
Algorithms Winter 2007
Take Home Exam Instructor: Anna Karlin
Due on March 7.

Instructions: This is a take home exam with the following rules and instructions:

• The work you turn in should be entirely your own. You are not allowed to collaborate or
discuss the problems, solutions, or any aspect relating to this exam with your classmates, or
anyone else, except the course staff. If you are having any difficulty understanding any of the
questions or think something is ambiguous, come talk to or send an email to the course staff.

• Please refer to the grading guidelines sheet and make sure you follow the guidelines laid out
there. You do not need to prove anything that is proven in the book or in class. When you
refer to something in the book, a page number is useful.

• Devote sufficient time for writing your solutions in a clear manner. We are looking for
correctness, precision and clarity of exposition.

Questions:

1. Your friend is working as a camp counselor, and he is in charge of organizing activities for
a set of campers. One of his plans is the following mini-triathlon exercise: each contestant
must swim 20 laps in a pool, then bike 10 miles, then run 3 miles. The plan is to send the
contestants out in a staggered fashion, via the following rule: the contestants must use the
pool one at a time. In other words, first one contestant swims the 20 laps, gets out and starts
biking. As soon as this first person is out of the pool, a second contestant begins swimming
the 20 laps; as soon as he/she’s out and starts biking, a third contestant begins swimming...
and so on.) Biking and running can be done in parallel.

Each contestant, say the ith, has a projected swimming time si (the expected time it will
take him or her to complete the 20 laps), a projected biking time bi (the expected time it
will take him or her to complete the 10 miles of bicycling), and a projected running time ri

(the expected time it will take him or her to complete the 3 miles of running). Your friend
wants to decide on a schedule for the triathlon: an order in which to sequence the starts of
the contestants. Let’s say that the completion time of a schedule is the earliest time in which
all contestants will be finished wiht all three legs of the triathlon, assuming they each spend
exactly their projected swimming, biking, and running times on the three parts.

What’s the best order for sending people out, if one wants the whole competition to be over
as soon as possible? More precisely, give a greedy algorithm that produces a schedule whose
completion time is as small as possible. Prove the correctness of your algorithm and analyze
its running time.

Example: 2 contestants, with s1 = 10, b1 = 5, r1 = 10, and s2 = 1, b1 = 20, r1 = 30. The
best schedule is to send the second contestant first, for a completion time of 51.

2. Recall the problem of finding the number of inversions in an array (Section 5.3). Recall that
we are given a sequence of n numbers a1, . . . , an, which we assume are all distinct, and we
define an inversion to be a pair i < j such that ai > aj.



We motivated the problem of counting inversions as a good measure of how different two
orderings are. However, one might feel that this measure is too sensitive. Let’s call a pair a
significant inversion if i < j and ai > 2aj . Give an O(n log n) algorithm to count the number
of significant inversions. Prove the correctness of your algorithm and analyze its running
time.

3. You’re helping to run a high-performance computing system capable of processing several
terabytes of data per day. For each of the n days, you’re presented with a quantity of data:
on day i, you’re presented with xi terabytes. For each terabyte you process, you receive a
fixed revenue, but any unprocessed data becomes unavailable at the end of the day (i.e., you
can’t work on it on any future day).

You can’t always process everything each day because you’re constrained by the capabilities
of your computing system, which can only process a fixed number of terabytes in a given day.
In fact, it’s running some one-of-a-kind software that, while very sophisticated, is not totally
reliable, and so the amount of data you can process goes down with each day that passes
since the most recent reboot of the system. On the first day after a reboot, you can process
s1 terabytes, on the second day s2 and so on, up to sn. We assume that s1 > s2 > s3 > . . . >

sn > 0. (Of course, on day i, you can only process up to xi terabytes, regardless of how fast
your system is.) To get the system back to peak performance, you can choose to reboot it;
but on any day you choose to reboot the system, you can’t process any data at all.

The problem: Given the amounts of available data x1, x2, . . . , xn for the next n days,
and given the profile of your system as expressed by s1, s2, . . . , sn (and starting from a freshly
rebooted system on day 1), choose the days on which you’re going to reboot so as to maximize
the total amount of data you process.

Example: Suppose n = 4, that (x1, x2, x3, x4) = (10, 1, 7, 7) and (s1, s2, s3, s4) = (8, 4, 2, 1).

Then the best solution is to reboot on day 2 only. In this way, you process 8 terabytes on
day 1, then 0 on day 2, then 7 on day 3, then 4 on day 4, for a total of 19. (Note that if you
didn’t reboot at all, you’d process 8 + 1 + 2 + 1 = 12, and other rebooting strategies give you
less than 19 as well.

(a) Give an example of an instance with the following properties:

• There is a “surplus” of data in the sense that xi > s1 for every i.

• The optimal solution reboots the system at least twice.

In addition to the example, you should say what the optimal solution is. You do not
need to provide a proof that it is optimal.

(b) Give a polynomial time dynamic programming algorithm that takes values for x1, . . . , xn

and s1, s2, . . . , sn and returns the total number of terabytes processed by the optimal
solution, and the days on which reboots should occur. Prove the correctness of your
algorithm and analyze its running time.

4. Suppose you’re acting as a consultant for the port authority of a small Pacific Rim nation.
They’re currently doing a multi-billion-dollar business per year, and their revenue is con-
strained almost entirely by the rate at which they can unload ships that arrive in the port.



Handling hazardous materials adds additional complexity to what is, for them, an already
complicated task. Suppose a convoy of ships arrives in the morning and delivers a total of n

cannisters, each containing a different kind of hazardous material. Standing on the dock is a
set of m trucks, each of which can hold up to k containers.

Here are two related problems, which arise from different types of constraints that might be
placed on the handling of the hazardous materials. For each of the two problems, either give
a polynomial time algorithm to solve it (complete with proof of complexity and analysis of
running time) or give a proof that it is NP-complete (Suggestion: 3-Coloring).

(a) For each cannister, there is a specified subset of the trucks in which it may be safely
carried. Is there a way to load all n cannisters into the m trucks so that no truck is
overloaded, and each container goes in a truck that is allowed to carry it?

(b) In this different version of the problem, any cannister can be placed in any truck; however,
there are certain pairs of cannisters that cannot be placed together in the same truck.
(The chemicals they contain may react explosively if brought into contact.) Is there a
way to load all n cannisters into the m trucks so that no truck is overloaded, and no two
cannisters are placed in the same truck when they are not supposed to be?


