}{2}n\)-bit integers, and shift to obtain result.

\[
\begin{align*}
x &= 2^{n/2} \cdot x_1 + x_0 \\
y &= 2^{n/2} \cdot y_1 + y_0 \\
xy &= (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0) \\
&= 2^n \cdot x_1y_1 + 2^{n/2} \cdot (x_1y_0 + x_0y_1) + x_0y_0
\end{align*}
\]

\[
T(n) = 4T(n/2) + \Theta(n) \quad \Rightarrow \quad T(n) = \Theta(n^2)
\]

\[\uparrow\]

assumes \(n\) is a power of 2

\[
\begin{array}{cc}
\begin{array}{c}
0 \ 1 \ 0 \ 1 \\
1 \ 0 \ 1 \ 0 \\
0 \ 0 \ 1 \ 0 \\
0 \ 1 \ 1 \ 0
\end{array}
&
\begin{array}{c}
0 \ 1 \ 0 \ 1 \\
1 \ 0 \ 1 \ 1 \\
0 \ 0 \ 0 \ 0 \\
0 \ 0 \ 0 \ 1
\end{array}
\end{array}
\]

\[
\begin{array}{c}
1 \ 1 \ 0 \ 1 \\
0 \ 1 \ 1 \ 1 \\
0 \ 1 \ 0 \ 0 \\
0 \ 0 \ 1 \ 1
\end{array}
\times
\begin{array}{c}
1 \ 1 \ 0 \ 1 \\
0 \ 1 \ 1 \ 1 \\
0 \ 0 \ 0 \ 1 \\
0 \ 0 \ 0 \ 1
\end{array}
\end{array}
\]

\[
x_1 \cdot y_1
\]

\[
x_0 \cdot y_0
\]

\[
x_0 \cdot y_1
\]

\[
x_1 \cdot y_0
\]
key trick: 2 multiplies for the price of 1:

\[
x = 2^{n/2} \cdot x_1 + x_0
\]
\[
y = 2^{n/2} \cdot y_1 + y_0
\]
\[
xy = \left(2^{n/2} \cdot x_1 + x_0\right)\left(2^{n/2} \cdot y_1 + y_0\right)
= 2^n \cdot x_1y_1 + 2^{n/2} (x_1y_0 + x_0y_1) + x_0y_0
\]

Well, ok, 4 for 3 is more accurate…

\[
\alpha = x_1 + x_0
\]
\[
\beta = y_1 + y_0
\]
\[
\alpha\beta = (x_1 + x_0)(y_1 + y_0)
= x_1y_1 + (x_1y_0 + x_0y_1) + x_0y_0
\]
\[
(x_1y_0 + x_0y_1) = \alpha\beta - x_1y_1 - x_0y_0
\]
Karatsuba multiplication

To multiply two n-bit integers:

- Add two \(\frac{1}{2}n \) bit integers.
- Multiply three \(\frac{1}{2}n \)-bit integers.
- Add, subtract, and shift \(\frac{1}{2}n \)-bit integers to obtain result.

\[
x = 2^{n/2} \cdot x_1 + x_0
\]
\[
y = 2^{n/2} \cdot y_1 + y_0
\]
\[
xy = 2^n \cdot x_1y_1 + 2^{n/2} \cdot (x_1y_0 + x_0y_1) + x_0y_0
\]

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in \(O(n^{1.585}) \) bit operations.

\[
T(n) \leq T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + T(1 + \lfloor n/2 \rfloor) + \Theta(1)
\]

Sloppy version: \(T(n) \leq 3T(n/2) + O(n) \)

\[
\Rightarrow T(n) = O(n^{\log_2 3}) = O(n^{1.585})
\]
Karatsuba multiplication

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O(n^{1.585})$ bit operations.

$$T(n) \leq T\left(\left\lceil n/2 \right\rceil \right) + T\left(\left\lfloor n/2 \right\rfloor \right) + T\left(1 + \left\lfloor n/2 \right\rfloor\right) + \Theta(n)$$

Recursive calls

Sloppy version: $T(n) \leq 3T(n/2) + O(n)$

$\Rightarrow T(n) = O(n^{\log_2 3}) = O(n^{1.585})$
Naïve: $\Theta(n^2)$

Karatsuba: $\Theta(n^{1.59...})$

Amusing exercise: generalize Karatsuba to do 5 size $n/3$ subproblems $\rightarrow \Theta(n^{1.46...})$

Best known: $\Theta(n \log n \log\log n)$

"Fast Fourier Transform"

but mostly unused in practice (unless you need really big numbers - a billion digits of π, say)

High precision arithmetic IS important for crypto
Polynomial Multiplication
Another D&C Example: Multiplying Polynomials

Similar ideas apply to polynomial multiplication

We’ll describe the basic ideas by multiplying polynomials rather than integers.
In fact, it’s somewhat simpler: no carries!
Notes on Polynomials

These are just formal sequences of coefficients so when we show something multiplied by \(x^k \) it just means shifted \(k \) places to the left – basically no work

Usual Polynomial Multiplication:

\[
\begin{array}{c}
3x^2 + 2x + 2 \\
\underline{x^2 - 3x + 1} \\
3x^2 + 2x - 2 \\
\underline{-9x^3 - 6x^2 - 6x} \\
3x^4 + 2x^3 + 2x^2 \\
\underline{3x^4 - 7x^3 - x^2 - 4x + 2}
\end{array}
\]
Polynomial Multiplication

Given:

Degree \(m-1\) polynomials \(P\) and \(Q\)

\[
P = a_0 + a_1 x + a_2 x^2 + \ldots + a_{m-2} x^{m-2} + a_{m-1} x^{m-1}
\]

\[
Q = b_0 + b_1 x + b_2 x^2 + \ldots + b_{m-2} x^{m-2} + b_{m-1} x^{m-1}
\]

Compute:

Degree \(2m-2\) Polynomial \(PQ\)

\[
PQ = a_0 b_0 + (a_0 b_1 + a_1 b_0) x + (a_0 b_2 + a_1 b_1 + a_2 b_0) x^2
+ \ldots + (a_{m-2} b_{m-1} + a_{m-1} b_{m-2}) x^{2m-3} + a_{m-1} b_{m-1} x^{2m-2}
\]

Obvious Algorithm:

Compute all \(a_i b_j\) and collect terms

\(\Theta(m^2)\) time
Naïve Divide and Conquer

Assume $m=2k$

$$P = (a_0 + a_1x + a_2x^2 + ... + a_{k-2}x^{k-2} + a_{k-1}x^{k-1}) + (a_k + a_{k+1}x + ... + a_{m-2}x^{k-2} + a_{m-1}x^{k-1})x^k$$

$$Q = Q_0 + Q_1x^k$$

$$PQ = (P_0 + P_1x^k)(Q_0 + Q_1x^k)$$

$$= P_0Q_0 + (P_1Q_0 + P_0Q_1)x^k + P_1Q_1x^{2k}$$

4 sub-problems of size $k=m/2$ plus linear combining

$$T(m)=4T(m/2)+cm$$

Solution $T(m) = O(m^2)$
Karatsuba’s Algorithm

A better way to compute terms

Compute

\[P_0Q_0 \]
\[P_1Q_1 \]
\[(P_0+P_1)(Q_0+Q_1) \]
which is \[P_0Q_0 + P_1Q_0 + P_0Q_1 + P_1Q_1 \]

Then

\[P_0Q_1 + P_1Q_0 = (P_0 + P_1)(Q_0 + Q_1) - P_0Q_0 - P_1Q_1 \]

3 sub-problems of size \(m/2 \) plus \(O(m) \) work

\[T(m) = 3 \ T(m/2) + cm \]

\[T(m) = O(m^\alpha) \] where \(\alpha = \log_2 3 \approx 1.585... \)
PolyMul(P, Q):

// P, Q are length m = 2k vectors, with P[i], Q[i] being
// the coefficient of x^i in polynomials P, Q respectively.
if (m==1) return (P[0]*Q[0]);
Let Pzero be elements 0..k-1 of P; Pone be elements k..m-1
Qzero, Qone : similar
Prod1 = PolyMul(Pzero, Qzero); // result is a (2k-1)-vector
Prod2 = PolyMul(Pone, Qone); // ditto
Pzo = Pzero + Pone; // add corresponding elements
Qzo = Qzero + Qone; // ditto
Prod3 = PolyMul(Pzo, Qzo); // another (2k-1)-vector
Mid = Prod3 – Prod1 – Prod2; // subtract corr. elements
R = Prod1 + Shift(Mid, m/2) + Shift(Prod2,m) // a (2m-1)-vector
Return(R);
Multiplication – The Bottom Line

Polynomials

Naïve: $\Theta(n^2)$

Karatsuba: $\Theta(n^{1.585...})$

Best known: $\Theta(n \log n)$

"Fast Fourier Transform"

Integers

Similar, but some ugly details re: carries, etc.
gives $\Theta(n \log n \log \log n)$,
but mostly unused in practice
Median and Selection
Computing the Median

Median: Given n numbers, find the number of rank $n/2$ (to be precise, say: $\lfloor n/2 \rfloor$)

Selection: given n numbers and an integer k, find the k-th largest

E.g., Median is $\lfloor n/2 \rfloor$-nd largest
Can find max with n-1 comparisons
Can find 2nd largest with another n-2
3rd largest with another n-3
etc.: kth largest in O(kn)

What about k > \log n?

Can we do better?
Select(A, k) {
 Choose x from A
 \(S_1 = \{ y \in A \mid y < x \} \)
 \(S_2 = \{ y \in A \mid y = x \} \)
 \(S_3 = \{ y \in A \mid y > x \} \)
 if \(|S_1| \geq k\)
 return Select(S_1, k)
 else if \(|S_1| + |S_2| \geq k\)
 return x
 else
 return Select(S_3, k - |S_1| - |S_2|)
}
Choose the element *at random*

Analysis (not here) can show that the algorithm has *expected* run time $O(n)$

Sketch: a random element eliminates, on average, $\sim \frac{1}{2}$ of the data

Although worst case is $\Theta(n^2)$, albeit improbable (like Quicksort), for most purposes this is the method of choice

Worst case matters? Read on…
What is the run time of select if we can guarantee that “choose” finds an x such that $|S_1| < 3n/4$ and $|S_3| < 3n/4$
A very clever “choose” algorithm . . .

Split into n/5 sets of size 5
M be the set of medians of these sets
Return x = the median of M

M. Blum R. Floyd V. Pratt R. Rivest R. Tarjan
Split into \(\frac{n}{5} \) sets of size 5
Let \(M \) be the set of medians of these sets
Choose \(x \) to be the median of \(M \)
Construct \(S_1, S_2 \) and \(S_3 \) as above
Recursive call in \(S_1 \) or \(S_3 \)

To show: \(|S_1| < \frac{3n}{4}, |S_3| < \frac{3n}{4}\)

\(\frac{n}{5} + \frac{3n}{4} = 0.95n \Rightarrow O(n) \), worst case
Median of Medians

\[x = \text{median of medians} \]

NB: conceptual; algorithm finds median(s), but does not sort
Median of Medians

Points $\geq x$, \therefore NOT in S_1
$\approx 3n/10$ of them

Points $\leq x$, \therefore NOT in S_3
$\approx 3n/10$ of them

$x = \text{median of medians}$

NB: conceptual; algorithm finds median(s), but does not sort

Bottom Line: recursive call on S_1 or S_3 includes only about 70% of points
BFPRT Recurrence

\[\approx \frac{7n}{10} \text{ points in subproblem} \]

More precisely, various fussiness:

\[\lceil \frac{n}{5} \rceil \text{ groups, all but (possibly) last of size 5} \]

Upper/lower half of \[\geq \lfloor \frac{\lceil n/5 \rceil}{2} \rfloor \text{ groups excluded} \]

With some algebra, \(\exists a, b, c \) such that:

\[T(n) \leq T\left(\frac{7n}{10} + a\right) + T\left(\frac{n}{5} + b\right) + c \cdot n \]
Prove that $T(n) \leq 20c \cdot n$ for $n > 20(a+b)$
Idea:

“Two halves are better than a whole”
if the base algorithm has super-linear complexity.

“If a little's good, then more's better”
repeat above, recursively

Applications: Many.

Binary Search, Merge Sort, (Quicksort), Closest points, Integer multiply,…
Power(a,n)

Input: integer n and number a
Output: a^n

Obvious algorithm

$n-1$ multiplications

Observation:

if n is even, $n = 2m$, then $a^n = a^m \cdot a^m$
divide & conquer algorithm

Power(a,n)
 if n = 0 then return(1)
 if n = 1 then return(a)
 x ← Power(a, ⌊n/2⌋)
 x ← x•x
 if n is odd then
 x ← a•x
 return(x)
Let $M(n)$ be number of multiplies

Worst-case recurrence:

$$M(n) = \begin{cases}
0 & n \leq 1 \\
M\left(\lfloor n / 2 \rfloor\right) + 2 & n > 1
\end{cases}$$

By master theorem

$$M(n) = O(\log n) \quad (a=1, \ b=2, \ k=0)$$

More precise analysis:

$$M(n) = \lfloor \log_2 n \rfloor + (\# \text{ of 1's in } n's \text{ binary representation}) - 1$$

Time is $O(M(n))$ if numbers $<\text{ word size}$, else also depends on length, multiply algorithm
Instead of a^n want $a^n \mod N$

$$a^{i+j} \mod N = ((a^i \mod N) \cdot (a^j \mod N)) \mod N$$

same algorithm applies with each $x \cdot y$ replaced by

$$((x \mod N) \cdot (y \mod N)) \mod N$$

In RSA cryptosystem (widely used for security)

need $a^n \mod N$ where a, n, N each typically have 1024 bits

Power: at most 2048 multiplies of 1024 bit numbers

relatively easy for modern machines

Naive algorithm: 2^{1024} multiplies
Idea:

“Two halves are better than a whole”
if the base algorithm has super-linear complexity.

“If a little's good, then more's better”
repeat above, recursively

Analysis: recursion tree or Master Recurrence

Applications: Many.

- Binary Search
- Merge Sort
- (Quicksort)
- Counting inversions
- Closest points
- Median
- Integer/polynomial/matrix multiplication
- FFT/convolution
- Exponentiation,
- …