
CSEP521-Winter07 Munirul Abedin

Evolutionary Algorithms and Genetic
Programming

"Creativity, it has been said, consists largely of re-arranging what we know in order to find out what we do not know."

George Kneller

So that’s what George Kneller said defining creativity, anyone could find many other different wordings for definition of

creativity, while vast majority ends up meaning more or less same, “ability to create something new …”. But I guess in usual

sense we also want that new thing to be something meaningful, if not

useful. Often we define spark of creativity when we see spectacular

inventions, non-obvious thinking pattern, like those of Leonardo da Vinci.

Now the question is this creativity something that belongs to human only?

Well, if the definition says creating something new demonstrates

creativity, then other animals definitely have it. Like Chimpanzee is known

to use tools, in lab environment Rats can solve maze. Shouldn’t these be

considered as creativity as well. Probably yes or may be of course yes. But

we would also acknowledge that no Chimpanzee is known to have

designed a helicopter like Leonardo did few hundred years back. As far as

we know such level of creativity only belongs to members of human

species. As human invented machines grow in computational power,

surpassing human in many order of magnitude in their speed, a question

arises how long computers will play dumb. Will there be a point when computers will be able to invent useful things, and

quality wise those inventions will be as good as or better than their human counterparts.

This is an important possibility likely to gain momentum is next decade or two. Exponential growth in nanotechnology and

robotics that is taking place now, and expected to continue in next decade should open many avenues where machines are

creative, and will be used to solve some of the original complex problems with their inventiveness.

One such avenue is use of Evolutionary Algorithms or Computation that

clearly demonstrates machines ability to come up with creative

solutions. Before I go on defining what evolutionary computation is or

how it works, let’s visit the Tone Discriminator evolved by Adrian

Thompson’s
1
 machine in 1996. It uses fewer than 40 programmable logic

gates, and no clock signal in an FPGA (Field Programmable Gate Array).

This is an extremely small design for such a device, no known human

designed such device exists that uses this little number of gates. Applying

laws of evolution machine has come up with this design in roughly 5000

iterations, and it works perfectly. The interesting part is there appears to

be some components in the board that are not connected with the rest

of circuitry in any of the ways, while still influences overall operation.

Figure below is from Adrian’s paper, where the gray cells are not directly

connected still are non-removable part of the Tone Discriminator. It’s not well

understood how these gray cells are influencing, may be their magnetic field

Figure 1: Leonardo's flying machine, should
computer be able to have such ingenuity?

Figure 2: Original circuit

CSEP521-Winter07 Munirul Abedin

helps (which clearly a human designer won’t consider), or something to

do with the electrical load. Anyway the point is this evolutionary

algorithm is able to design a circuit and outperform human in creativity.

Definitions
There are several meta-heuristic algorithms known today in computer science, including random optimization, simulated

annealing, even greedy algorithm. One of them is evolutionary algorithms. They use mechanisms inspired by biological

evolution, like reproduction, mutation, recombination and natural selection. Usually the problem space is described by a

set of genome, then operators like mutation, reproduction are applied to create candidate solutions, and finally a cost

function determines which solution to retain (fitness). These operations are applied repeated times and due to natural

selection, candidate solutions improve over time.

Based on implementation details evolutionary algorithm may be divided into several categories, one being Genetic

Algorithms, one other Genetic Programming among few more.

Genetic Programming gives solutions that are in the form of computer program. Fitness of the program is determined by

their ability to solve a computational problem.

There has been many interesting solutions that were provided by evolutionary algorithms like the one example I gave

above. Some of the solutions obtained by genetic programming are as good as already patented human inventions. I will

discuss more on this later.

Basics of Genetic Programming
Genetic programming can be thought as an automated invention machine which works by applying evolutionary algorithms

in the space of computer programs. To illustrate an example let’s have a simple program written in C:

int Add(int a, int b)

{

 int t = MAX_INT - a;

 if (t < b)

 return 0;

 else

 return (a + b);

}

Figure 4: Evolved effective circuit Figure 3: Circuit board used

CSEP521-Winter07 Munirul Abedin

Notice that we can construct a tree for this routine:

Or: (IF (< (- MAX_INT a) b) 0 (+ a b))

Given this type of construction we can create random programs using available functions such as +, -, *, /, %, IF_ELSE, along

with terminals like a, b, or random constants. Random programs are syntactically valid, executable but could be of different

size and shapes.

To use Genetic Programming we take an objective (such as find a computer program with one input, where the output is

equal to input), figure out a terminal set, and a function set and then create a fitness function (for above objective we can

have fitness as the absolute value of the difference between input and output). Once these preparatory steps are complete:

 Initial population of random programs are created, such as we can have (for above objective):

 Apply genetic operations based on their fitness, so a more fit individual gets more priority (for example(d) here wil

get more priority):

o Reproduction: copying individual as is.

o Mutation: changing randomly picked entire sub-tree

o Crossover: crossing nodes between two individual

o Architecture altering operations

 With the new population iterate the process over and over, until reasonable solution is

found.

So this is briefly how genetic programming works. While the process appears fairly simple, it can give

remarkable results in practice. John Koza
2,3

 at Stanford (widely known as the father of GP) has shown many applications of

GP in last few decades. Most of the information here I have presented is based on his papers.

A more complex program would typically make use of additional improvements like:

 Reuse of code by subroutine.

 Data structures could be added like Stacks, Queues, Lists, Rings.

 Automatically defined loops (ADL).

 Automatically defined recursions (ADR).

Figure 6:Mutation
in (c) at 2 position

Figure 5:Program Tree

CSEP521-Winter07 Munirul Abedin

Other interesting techniques include

Subroutine creation, deletion, argument

duplication, branch duplication, all of

these can create seemingly complex

programs to solve a particular problem.

A GP Example: Circuit

Synthesis
This has been demonstrated by John Koza.

Basic components are Registers,

Capacitors, Inductors, Diodes, or

Transistor. There are several topology

modifying functions such as

SERIES/PARALLEL division, VIA or FLIP.

There would be some Development

Controlling functions needed for circuit growth (see figure below) like END, NOP, SAFE_CUT etc.

Once we have the preprocessing ready we can start with a program tree and an

embryonic circuit, try evaluating its fitness. In this case circuit simulator is used to find

the result of designed circuit. So for example if a low pass filter is tried to generate (or

invent to be precise), GP algorithm ends up with a circuit that is surprisingly similar to

George Campbell of AT&T invented in 1917 (US Patent 1227113). Genetic program

also designs another circuit which is already known as Zobel filter (after Otto Zobel, as

the inventor in 1925).

In the end many 20
th

 century patented inventions were generated from genetic

algorithm. Afterwards running the algorithm resulted in several 21
st

 century inventions

to be invented again by the machine.

What strikes me most is that Genetic Programming goes on to invent several novel

circuit designs which are yet to be invented by a human.

Figure 8:Parallel division Figure 8b: Developmental GP

Program Tree

+ IN OUT
z0

Embryonic Circuit

Fully Designed Circuit (NetGraph)

Circuit Netlist (ascii)

Circuit Simulator (SPICE)

Circuit Behavior (Output)

Fitness

Figure 7:Genetic Program with loops and recursions

Figure 9: Fitness calculation

CSEP521-Winter07 Munirul Abedin

Other examples
And of course it’s not limited to circuit designs here’s as example of re-engineering biological cell metabolic pathway.

NASA evolved a satellite antenna
4
 (launched in 2004) using Genetic Programming. Apparently there is a whole list of

applications where Genetic Programming gives the known optimum results compare to other existing algorithms:

 Mechanical design, control

 Bio-informatics

 Classification

 Data mining

 System Identification

 Forecasting

 Analyzing Genome, Protein data

 Application in Financial Sector

 Areas where human programming is difficult like, parallel programming,

cellular automata, swarm intelligence.

Remarks
One of the disadvantages of Genetic Programming would be the time required find a solution. A decades back it would have

been difficult to solve some of the problems due to lack of computing power. To re-invent some of the 21
st

 century patents

using Genetic programming takes 1000 Pentium II level machines substantial amount of time. And no free lunch theorem

shows while genetic programming is able to find optimum solution some of the times, they can be outperformed by more

field specific algorithms. In the end Genetic Programming is an interesting area in computer science particularly when

problem space not clearly understood or less developed, it can come up with spectacular results, and in many cases finding

field specific algorithm could be daunting, may be Genetic Algorithm itself could be used for that.

References
1. Artificial Evolution in the Physical World. Evolutionary Robotics: From Intelligent Robots to Artificial Life 1997: Adrian

Thompson.

2. Koza, John R. 1990a. Genetic Programming: A Paradigm for Genetically Breeding Populations of Computer Programs to Solve

Problems. Stanford University Computer Science Department technical report STAN-CS-90-1314. June 1990.

3. Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William, Yu, Jessen, and Lanza, Guido. 2003. Genetic

Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers. ISBN 1-4020-7446-8.

4. An Evolved Antenna For Deployment On Nasa's Space Technology 5 Mission: Jason D. Lohn, Gregory S Hornby, Derek S. Linden.

Figure 11: Original metabolic pathway

Figure 10: Evolved new pathway

Figure 12: NASA Evolved Antenna

