CSEP 521
Applied Algorithms
Spring 2005

Research Projects
of
Richard Ladner

## Outline for Tonight

- Reduction of subset sum optimization to subset sum decision.
- Windows scheduling for periodic jobs.
- Student Evaluations
- Cache efficient dynamic programming
- Tactile graphics


## Windows Scheduling

## with

Amotz Bar-Noy
Tami Tamir

## Applications

- Video broadcast scheduling
- On one channel a video can be broadcast so that the worst case waiting time is strictly smaller than the video length
- Periodic maintainance
- Maintainance must be do at least so often
- Push systems
- Ads, sports scores, DJ average must be displayed at least so often


## Basic Lower Bound

- Let $W=W_{1}, W_{2}, \ldots, W_{n}$ and define

$$
h(W)=\sum_{i=1}^{n} \frac{1}{w_{i}}
$$

- Theorem: $\lceil\mathrm{h}(\mathrm{W})\rceil$ is a lower bound on the number of number of processors needed to schedule W.
- Proof: Job i requires $1 / w_{i}$ of a processor
$\qquad$


## Windows Scheduling Problem Definition

- n unit length repetitive jobs with positive integer windows $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}$
- m processors.
- Scheduling goal: assign jobs on processors so that
- Job i is scheduled on some processor at least once every $w_{i}$ time slots.
- No two jobs are scheduled in the same time slot on the same processor.
- Optimization goal: Given $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}$ minimize the number of processors.


## Example 1

- $W=1,2,3$ and $m=2$

```
P(:
P
```

- This is a perfect schedule, that is, each job i is scheduled every $w_{i}^{\prime}$ slots for $w_{i}^{\prime} \leq w_{i}$
- 3 is scheduled more often than its window requirement
- $W=4,5,6,7,8$ and $m=1$
$P_{1}$ :

| 4 | 6 | 5 | 7 | 4 | 8 | 5 | 6 | 4 | 7 | 5 | 8 | 4 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Tree Representation of Perfect Schedules


Tree Representation of Perfect Schedules

| 4 | 5 | 4 | 5 | 4 | 5 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



Each node is scheduled periodically every $p$ times where $p$ is the product of degrees of its ancesters.

Tree Representation of Perfect Schedules

| 4 | 6 | 5 | 7 | 4 | 8 | 5 | 6 | 4 | 7 | 5 | 8 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



## The Rest of the Talk

- Buffer scheme
- Approximation
- Video-on-demand


## Are Perfects Schedules Sufficient?

- No!
- $W=3,5,8,8,8$ and $m=1$
- There is no perfect schedule on one processor
- Non-perfect windows schedule

| 3 | 5 | $8 a$ | 3 | $8 b$ | 5 | 3 | $8 c$ | $8 a$ | 3 | 5 | $8 b$ | 3 | $8 c$ | 5 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | $8 a$ | $8 b$ | 3 | 5 | 8 c |  |  |  |  |  |  |  |  |  |  |

- Non-perfect schedules can be found using a search technique call the buffer scheme.


## Impossibility of Perfect $3,5,8,8,8$

- 3 must have period 1,2, or 3
- But, $1 / 2+1 / 5+3 / 8>1$
- Hence 3 has period 3 .
- 5 must have period $1,2,3,4$, or 5
- But, $1 / 3+1 / 3+3 / 8>1$
- 5 must have period 4 or 5 .
- But, $\operatorname{gcd}(4,3)=1$ and $\operatorname{gcd}(5,3)=1$, Chinese remainder theorem implies there must be a slot in common to the schedules of both 4 and 3 , and 5 and $3 . \Rightarrow \Leftarrow$


## Buffer Scheme

- A technique for searching all possible schedules.
- Can find non-perfect schedules.
- Can be used to prove impossibility.
- By adding deterministic rules it can be used as an on-line scheduler (jobs can inserted and deleted at each slot).


## Buffer Scheme by Example

- If job $i$ is in buffer location $j$, then $i$ must be scheduled within j slots.
- Non-deterministic
- Complete - every schedule can be modeled


Buffer Scheme Example
0



## Buffer Scheme Example




## Buffer Scheme Properties

- Generalize to multiple processors.
- Schedule $\leq m$ at each slot.
- Non-deterministic finite state machine.
- A cycle reachable from the start state is a schedule.
- Exhaustive search leads to impossibility.
- Requires early dead-end detection for speed
- By adding a priority scheme it can be made into an on-line windows scheduling algorithm.


## Approximate Windows Scheduling

- Given W, define $\mathrm{H}(\mathrm{W})$ to be the minimum number of processors needed to schedule W.
- Theorem: $\mathrm{H}(\mathrm{W})=\mathrm{h}(\mathrm{W})+\mathrm{O}(\log (\mathrm{h}(\mathrm{W}))$.
- The schedule can be found in polynomial time.
- Corollary: As $\mathrm{h}(\mathrm{W}) \rightarrow \infty$, windows scheduling is polynomial time approximable with approximation ratio 1.


## Special Case: Powers of Two

- Special Case: if all $\mathrm{w}_{\mathrm{i}}$ are powers of two then

$$
\mathrm{H}(\mathrm{~W})=\lceil\mathrm{h}(\mathrm{~W})\rceil=\left\lceil\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{1}{\mathrm{w}_{\mathrm{i}}}\right\rceil
$$

- Example: $\mathrm{W}=2,2,2,4,8,16$

$\left.$| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 2 \right\rvert\, 

$\qquad$

## Upper Bound by Rounding

$$
\mathrm{H}(\mathrm{~W}) \leq\lceil 2 \mathrm{~h}(\mathrm{~W})\rceil
$$

- Proof: Schedule page i every $2^{\mathrm{k}}$ slots where $2^{\mathrm{k}}$ is the largest power of two $\leq \mathrm{w}_{\mathrm{i}}$. (Rounding)
- Example: $W=3,3,4,12$

Use W' = 2, 2,4,8 for scheduling



## Asymptotic Upper Bound

$H(W) \leq h(W)+e \cdot \ln (h(W))+\eta$
where $h(W)=\sum_{i=1}^{n} \frac{1}{w_{i}}>1 \begin{array}{ll}\mathrm{e} \approx 2.71828 \\ \eta \approx 7.3595\end{array}$

## Main Ideas in the Upper Bound

- Expand Special Case: If all $w_{i}$ are of the form $u 2^{\mathrm{k}}$ for a fixed u , then

$$
\mathrm{H}(\mathrm{~W})=\lceil\mathrm{h}(\mathrm{~W})\rceil
$$

- Multiple Rounding
- Schedule some windows to fill processors and schedule the residual recursively
- Do all this "optimally"


## Multiple Rounding

$W=2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19$
Round using 3,4,5
$W_{3}=3,6,7,12,13,14,15$
$\mathrm{W}^{\prime}=3,6,6,12,12,12,12$
$W_{4}=2,4,8,9,16,17,18,19$
$W_{4}^{\prime}=2,4,8,8,16,16,16,16$
$W_{5}=5,10,11$
$W_{5}^{\prime}=5,10,10$

## Find Residual

$W=2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19$
Round using 3,4,5
$\mathrm{W}_{3}=3,6,7,12,13,14,15$
$W_{3}^{\prime}=3,6,6,12,12,12,12$
1 processo
$W_{4}=2,4,8,9,16,17,18,19$
$W_{4}^{\prime}=2,4,8,8,16,16,16,16$
$\mathrm{W}_{5}=5,10,11$
$W_{5}^{\prime}=5,10,10$

## Find Residual

$W=2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19$
Round using 3,4,5
$\mathrm{W}_{3}=3,6,7,12,13,14,15$
$W_{3}^{\prime}=3,6,6,12,12,12,12$
1 processor
$W_{4}=2,4,8,9,16,17,18,19$
$W_{4}^{\prime}=2,4,8,8,16,16,16,16$
1 processor + 16,17,18,19
$\mathrm{W}_{5}=5,10,11$
$W_{5}^{\prime}=5,10,10$

Find Residual
$W=2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19$
Round using 3,4,5
$W_{3}=3,6,7,12,13,14,15$
$W_{3}^{\prime}=3,6,6,12,12,12,12$
1 processor
$W_{4}=2,4,8,9,16,17,18,19$ $W_{4}^{4}=2,4,8,8,16,16,16,16$
$W_{5}=5,10,11$
$W_{5}^{\prime}=5,10,10$
0 processors $+5,10,11$

Solve Residual
$W^{r}=5,10,11,16,17,18,19$
Round using 2
$W_{2}=5,10,11,16,17,18,19 \quad 1$ processor $W_{2}^{\prime}=4,8,8,16,16,16,16$

Total is 3 processors, while simple rounding needs 4

Summary Asymptotic Bounds
$\lceil h(W)\rceil \leq H(W) \leq h(W)+e \cdot \ln (h(W))+\eta$

- Upper bound is polynomial time
- Rounding sets optimized for the construction


## Video-on-Demand Systems

- A database of media objects (movies).
- A limited number of channels.
- Movies are broadcast based on customer demand

- The goal: Minimizing clients' maximum waiting time (delay).
- Broadcasting schemes: For popular movies, the system does not wait for client requests, but broadcasts these movies continuously.


## Backgound

- Pyramid Broadcasting, [Viswanathan, Imielinski, 96]:
- Partition the movie into segments. Early segments are transmitted more frequently.
- As segments are received either playback or buffer for future playback


Note that $W=1,2,3$ and $m=2$

## Windows Sceduling for Video

- Shifting, [Bar-noy, Ladner, Tamir, 2003], Polyharmonic Broadcasting [Paris, 1999]
- Video divided into s equal size segments.
- For a constant d>0 define $W=d, d+1, d+2, d+s-1$, that is, $w_{i}=$ d+i-1
- Theorem: A windows schedule for $W$ on $m$ processors is a video schedule with s segments on m channels with delay $\mathrm{d} / \mathrm{s}$.


## Example

- $W=4,5,6,7,8$ and $m=1$ (c.f. Example 2)

Windows Schedule

| 4 | 6 | 5 | 7 | 4 | 8 | 5 | 6 | 4 | 7 | 5 | 8 | 4 | 6 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Video Schedule

| 1 | 3 | 2 | 4 | 1 | 5 | 2 | 3 | 1 | 4 | 2 | 5 | 1 | 3 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Delay $=4 / 5$

## Lower Bounds

- Lowerbound [Engebretsen, Sudan, 2002], [Gao,Kurose,Towsley, 2002], [Hu, 2001]
Delay for m channels is bounded below by

$$
\frac{1}{e^{m}-1}
$$

$1 /\left(e^{m-1}\right)$

| 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .582 | .157 | .052 | .019 | .007 | .002 |
| 35 min | 9.5 min | 3 min | 1 min | 25 sec | 7 sec |

## Limiting the Number of Segments

- Given s segments what is the best delay possible on one channel. Use the buffer scheme!

| segments range delay <br> 5 $4 . .8$ 0.800 <br> 6 $5 . .10$ 0.883 <br> 7 $5 . .11$ 0.714 <br> 8 $6 . .13$ 0.750 <br> $120^{\star}$ $75 . .194$ 0.625 |
| :--- |
| *Uses RR2 algorithm, <br> not buffer scheme |

## Additional Work

- Receive k channels out of m for video scheduling. [Evans, Kirkpatrick, 2004]
- On-line windows scheduling
- Buffer scheme - insertions and deletions
$-\mathrm{H}(\mathrm{W})+\mathrm{O}\left(\mathrm{H}(\mathrm{W})^{1 / 2}\right)$ - insertions only
- Windows scheduling with lengths
- Roughly a 2 -approximation algorithm


## Problem Statement

- Given $x_{1}, x_{2}, \ldots, x_{n}$ in nonassociative semiring
- Multiplication is nonassociative
- Additive inverses not required
- Find the sum of all ways $x_{1} x_{2} \ldots x_{n}$ can be completely parenthesized
- $n=4$
$x_{1}\left(\left(x_{2} x_{3}\right) x_{4}\right)+x_{1}\left(x_{2}\left(x_{3} x_{4}\right)\right)+\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)+\left(\left(x_{1} x_{2}\right) x_{3}\right) x_{4}+$ $\left(x_{1}\left(x_{2} x_{3}\right)\right) x_{4}$
- Examples of nonassociative semirings:
- Matrix Chain Product
- Context-free Language Recognition


## Standard Dynamic Programming Solution - CYK

- Runs in $O\left(n^{3}\right)$
- Poor cache behavior for large $n$
- Normalized Time = Time/ $n^{3}$



## The Cache

- Standard dynamic programming has poor cache locality
- Divide and conquer algorithms typically have good cache locality


## Outline

- The Cache
- Dynamic Programming
- Standard Dynamic Programming Solution CYK (Cocke, Younger, Kasami 1965)
- Valiant's Algorithm (1975)
- Experiments
- Timing comparison
- Cache misses

| The Cache |
| :---: |
| - Standard dynamic programming has poor |
| cache locality |
| - Divide and conquer algorithms typically |
| have good cache locality |

## Memory Hierarchy



## Standard Dynamic Programming

- Matrix of size $n+1$
- Input off the diagonal 0
- For $i=1$ to $n$
$D_{i-1, i}=x_{i}$
For $j=2$ to $n$
For $i=j-2$ to 0
For $k=i+1$ to $j-1$
$D_{i j}=D_{i j}+D_{i k} D_{k j}$



## Dynamic Programming

- Computing $D_{i j}$ requires accessing blue region
- Many cache misses if the matrix is large due to poor locality


54

## Valiant's Algorithm

- Valiant proved in 1975 that context-free language recognition could be done in $O\left(\mathrm{n}^{2.81}\right)$ using Strassen's matrix multiplication algorithm [1969]
- Current fastest Boolean matrix multiplication runs in $O\left(\mathrm{n}^{2.376}\right)$ due to Coppersmith and Winograd [1987;1990]
- Implies $O\left(\mathrm{n}^{2.376}\right)$ for context-free language recognition using Valiant's Algorithm


## Matrix Multiply and Accumulate

- Basic building block for the new algorithm.
- $U, W$, and $Z$ are square arrays of power of 2 size.

$$
U:=U+W \cdot Z
$$

## Blocked Matrix Multiply and Accumulate

- Reduces the number of cache misses
- Recursive
$\left[\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right]:=\left[\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right]+\left[\begin{array}{ll}W_{11} & W_{12} \\ W_{21} & W_{22}\end{array}\right]\left[\begin{array}{ll}Z_{11} & Z_{12} \\ Z_{21} & Z_{22}\end{array}\right]$
- 8 matrix multiplies
- $U_{11}$ is computed as
$U_{11}:=U_{11}+W_{11} Z_{11}$
$U_{11}:=U_{11}+W_{12} Z_{21}$


## Valiant's Algorithm

- View $X$ as blocked



## Valiant's Algorithm

- Directly applies only when $n=2^{k}$ - 1
- Matrix $X$ of size $n+1$
- $X^{+}$means the result of applying Valiant's algorithm to $X$


Star Function Input

- A helper function
- Precondition: upper left and lower right quadrants are finished.
- $X^{*}$ completes the dynamic program


61


## Star Function Result

- A helper function
- Precondition: upper left and lower right quadrants are finished.
- $X^{*}$ completes the dynamic program


62

## Valiant's Algorithm

- Second step: apply the Star Function $X:=X^{*}$
- The end of Valiant's algorithm
- But what is the Star Function?




## Star Function

- Second step:
- $X_{13}:=X_{13}+X_{12} X_{23}$
- $\square$ means unfinished




## Star Function

- Fifth Step:

Recursive Star call
$\left[\begin{array}{ll}X_{22} & X_{24} \\ & X_{44}\end{array}\right]:=\left[\begin{array}{ll}X_{22} & X_{24} \\ & X_{44}\end{array}\right]^{*}$

- Finishes $X_{24}$


69

## Star Function

- Fifth Step:
$X_{14}:=X_{14}+X_{12} X_{24}$




## Star Function

- Seventh Step:

Recursive Star call
$\left[\begin{array}{ll}X_{11} & X_{14} \\ & X_{44}\end{array}\right]:=\left[\begin{array}{ll}X_{11} & X_{14} \\ & X_{44}\end{array}\right]^{*}$

- Finishes $X_{44}$




## Time bounds

- $n$ refers to matrix size not problem size
- $T(n)$ : Valiant's algorithm
- $S(n)$ : Star function
- $M(n)$ : Block Matrix Multiplication
- All are $O\left(n^{3}\right)$

$$
\begin{aligned}
& T(n) \leq 2 T(n / 2)+S(n) \\
& S(n) \leq 4 S(n / 2)+4 M(n / 4) \\
& M(n) \leq 8 M(n / 2)
\end{aligned}
$$

## Cache-aware Algorithms

- Cache-oblivious algorithms do not depend on cache parameters
- Cache-aware algorithms have a tuning parameter depending on cache size, line size, etc


## Blocked Valiant's Algorithm

- Valiant's algorithm incurs overhead from recursive calls and blocked matrix multiplication
- Recursion unnecessary for small problems
- Make Valiant's algorithm cache-aware
- If matrix is sufficiently small use
- normal matrix multiplication
- CKY


## Experiments

- Compared
- Valiant's algorithm
- Blocked Valiant's algorithm
- Three variants of standard dynamic programming
- Time comparison
- Instruction Count
- Cache simulations using Valgrind
- 1 GHz AMD Athlon
- 64 KByte L1 data cache (2-way)
- 256 KByte L2 data cache (16-way)


## Time Comparison

- Normalized Time = Time/n ${ }^{3}$
- V256-64
- Blocked Valiant's algorithm
- $n \leq 256$ use CKY
- $n \leq 64$ use standard matrix multiplication



## Instruction Count

- Valiant's algorithm uses the most instructions
- Blocked Valiant's algorithm is near CK




## Conclusion

- Instruction count not the only important thing
- Cache misses matter
- Divide and conquer gives good cache behavior

Automatic Tactilization of Graphical Images

With
Matt Renzelman
Satria Krisnandi

## The Tactilization Problem

- Graphical images are heavily used in math, science and engineering textbooks and papers
- Line graphs and bar charts
- Diagrams
- Illustrations
- Tactual perception is the best modality for the blind to understand such images
- Tactilization of graphical images


## Outline

- Tactual Perception
- Overview of tactilization process
- Text segmentation
- Braille text placement
- Other subprojects
- Demonstration
- Currently done manually
- Labor-intensive and time consuming
- How much of this process can be automated?


## Tactile Perception

- Resolution of human fingertip: 25 dpi
- Tactual field of perception is no bigger than the size of the fingertips of two hands
- Color information is replaced by texture information
- Visual bandwidth is $10^{6}$ bits per second, tactile is $10^{2}$ bits per second


## Tiger Embosser

- 20 dpi (raised dots per inch)
- 7 height levels (only 3 or 4 are distinguishable)
- Prints Braille text and graphics
- Prints dot patterns for texture
- Invented by a blind man, John Gardner



## Key Problems

- Graphical images meant for the visual mode must be modified for the tactual mode.
- Text $\Rightarrow$ Braille
- Colors $\Rightarrow$ replace with textures or reduce number
- Area $\Rightarrow$ Larger for Braille text to fit
- Resolution $\Rightarrow$ Lower to 20 dpi
- Shading or 3-D effects $\Rightarrow$ replace with outlines
- Noise $\Rightarrow$ remove noise, enhance contrast
- Classification of graphical images for mass production
- Images in the same class require similar processes.


## Braille

- System to read text by feeling raised dots on paper (or on electronic displays). Invented in 1820s by Louis Braille, a French blind man.
a $\because$
b : :

$\because$ and $\because \%$ the $\because \%$ with $\because:$ mother $\because \because \because$
th $\because$ ch $\because$ gh $\because \quad \begin{gathered}\text { Critical fact: Fixed height } \\ \text { and width }\end{gathered}$
$Z \because \because \because \quad 3 \because \because \quad$ Mode characters: cap and num.
86


© 2003 Elsevier Science (USA). All rights reserved.
From Computer Architecture, A Quantitative Approach, Third Edition, by Hennessy and Patterson.



## Overall Process



## Finding Text

- Why not just use standard optical character recognition (OCR)?
- OCR is not effective for graphical images.



## Finding Text Letters

- Uses the following principles
- Text in an image is usually in one font
- Fonts are designed to have a uniform density at a distance.
- In the absence of noise an individual letter tends to be connected component of one color. Exceptions are i and j .
- Train on some simple features of letters. Connected components with similar features are also letters.


## Training/Finding

- Training:
- Sample the connected components and compute their features.
- Finding:
- For a new connected component compute its features.
- If there is a close enough match of features with some member of the database then declare the component to be a letter.
- Parameters
- How close is close enough
- How many slices


Step 1: training

- Number of components in training set: 271


[^0]98

## Finding Text Blocks

- Principles
- Most text tends to be in horizonal lines
- Some text is vertical
- Some text is diagonal
- We are developing methods that find lines using the centroids of the letters found.
- Minimum spanning tree
- Merge test using linear regression



## Group characters logically

- Extracting a set of isolated characters from an image is insufficient
- Need groups of Braille characters for easier placement
- Challenges
- Text can be at many angles
- Individual characters may be aligned along multiple axes


## Our approach

- Step 1: User provides training set - Software examines defining characteristics
- Step 2: Automatically find similar groups in remaining images
A. Minimum spanning tree


## Defining characteristics

- Inter-character spacing
- Line of best fit
- Perpendicular regression vs. linear regression
- Mean squared error
- Angle


Discard useless edges (2)

Discard inconsistent edges (3)


Final merge step (4)
Merge only if the resultant group is consistent

$\qquad$


## Classification of Text Boxes

- Text boxes of Braille will be of different size than the original text boxes
- Mode characters
- Contractions
- Braille is fixed width


113

## Justification Process

- Sort the upper left and lower right points of text boxes first by $x$ then by $y$. Use a plane sweep algorithm.
- Left justify - runs (in y) of text boxes with the same (or similar) left x coordinates.
- Right justify - runs (in y) of text boxes with the same (or similar) right $x$ coordinates.
- Center - otherwise


Scaling

- General Procedure
- Scale in y until the the text height is an acceptable Braille height
- Scale in $x$ until the Braille correctly justified fits
- The scale factor in $x$ and $y$ may differ, but the distorted image is usually readable.
- The Braille text is fully readable.
- Scaling procedure is not always successful because of limited paper size.
- Automatic abbreviations

Scaling Example




Color Replacement with Texture



[^0]:    Ch.1, Figure 23

