Linear Programming

• The process of minimizing a linear objective function subject to a finite number of linear equality and inequality constraints.
• The word “programming” is historical and predates computer programming.
• Example applications:
 – airline crew scheduling
 – manufacturing and production planning
 – telecommunications network design
• “Few problems studied in computer science have greater application in the real world.”

An Example: The Diet Problem

• A student is trying to decide on lowest cost diet that provides sufficient amount of protein, with two choices:
 – steak: 2 units of protein/pound, $3/pound
 – peanut butter: 1 unit of protein/pound, $2/pound
• In proper diet, need 4 units protein/day.
Let \(x \) = # pounds peanut butter/day in the diet.
Let \(y \) = # pounds steak/day in the diet.

Goal: minimize \(2x + 3y \) (total cost)
subject to constraints:
\[
\begin{align*}
 x + 2y & \geq 4 \\
 x & \geq 0, \quad y \geq 0
\end{align*}
\]

This is an LP formulation of our problem

• This is an optimization problem.
• Any solution meeting the nutritional demands is called a feasible solution
• A feasible solution of minimum cost is called the optimal solution.
Linear Program - Definition

A linear program is a problem with \(n \) variables \(x_1, \ldots, x_n \), that has:

1. A linear objective function, which must be minimized/maximized. Looks like:
 \[
 \max \text{ (min) } c_1x_1 + c_2x_2 + \ldots + c_nx_n
 \]

2. A set of \(m \) linear constraints. A constraint looks like:
 \[
 a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \leq b_i \text{ (or } \geq \text{ or } =)\]

Note: the values of the coefficients \(c_i, a_{ij} \) are given in the problem input.

Feasible Set

- Each linear inequality divides \(n \)-dimensional space into two halfspaces, one where the inequality is satisfied, and one where it's not.
- Feasible Set: solutions to a family of linear inequalities.
- The linear cost functions, defines a family of parallel hyperplanes (lines in 2D, planes in 3D, etc.). Want to find one of minimum cost must occur at corner of feasible set.

Visually...

\(x = \) peanut butter, \(y = \) steak

Optimal vector occurs at some corner of the feasible set!
Optimal vector occurs at some corner of the feasible set!

An Example with 6 constraints.

Linear Programming 9

Standard Form of a Linear Program.

Maximize $c_1x_1 + c_2x_2 + \ldots + c_nx_n$
subject to $\sum_{1 \leq j \leq n} a_{ij}x_j \leq b_i \quad i=1..m$
$\quad x_j \geq 0 \quad j=1..n$

Maximize cx
subject to $Ax \leq b$ and $x \geq 0$

Linear Programming 10

Putting LPs Into Standard Form

- Min to Max
 - Change $\sum c_jx_j$ to $\sum (-c_j)x_j$
- Change $=$ constraints to \leq and \geq constraints
- Add non-negativity constraints by substituting $x_i' - x_i''$, for x, and adding constraints $x_i', x_i'' \geq 0$.
- Change \geq constraints to \leq constraints by using negation

Linear Programming 11

The Feasible Set of Standard LP

- Intersection of a set of half-spaces, called a polyhedron.
- If it’s bounded and nonempty, it’s a polytope.

There are 3 cases:
- feasible set is empty.
- cost function is unbounded on feasible set.
- cost has a maximum on feasible set.
First two cases very uncommon for real problems in economics and engineering.

Linear Programming 12
Solving LP

- There are several polynomial-time algorithms that solve any linear program optimally.
 - The Simplex method (later) (not polynomial time)
 - The Ellipsoid method (polynomial time)
- These algorithms can be implemented in various ways.
- There are many existing software packages for LP.
- It is convenient to use LP as a “black box” for solving various optimization problems.

LP formulation: another example

Bob’s bakery sells bagel and muffins.
To bake a dozen bagels Bob needs 5 cups of flour, 2 eggs, and one cup of sugar.
To bake a dozen muffins Bob needs 4 cups of flour, 4 eggs and two cups of sugar.
Bob can sell bagels in $10/dozen and muffins in $12/dozen.
Bob has 50 cups of flour, 30 eggs and 20 cups of sugar.
How many bagels and muffins should Bob bake in order to maximize his revenue?

LP formulation: Bob's bakery

<table>
<thead>
<tr>
<th></th>
<th>Bagels</th>
<th>Muffins</th>
<th>Avail.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flour</td>
<td>5</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Eggs</td>
<td>2</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>Sugar</td>
<td>1</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

Revenue: 10 12

\[A = \begin{bmatrix} 5 & 4 \\ 2 & 4 \\ 1 & 2 \end{bmatrix} \]

\[b = \begin{bmatrix} 50 \\ 30 \\ 20 \end{bmatrix} \]

Maximize \(10x_1 + 12x_2 \)

s.t. \(5x_1 + 4x_2 \leq 50 \)

\(2x_1 + 4x_2 \leq 30 \)

\(x_1 + 2x_2 \leq 20 \)

\(x_1, x_2 \geq 0 \)

In class exercise: Formulate as LP

You want to invest $1000 in 3 stocks, at most $400 per stock

<table>
<thead>
<tr>
<th>stock</th>
<th>price/share</th>
<th>dividends/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>stock A</td>
<td>$50</td>
<td>$2</td>
</tr>
<tr>
<td>stock B</td>
<td>$200</td>
<td>$5</td>
</tr>
<tr>
<td>stock C</td>
<td>$20</td>
<td>0</td>
</tr>
</tbody>
</table>

Stock C has probability \(\frac{1}{2} \) of appreciating to $25 in a year, and prob \(\frac{1}{2} \) of staying $20.
What amount of each stock should be bought to maximize dividends + expected appreciation over a year?
In class exercise: Formulate as LP

Solution: Let \(x_a, x_b, \) and \(x_c \) denote the amounts of A, B, C stocks to be bought.

Objective function:

Constraints:

Reduction Example: Max Flow

Max Flow is reducible to LP

Variables: \(f(e) \) - the flow on edge \(e \).

Max \(\sum_{e \in \text{out}(s)} f(e) \) (assume \(s \) has zero in-degree)

Subject to

\[
\begin{align*}
f(e) & \leq c(e), \quad \forall e \in E \quad \text{(Edge condition)} \\
\sum_{e \in \text{in}(v)} f(e) - \sum_{e \in \text{out}(v)} f(e) & = 0, \quad \forall v \in V - \{s,t\} \quad \text{(Vertex condition)} \\
f(e) & \geq 0, \quad \forall e \in E
\end{align*}
\]

Example - \(L_1 \) Best Fit

\[
\sum_{i=1}^{n} a_{ij} x_i = b_j \quad 1 \leq j \leq m
\]

- If \(m > n \) then overconstrained.
- Find \(x_1, \ldots, x_n \) to minimize

\[
\sum_{j=1}^{m} \left| \sum_{i=1}^{n} a_{ij} x_i - b_j \right| \quad L_1 \text{ norm}
\]

\[\text{Example:} \quad 2x + 3y = 6 \quad 3x - 5y = 2 \quad 4x + 5y = 7\]

\[\text{L}_1 \text{ Best Fit Reduced to LP}\]

minimize \(\sum_{j=1}^{m} e_j \)

subject to \(b_j - \sum_{i=1}^{n} a_{ij} x_i \leq e_j \)

\[
\begin{align*}
\sum_{i=1}^{n} a_{ij} x_i - b_j & \leq e_j \\
e_j & \geq 0 \\
& \text{for } 1 \leq j \leq m
\end{align*}
\]
A Central Result of LP Theory: Duality Theorem

- Every linear program has a dual
- If the original is a maximization, the dual is a minimization and vice versa
- Solution of one leads to solution of other

Primal: Maximize $c^T x$ subject to $Ax \leq b$, $x \geq 0$

Dual: Minimize $y^T b$ subject to $y^T A \geq c$, $y \geq 0$

Weak Duality Theorem

- Theorem: If x is a feasible solution to the primal problem and y is a feasible solution to the dual problem then

\[
\sum_{j=1}^{n} c_j x_j \leq \sum_{i=1}^{m} b_i y_i
\]

Proof of Weak Duality

\[
\sum_{j=1}^{n} c_j x_j \leq \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i \right) x_j
\]

\[
= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j \right) y_i
\]

\[
\leq \sum_{i=1}^{m} b_i y_i
\]
Duality Theorem

- If x^* is optimal for the primal and y^* is optimal for the dual, then

$$\sum_{j=1}^{n} c_j x_j^* = \sum_{i=1}^{m} b_i y_i^*$$

Simple Example of Duality

- Diet problem: minimize $2x + 3y$
 subject to $x + 2y \geq 4$,
 $x \geq 0$, $y \geq 0$
- Dual problem: maximize $4p$
 subject to $p \leq 2$,
 $2p \leq 3$,
 $p \geq 0$
- Dual: the problem faced by a druggist who sells synthetic protein, trying to compete with peanut butter and steak

Simple Example

- The druggist wants to maximize the price p,
 subject to constraints:
 - synthetic protein must not cost more than protein available in foods.
 - price must be non-negative or he won’t sell any
 - revenue to druggist will be $4p$
- Solution: $p \leq 3/2$ objective value = $4p = 6$
- Not coincidence that it’s equal the minimal cost in original problem.

What’s going on?

- Notice: feasible sets completely different for primal and dual, but nonetheless an important relation between them.
- Duality theorem says that in the competition between the grocer and the druggist the result is always a tie.
- Optimal solution to primal tells purchaser what to do.
- Optimal solution to dual fixes the natural prices at which economy should run.
- The diet x and vitamin prices y are optimal when
 - grocer sells zero of any food that is priced above its vitamin equivalent.
 - druggist charges 0 for any vitamin that is oversupplied in the diet.
Duality Theorem

Druggist’s max revenue = Purchasers min cost

Practical Use of Duality:
- Sometimes simplex algorithm (or other algorithms) will run faster on the dual than on the primal.
- Can be used to bound how far you are from optimal solution.
- Important implications for economists.

Linear Programming, Mid-Summary

- Of great practical importance to solve linear programs:
 - they model important practical problems
 - production, approximating the solution of inconsistent equations, manufacturing, network design, flow control, resource allocation.
 - solving an LP is often an important component of solving or approximating the solution to an **integer linear programming problem**.
- Can be solved in poly-time, the simplex algorithm works very well in practice.
- One problem where you really do not want to write your own code.

LP-based approximations

- We don’t know any polynomial-time algorithm for any NP-complete problem
- We know how to solve LP in polynomial time
- We will see that LP can be used to get approximate solutions to some NP-complete problems.

Weighted Vertex Cover

Input: Graph $G=(V,E)$ with non-negative weights $w(v)$ on the vertices.

Goal: Find a minimum-cost set of vertices S, such that all the edges are covered. An edge is covered iff at least one of its endpoints is in S.

Recall: Vertex Cover is NP-complete. The best known approximation factor is $2 - (\log \log |V|/2 \log |V|)$.

Weighted Vertex Cover

Variables: for each \(v \in V \), \(x(v) \) – is \(v \) in the cover?

Min \(\sum_{v \in V} w(v)x(v) \)

s.t.

\(x(v) + x(u) \geq 1, \ \forall (u,v) \in E \)

\(x(v) \in \{0,1\} \ \forall v \in V \)

The LP Relaxation

This is not a linear program: the constraints of type \(x(v) \in \{0,1\} \) are not linear.

Such problems (LP’s with integrality constraints on variables) are called integer linear programs (IP). Solving IP’s is an NP-hard problem.

However, if we replace the constraints \(x(v) \in \{0,1\} \) by \(x(v) \geq 0 \) and \(x(v) \leq 1 \), we will get a linear program.

The resulting LP is called a Linear Relaxation of IP, since we relax the integrality constraints.

LP Relaxation of Weighted Vertex Cover

Min \(\sum_{v \in V} w(v)x(v) \)

s.t.

\(x(v) + x(u) \geq 1, \ \forall (u,v) \in E \)

\(x(v) \geq 0, \ \forall v \in V \)

\(x(v) \leq 1, \ \forall v \in V \)

LP Relaxation of Weighted Vertex Cover - example

Consider the case in which all weights are 1.

An optimal VC has cost 2 (any two vertices)

An optimal relaxation has cost 3/2 (for all three vertices \(x(v) = 1/2 \))

The LP and the IP are different problems. Can we still learn something about Integer VC?
Why LP Relaxation Is Useful?

The optimal value of LP-solution provides a bound on the optimal value of the original optimization problem. \(\text{OPT}(LP) \) is always better than \(\text{OPT}(IP) \) (why?)

Therefore, if we find an integral solution within a factor \(r \) of \(\text{OPT}_{LP} \), it is also an \(r \)-approximation of the original problem.

These can be done by “wise” rounding.

Approximation of Vertex Cover Using LP-Rounding

1. Solve the LP-Relaxation.
2. Let \(S \) be the set of all the vertices \(v \) with \(x(v) \geq 1/2 \).
 Output \(S \) as the solution.

Analysis: The solution is feasible: for each edge \(e=(u,v) \),
 either \(x(v) \geq 1/2 \) or \(x(u) \geq 1/2 \)

The value of the solution is:
\[
\sum_{v \in S} w(v) = \sum_{v|x(v) \geq 1/2} w(v) \leq 2\sum_{v} w(v)x(v) = 2\text{OPT}_{LP}
\]

Since \(\text{OPT}_{LP} \leq \text{OPT}_{VC} \), the cost of the solution is \(\leq 2\text{OPT}_{VC} \).

The Simplex Method

- **Start with LP into standard form.**
- **Phase I:** Assume \(x = 0 \) is a feasible solution, that is, \(0 \) is in the feasible region. If not, then an auxiliary simplex method is used to start find a feasible solution (more later).
- **Phase II:** Use the “slack” version of the LP to move from corner to corner along the edges of the feasible region. Technically, we’ll see how to move from one slack version of the LP to another to achieve this.
- **When reach a local maximum** you’ve found the optimum.
Phase II

Objective function
x=0
Constraint
Feasible region
y=0
Current feasible maximum

Objective function
x=0
Constraint
Feasible region
y=0
Current feasible maximum

Simplex Algorithm: An Example in 3D

Maximize $5x + 4y + 3z$
subject to
$\begin{align*}
2x + 3y + z &\leq 5 \\
4x + y + 2z &\leq 11 \\
3x + 4y + 2z &\leq 8 \\
x, y, z &\geq 0
\end{align*}$

Convert inequalities into equalities by introducing slack variables a, b, c.
Define:
$\begin{align*}
a &= 5-2x-3y-z \\
b &= 11-4x-y-2z \\
c &= 8-3x-4y-2z \\
F &= 5x+4y+3z
\end{align*}$
Initial State of Simplex

Nonbasic Basic Objective
\(\begin{align*}
& x = y = z = 0, \quad a = 5, \quad b = 11, \quad c = 8, \quad F = 0 \\
& a = 5 - 2x - 3y - z \\
& b = 11 - 4x - y - 2z \\
& c = 8 - 3x - 4y - 2z \\
& F = 5x + 4y + 3z
\end{align*} \)

Choose a Pivot and Tighten

Nonbasic Basic Objective
\(\begin{align*}
& x = y = z = 0, \quad a = 5, \quad b = 11, \quad c = 8, \quad F = 0 \\
& a = 5 - 2x - 3y - z \quad x \leq 5/2 \quad \text{most stringent!} \\
& b = 11 - 4x - y - 2z \quad x \leq 11/4 \\
& c = 8 - 3x - 4y - 2z \quad x \leq 8/3 \\
& F = 5x + 4y + 3z
\end{align*} \)

Remove Pivot From RHS

\(\begin{align*}
& a = y = z = 0, \quad x = 5/2, \quad b = 1, \quad c = 1/2, \quad F = 25/2 \\
& a = 5 - 2x - 3y - z \quad x = 5/2 - 3/2 y - 1/2 z - 1/2 a \\
& b = 11 - 4x - y - 2z \quad b = 1 + 5y + 2a \\
& c = 8 - 3x - 4y - 2z \quad c = 1/2 + 1/2 y - 1/2 z + 3/2 a \\
& F = 5x + 4y + 3z \quad F = 25/2 - 7/2 y + 1/2 z - 5/2 a
\end{align*} \)

Choose a Pivot and Tighten

\(\begin{align*}
& a = y = z = 0, \quad x = 5/2, \quad b = 1, \quad c = 1/2, \quad F = 25/2 \\
& x = 5/2 - 3/2 y - 1/2 z - 1/2 a \quad z \leq 5 \\
& b = 1 + 5y + 2a \quad z \leq \infty \\
& c = 1/2 + 1/2 y - 1/2 z + 3/2 a \quad z \leq 1 \quad \text{most stringent!} \\
& F = 25/2 - 7/2 y + 1/2 z - 5/2 a \quad \text{Pivot is } z
\end{align*} \)
Remove Pivot from RHS

<table>
<thead>
<tr>
<th>Nonbasic</th>
<th>Basic</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = y = c = 0, x = 2, b = 1, z = 1, F = 13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
x &= \frac{5}{2} - \frac{3}{2}y - \frac{1}{2}z - \frac{1}{2}a & \Rightarrow x &= 2 - 2y - 2a + c \\
b &= 1 + 5y + 2a & \Rightarrow b &= 1 + 5y + 2a \\
c &= \frac{1}{2} + \frac{1}{2}y - \frac{1}{2}z + \frac{3}{2}a & \Rightarrow c &= 1 + y + 3a - 2c \\
F &= 25/2 - 7/2y + 1/2z - 5/2a & \Rightarrow F &= 13 - 3y - a - c
\end{align*}
\]

No way to increase F so we’re done

Final Solution

Original Problem
Maximize 5x + 4y + 3z
subject to
\[
\begin{align*}
2x + 3y + z & \leq 5 & \text{tight} \\
4x + y + 2z & \leq 11 & \text{not tight} \\
3x + 4y + 2z & \leq 8 & \text{tight} \\
x, y, z & \geq 0.
\end{align*}
\]

Solution: x = 2, y = 0, z = 1, F = 13

Finding a Feasible Solution

• Suppose that 0 is not feasible, then Phase 1 finds a feasible solution in terms of the basic variables.

Maximize \(c_1x_1 + c_2x_2 + \ldots + c_nx_n \)
subject to \(\sum_{1 \leq j \leq n} a_{ij}x_j \leq b_i \), \(i = 1..m \)
\(x_j \geq 0 \), \(j = 1..n \)

Ignore the objective function

Maximize \(-x_0\)
subject to \(\sum_{1 \leq j \leq n} a_{i1}x_1 - x_0 \leq b_i \), \(i = 1..m \)
\(x_1 \geq 0 \), \(j = 0..n \)

Feasible solution exist only if maximum has \(x_0 = 0 \)

Example

Maximize 2x - y
subject to
\[
\begin{align*}
2x - y & \leq 2 \\
x - 5y & \leq -4 \\
x, y & \geq 0.
\end{align*}
\]

\(x = y = 0 \) is not a feasible solution
Auxiliary LP

Maximize \(-z\)
subject to
\[\begin{align*}
2x - y - z & \leq 2 \\
x - 5y - z & \leq -4 \\
x, y, z & \geq 0.
\end{align*} \]

Move to Slack Form

Assuming \(x=y=0\), we need to make sure \(a,b > 0\)
\[\begin{align*}
a &= 2 - 2x + y + z & z & \geq -2 \\
b &= -4 - x + 5y + z & z & \geq 4 \quad \text{most stringent!} \\
F &= -z \\
\text{We do a pivot step with } z.
\end{align*} \]

Remove Pivot from RHS

\[\begin{align*}
x=y=b=0, & a = 6, z = 4, F = -4 \\
a &= 2 - 2x + y + z & \leq a = 6 - x - 4y + b \\
b &= -4 - x + 5y + z & \leq b = 4 + x - 5y + b \\
F &= -z & \leq F = -4 - x + 5y - b
\end{align*} \]

Choose a Pivot and Tighten

\[\begin{align*}
x=y=b=0, & a = 6, z = 4, F = -4 \\
a &= 6 - x - 4y + b & y & \leq 6/4 \\
z &= 4 + x - 5y + b & y & \leq 4/5 \quad \text{most stringent!} \\
F &= -4 - x + 5y - b
\end{align*} \]

Pivot is \(y\)
Remove Pivot from RHS

Nonbasic Basic Objective
\[x = z = b = 0, \quad a = 14/5, \quad y = 4/5, \quad F = 0 \]
\[a = 6 - x - 4y + b \]
\[z = 4 + x - 5y + b \]
\[F = -4 - x + 5y - b \]

Auxiliary LP is solved because there is no way to increase F.
Force z = 0 permanently.
Start Simplex with x = b = 0, a = 14/5, y = 4/5, and
F equal to the original F with nonbasic variables on right hand side

Starting the Simplex

Nonbasic Basic Objective
\[x = b = 0, \quad a = 14/5, \quad y = 4/5, \quad F = -4/5 \]
\[a = 14/5 - 9/5 x - 1/5 b \]
\[y = 4/5 + 1/5 x + 1/5 b \]
\[F = 2x - y = -4/5 + 9/5 x - 1/5 b \]

Original objective function

Class Exercise

• Complete the solving of this LP

Maximize \[2x - y \]
subject to \[2x - y \leq 2 \]
\[x - 5y \leq -4 \]
\[x, y \geq 0. \]

Choosing a Pivot

• Largest increase in F
• Largest positive coefficient
• First positive coefficient
Termination

• Technically, simplex can loop.
• Only so many choices for basic variables. Lack of termination can be detected.
• Termination is not usually a problem

LP Summary

• LP is widely used in practice.
• LP has a very nice theory.
• LP relaxation and rounding used in approximation algorithms
• Simplex method is a good method but has some pathological exponential cases.