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Outline for Tonight

• Reduction of subset sum optimization to 
subset sum decision.

• Windows scheduling for periodic jobs.
• Student Evaluations
• Cache efficient dynamic programming
• Tactile graphics

3

Windows Scheduling

with
Amotz Bar-Noy

Tami Tamir
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Windows Scheduling 
Problem Definition

• n unit length repetitive jobs with positive integer 
windows w1,w2,…,wn

• m processors.
• Scheduling goal: assign jobs on processors so 

that
– Job i is scheduled on some processor at least once 

every wi time slots.
– No two jobs are scheduled in the same time slot on 

the same processor.

• Optimization goal: Given w1,w2,…,wn minimize 
the number of processors.
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Applications

• Video broadcast scheduling
– On one channel a video can be broadcast so 

that the worst case waiting time is strictly 
smaller than the video length

• Periodic maintainance
– Maintainance must be do at least so often

• Push systems 
– Ads, sports scores, DJ average must be 

displayed at least so often

6

Basic Lower Bound

• Let W = w1,w2,…,wn and define

• Theorem: �h(W)� is a lower bound on the 
number of number of processors needed 
to schedule W.

• Proof: Job i requires 1/wi of a processor

�
=

=
n

1i iw
1

h(W)
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Example 1

• W = 1,2,3 and m = 2

• This is a perfect schedule, that is, each job i is 
scheduled every w’i slots for w’i < wi

• 3 is scheduled more often than its window 
requirement

P1: 11111 1

2 2 2 333P2:

…

…
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Example 2

• W = 4,5,6,7,8 and m = 1

P1:

…4 44 46 7 8 6 7 8 655 5 5

9

Tree Representation of Perfect 
Schedules

…

10

Tree Representation of Perfect 
Schedules

…
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Tree Representation of Perfect 
Schedules

…

4 5

4 44 455 5 5

Each node is scheduled periodically every p times where p
is the product of degrees of its ancesters.
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Tree Representation of Perfect 
Schedules

…

6 874 5

4 44 46 7 8 6 7 8 655 5 5
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The Rest of the Talk

• Buffer scheme
• Approximation
• Video-on-demand

14

Are Perfects Schedules 
Sufficient?

• No!
• W = 3,5,8,8,8 and m = 1
• There is no perfect schedule on one processor
• Non-perfect windows schedule

• Non-perfect schedules can be found using a 
search technique call the buffer scheme.

3 5 8a 3 8b 5 3 8c 8a 3 5 8b 3 8c 5 3 8a 8b 3 5 8c …
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Impossibility of Perfect 3,5,8,8,8 

• 3 must have period 1,2, or 3
• But, 1/2 + 1/5 + 3/8 > 1
• Hence 3 has period 3.
• 5 must have period 1,2,3,4, or 5
• But, 1/3 + 1/3 + 3/8 > 1
• 5 must have period 4 or 5.
• But, gcd(4,3) = 1 and gcd(5,3) = 1, Chinese 

remainder theorem implies there must be a slot 
in common to the schedules of both 4 and 3, and 
5 and 3. �⇐

16

Buffer Scheme

• A technique for searching all possible 
schedules.

• Can find non-perfect schedules.
• Can be used to prove impossibility.
• By adding deterministic rules it can be 

used as an on-line scheduler (jobs can 
inserted and deleted at each slot).
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Buffer Scheme by Example

• If job i is in buffer location j, then i must be 
scheduled within j slots.

• Non-deterministic
• Complete - every schedule can be modeled
• Initial configuration

3 8a

8b

8c

5

1 2 3 4 5 6 7 8

Buffer
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Buffer Scheme Example

3 8a

8b

8c

5

1 2 3 4 5 6 7 8

0
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Buffer Scheme Example

3 8a

8b

8c

5

1 2 3 4 5 6 7 8

5

1
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Buffer Scheme Example

3 8a8b

8c

5

1 2 3 4 5 6 7 8

5

2

8a
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Buffer Scheme Example

3 8a8b

8c5

1 2 3 4 5 6 7 8

5

3

8a 3
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Buffer Scheme Example

3 8a8b

8c5

1 2 3 4 5 6 7 8

5

4

8a 3 x
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Buffer Scheme Example

3

8a

8b

8c

5

1 2 3 4 5 6 7 8

5

5

8a 3 x 5

24

Buffer Scheme Example

3

8a

8b

8c

5

1 2 3 4 5 6 7 8

5

6

8a 3 x 5 3
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Buffer Scheme Properties

• Generalize to multiple processors.
– Schedule < m at each slot.

• Non-deterministic finite state machine.

• A cycle reachable from the start state is a 
schedule.

• Exhaustive search leads to impossibility.
– Requires early dead-end detection for speed

• By adding a priority scheme it can be made into 
an on-line windows scheduling algorithm.

26

Buffer Scheme Impossibility

• W10 = 1,2,3,4,5,6,7,8,9,10 and m = 3

• Exhausive search proves there is no windows 
schedule for W10 on 3 processors.

• There is a perfect schedule for W9

2.929
10
1

3
1

2
1

1 ≈++++ �

1

2

4 5

3

6 87 9
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Approximate Windows 
Scheduling

• Given W, define H(W) to be the minimum 
number of processors needed to schedule 
W.

• Theorem: H(W) = h(W) + O(log(h(W)). 
• The schedule can be found in polynomial 

time.
• Corollary: As h(W) → ∞, windows 

scheduling is polynomial time 
approximable with approximation ratio 1. 

28

Special Case: Powers of Two

• Special Case: if all wi are powers of two 
then

• Example: W = 2,2,2,4,8,16 

� � �
�

�
�
�

�
== �

=

n

1i iw
1

h(W)H(W)

2 2 2 2 2 2 2 2

2 4 2 8 2 4 2 16 2 4 2 8 2 4 2

2 2 2 2 2 2 2 2

......
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Upper Bound by Rounding

• Proof: Schedule page i every 2k slots where 
2k is the largest power of two < wi. (Rounding)

• Example: W = 3,3,4,12
Use W’ = 2,2,4,8 for scheduling

� �2h(W)H(W) ≤

3 3

4 12 4 ...
3 3 3 3 3 3 ...
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Asymptotic Upper Bound

ln(h(W))eh(W)H(W) +⋅+≤

7.3595�

2.71828e

≈
≈where 1

w
1

h(W)
n

1i i

>=�
=
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Main Ideas in the Upper Bound

• Expand Special Case: If all wi are of the 
form u2k for a fixed u, then

• Multiple Rounding
• Schedule some windows to fill processors

and schedule the residual recursively
• Do all this “optimally”

� �h(W)H(W) =

32

Multiple Rounding

W = 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19

Round using 3,4,5

W3 = 3,6,7,12,13,14,15
W’3 = 3,6,6,12,12,12,12

W4 = 2,4,8,9,16,17,18,19
W’4 = 2,4,8,8,16,16,16,16

W5 = 5,10,11
W’5 = 5,10,10

33

Find Residual

W = 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19

Round using 3,4,5

W3 = 3,6,7,12,13,14,15
W’3 = 3,6,6,12,12,12,12

W4 = 2,4,8,9,16,17,18,19
W’4 = 2,4,8,8,16,16,16,16

W5 = 5,10,11
W’5 = 5,10,10

1 processor

34

Find Residual

W = 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19

Round using 3,4,5

W3 = 3,6,7,12,13,14,15
W’3 = 3,6,6,12,12,12,12

W4 = 2,4,8,9,16,17,18,19
W’4 = 2,4,8,8,16,16,16,16

W5 = 5,10,11
W’5 = 5,10,10

1 processor

1 processor + 16,17,18,19

35

Find Residual

W = 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19

Round using 3,4,5

W3 = 3,6,7,12,13,14,15
W’3 = 3,6,6,12,12,12,12

W4 = 2,4,8,9,16,17,18,19
W’4 = 2,4,8,8,16,16,16,16

W5 = 5,10,11
W’5 = 5,10,10

1 processor

0 processors +  5,10,11

1 processor + 16,17,18,19

36

Solve Residual

Wr = 5,10,11,16,17,18,19

Round using 2

W2 = 5,10,11,16,17,18,19
W’2 = 4, 8, 8, 16,16,16,16

Total is 3 processors, while simple rounding needs 4.

1 processor
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Summary Asymptotic Bounds

– Upper bound is polynomial time
– Rounding sets optimized for the construction

� � ln(h(W))eh(W)H(W)h(W) +⋅+≤≤
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Video-on-Demand Systems

• A database of media 
objects (movies).

• A limited number of channels.
• Movies are broadcast based 

on customer demand
• The goal: Minimizing clients’ maximum waiting 

time (delay).
• Broadcasting schemes: For popular movies,  the 

system does not wait for client requests, but 
broadcasts these movies continuously. 

39

Background

• Staggered broadcasting, [Dan, Sitaram, 
Shahabuddin, 96]:

C1

C2

…
…

Delay = 1/2

Note: each channel is at the playback bandwidth.

40

Backgound

• Pyramid Broadcasting, [Viswanathan, Imielinski, 
96]: 
– Partition the movie into segments. Early segments 

are transmitted more frequently.
– As segments are received either playback or buffer 

for future playback
1 2 3

C1

C2

…
…

Delay = 1/3

2 3
1 1 1 1 1 1 1 1

2 3 2 3 2 3

Note that W = 1,2,3 and m = 2

41

Windows Sceduling for Video

• Shifting, [Bar-noy, Ladner, Tamir, 2003], 
Polyharmonic Broadcasting [Paris, 1999]

• Video divided into s equal size segments. 
• For a constant d > 0 define 

W = d, d +1, d + 2,  d + s -1, that is, wi = 
d+i-1

• Theorem: A windows schedule for W on m 
processors is a video schedule with s 
segments on m channels with delay d/s.

42

Example

• W = 4,5,6,7,8 and m = 1 (c.f. Example 2)

…4 44 46 7 8 6 7 8 655 5 5

Windows Schedule

Video Schedule

…1 11 13 4 5 3 4 5 322 2 2

Delay = 4/5
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Lower Bounds

• Lowerbound [Engebretsen, Sudan, 2002], 
[Gao,Kurose,Towsley, 2002], [Hu, 2001]
Delay for m channels is bounded below by

1e
1

m −

m

1/(em-1)

7 sec25 sec1 min3 min9.5 min35 min

.002.007.019.052.157.582

654321

1 hour video

44

Asymptotic Upper Bound

• For every m and ε > 0, there is a video 
schedule that achives delay

1e
1� )(1 m −

+

45

Limiting the Number of 
Segments

• Given s segments what is the best delay 
possible on one channel.  Use the buffer 
scheme!

0.62575..194120*

0.7506..138

0.7145..117

0.8835..106

0.8004..85

delayrangesegments

0.582  optimal* Uses RR2 algorithm,
not buffer scheme

46

Additional Work

• Receive k channels out of m for video 
scheduling.  [Evans, Kirkpatrick, 2004]

• On-line windows scheduling
– Buffer scheme - insertions and deletions
– H(W) + O(H(W)1/2) - insertions only

• Windows scheduling with lengths
– Roughly a 2-approximation algorithm

47

Cache Efficient Dynamic 
Programming

with
Cary Cherng

48

Problem Statement

• Given x1, x2, …, xn in nonassociative semiring
– Multiplication is nonassociative
– Additive inverses not required

• Find the sum of all ways x1x2…xn can be 
completely parenthesized
– n = 4

x1((x2x3)x4) + x1(x2(x3x4)) + (x1x2)(x3x4) + ((x1x2)x3)x4 + 
(x1(x2x3))x4

• Examples of nonassociative semirings:
– Matrix Chain Product
– Context-free Language Recognition
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Standard Dynamic Programming 
Solution - CYK

• Runs in O(n3)

• Poor cache behavior for large n

• Normalized Time = Time/n3

50

Outline

• The Cache
• Dynamic Programming

– Standard Dynamic Programming Solution -
CYK (Cocke, Younger, Kasami 1965)

– Valiant’s Algorithm (1975)

• Experiments
– Timing comparison
– Cache misses

51

The Cache

• Standard dynamic programming has poor 
cache locality

• Divide and conquer algorithms typically 
have good cache locality

52

Memory Hierarchy

64-128 ALU registers

On-chip cache: split I-cache; D-
cache 8-128KB

Off-chip cache; 128KB - 4MB

Main memory; up to 10GB

Secondary memory; many GB

Archival storage

SRAM; a few ns

SRAM/DRAM; 
≈ 10-20 ns 

DRAM; 40-100 ns

a few 
milliseconds

53

Standard Dynamic 
Programming

• Matrix of size n+1

• Input off the diagonal
• For i = 1 to n

Di-1,i = xi

For j = 2 to n

For i = j - 2 to 0

For k = i + 1 to j - 1

Dij = Dij+ Dik Dkj

xn

x2

x10

1

n

0 1 n

54

Dynamic Programming

• Computing Dij

requires accessing 
blue region

• Many cache 
misses if the matrix 
is large due to poor 
locality
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Valiant’s Algorithm

• Valiant proved in 1975 that context-free 
language recognition could be done in 
O(n2.81) using Strassen’s matrix 
multiplication algorithm [1969]

• Current fastest Boolean matrix 
multiplication runs in O(n2.376) due to 
Coppersmith and Winograd [1987;1990]

• Implies O(n2.376) for context-free language 
recognition using Valiant’s Algorithm

56

Valiant’s Algorithm

• Divide and Conquer giving good cache 
locality

• Reorganizes the computation of CKY
• The algorithm can be applied to 

nonassociative semirings

57

Matrix Multiply and Accumulate

• Basic building block for the new algorithm.
• U, W, and Z are square arrays of power of 

2 size.

ZWUU ⋅+=:

58

Blocked Matrix Multiply and 
Accumulate

• Reduces the number of cache misses
• Recursive

• 8 matrix multiplies
• U11 is computed as

U11 := U11 + W11 Z11

U11 := U11 + W12 Z21

�
�

�
�
�

�
�
�

�
�
�

�
+�

�

�
�
�

�
=�

�

�
�
�

�

2221

1211

2221

1211

2221

1211

2221

1211
:

ZZ

ZZ

WW

WW

UU

UU

UU

UU

59

Valiant’s Algorithm

• View X as blocked

�
�
�
�

�

�

�
�
�
�

�

�

=

44

3433

2322

1211

X

XX

XX

XX

X

60

Valiant’s Algorithm

• Directly applies only 
when n = 2k - 1

• Matrix X of size n+1

• X+ means the result 
of applying Valiant’s
algorithm to X

0
10

1

n

n
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Star Function Input

• A helper function
• Precondition:

upper left and lower 
right quadrants are 
finished.

• X*  completes the 
dynamic program

X

62

• A helper function
• Precondition:

upper left and lower 
right quadrants are 
finished.

• X*  completes the 
dynamic program

Star Function Result

X*

63

Valiant’s Algorithm

• First step:
Two recursive calls

+
�
�

�
�
�

�
=�

�

�
�
�

�

22

1211

22

1211
:

X

XX

X

XX

+

�
�

�
�
�

�
=�

�

�
�
�

�

44

3433

44

3433
:

X

XX

X

XX

64

Valiant’s Algorithm

• Second step: apply 
the Star Function

• The end of 
Valiant’s algorithm

• But what is the 
Star Function?

*: XX =

65

Star Function

• First step:

• Finishes the center 
quadrant

*
:

33

2322

33

2322

�
�

�
�
�

�
=�

�

�
�
�

�

X

XX

X

XX

66

Star Function

• Second step:
• X13 := X13 + X12 X23

• means unfinished
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Star Function

• Third Step:
Recursive Star call

• Finishes X13

*
:

33

1311

33

1311

�
�

�
�
�

�
=�

�

�
�
�

�

X

XX

X

XX
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Star Function

• Fourth step:
• X24 := X24 + X23 X34

• means unfinished

69

Star Function

• Fifth Step:
Recursive Star call

• Finishes X24

*
:

44

2422

44

2422

�
�

�
�
�

�
=�

�

�
�
�

�

X

XX

X

XX

70

Star Function

• Fifth Step:
X14 := X14 + X12 X24

71

Star Function

• Sixth Step:
X14 := X14 + X13 X34

72

Star Function

• Seventh Step:
Recursive Star call

• Finishes X44

*
:

44

1411

44

1411

�
�

�
�
�

�
=�

�

�
�
�

�

X

XX

X

XX
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Time bounds

• n  refers to matrix size not problem size 
• T(n): Valiant’s algorithm
• S(n): Star function
• M(n): Block Matrix Multiplication
• All are O(n3)

)2/(8)(
)4/(4)2/(4)(

)()2/(2)(

nMnM
nMnSnS

nSnTnT

≤
+≤
+≤
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Cache-aware Algorithms

• Cache-oblivious algorithms do not depend 
on cache parameters

• Cache-aware algorithms have a tuning 
parameter depending on cache size, line 
size, etc

75

Blocked Valiant’s Algorithm

• Valiant’s algorithm incurs overhead from 
recursive calls and blocked matrix 
multiplication

• Recursion unnecessary for small problems
• Make Valiant’s algorithm cache-aware
• If matrix is sufficiently small use

– normal matrix multiplication
– CKY

76

Experiments

• Compared
– Valiant’s algorithm
– Blocked Valiant’s algorithm
– Three variants of standard dynamic programming

• Time comparison
• Instruction Count
• Cache simulations using Valgrind
• 1 GHz AMD Athlon

– 64 KByte L1 data cache (2-way)
– 256 KByte L2 data cache (16-way)

77

Time Comparison

• Normalized Time = 
Time/n3

• V256-64
– Blocked Valiant’s

algorithm
– use CKY
– use standard 

matrix multiplication     
64≤n
256≤n

78

Instruction Count

• Valiant’s algorithm 
uses the most 
instructions

• Blocked Valiant’s
algorithm is near CKY 
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L2 Cache Misses

• Nearly 100 times 
more L2 cache 
misses in standard 
dynamic 
programming

80

L1 Cache Misses

• Blocked Valiant’s
algorithm trades 
instructions for 
more L1 cache 
misses

81

Conclusion

• Instruction count not the only important 
thing

• Cache misses matter
• Divide and conquer gives good cache 

behavior

82

Automatic Tactilization of 
Graphical Images

With
Matt Renzelman
Satria Krisnandi

83

The Tactilization Problem
• Graphical images are heavily used in math, 

science and engineering textbooks and papers
– Line graphs and bar charts
– Diagrams
– Illustrations

• Tactual perception is the best modality for the 
blind to understand such images

• Tactilization of graphical images 
– Currently done manually
– Labor-intensive and time consuming
– How much of this process can be automated?

84

Outline

• Tactual Perception
• Overview of tactilization process
• Text segmentation
• Braille text placement
• Other subprojects
• Demonstration
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Tactile Perception

• Resolution of human fingertip: 25 dpi
• Tactual field of perception is no bigger 

than the size of the fingertips of two hands
• Color information is replaced by texture 

information
• Visual bandwidth is 106 bits per second, 

tactile is 102 bits per second

86

Braille

• System to read text by feeling raised dots on 
paper (or on electronic displays).  Invented in 
1820s by Louis Braille, a French blind man.

a b c z

and the with mother 

th ghch Critical fact: Fixed height 
and width

Z 3 Mode characters: cap and num.

87

Tiger Embosser

• 20 dpi (raised dots per inch)
• 7 height levels (only 3 or 4 are 

distinguishable)
• Prints Braille text and

graphics
• Prints dot patterns for

texture
• Invented by a blind man,

John Gardner
88

Automatic Tactilization Process

89

Key Problems

• Graphical images meant for the visual mode 
must be modified for the tactual mode.
– Text � Braille
– Colors � replace with textures or reduce number
– Area � Larger for Braille text to fit
– Resolution � Lower to 20 dpi
– Shading or 3-D effects  � replace with outlines
– Noise � remove noise, enhance contrast

• Classification of graphical images for mass 
production
– Images in the same class require similar processes.

90

Example

From Computer Architecture, A Quantitative Approach, Third Edition,
by Hennessy and Patterson.
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Sample image

From Computer Architecture, A Quantitative Approach, Third Edition,
by Hennessy and Patterson. 92

Desired result

93

Overall Process

Identify letters

Merge letters into
text blocksIdentify text blocks:

left or right justified
or centered

Scale image,
add texture 

OCR text blocks,
Translate to Braille

94

Finding Text

• Why not just use standard optical 
character recognition (OCR)?
– OCR is not effective for graphical images.

ABBYY FineReader 7.0
Professional Edition

95

Finding Text Letters

• Uses the following principles
– Text in an image is usually in one font
– Fonts are designed to have a uniform density 

at a distance.
– In the absence of noise an individual letter 

tends to be connected component of one 
color.  Exceptions are i and j.

• Train on some simple features of letters. 
Connected components with similar 
features are also letters.

96

Features

Century Gothic

CW = width of bounding box
H  = height of bounding box
A  = area of bounding box
Ri = i-th radial slice density

C

W

H A = W • H

Ri = number of black
pixels in i-th slice where
a slice is an angle of
360/n. The total number
of slices is n. 

0

1

3

2
Center is center of
mass of black
pixels4

5 6

7
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Training/Finding

• Training: 
– Sample the connected components and compute 

their features.

• Finding:
– For a new connected component compute its 

features.
– If there is a close enough match of features with some 

member of the database then declare the component 
to be a letter.

• Parameters
– How close is close enough
– How many slices

98

Step 1: training

• Number of components in training set: 271

Ch.1, Figure 23

99

Step 2: results (1/3)

• No false positives

Ch.1, Figure 25 100

Step 2: results (2/3)

Ch.1, Figure 27

101

Step 2: results (3/3)

Ch.1, Figure 28 102

Finding Text Blocks

• Principles
– Most text tends to be in horizonal lines
– Some text is vertical
– Some text is diagonal

• We are developing methods that find lines 
using the centroids of the letters found.
– Minimum spanning tree
– Merge test using linear regression
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Group characters logically

104

Group characters logically

• Extracting a set of isolated characters from 
an image is insufficient
– Need groups of Braille characters for easier 

placement

• Challenges
– Text can be at many angles
– Individual characters may be aligned along 

multiple axes

105

Our approach

• Step 1:  User provides training set
– Software examines defining characteristics

• Step 2:  Automatically find similar groups 
in remaining images

A. Minimum spanning tree
B. Discard useless edges
C. Discard inconsistent edges
D. Create merged groups

106

Defining characteristics

• Inter-character spacing
• Line of best fit

– Perpendicular regression vs. linear regression
– Mean squared error
– Angle

107

Minimum spanning tree (1)

Treat the centroid of each connected 
component as a node

108

Discard useless edges (2)
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Discard inconsistent edges (3)

110

Final merge step (4)

Merge only if the resultant group is 
consistent

111

Pentium III 
1600
1500
1400
1.58x per year
1300
1200
1100
1000
HP
9000
900
Relative
800
performance
700
DEC
600
Alpha
500
400
300
1.35x per year
DEC
IBM
HP
MIPS
Alpha
200
Power!
9000
R2000
100
0
#
^
#
^
f
f
f
f
Year
© 2003 Elsevier Science (USA). All rights reserved.
Intel
/

Image of
text boxes

OCR text

112

Classification of Text Boxes

• Text boxes of Braille will be of different size than 
the original text boxes
– Mode characters
– Contractions
– Braille is fixed width

Example

��������

Example

��������

Example

��������

Left justified Centered Right justified

113

Perfect Text Boxes

114

Text Boxes Only
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Justification Process

• Sort the upper left and lower right points of 
text boxes first by x then by y. Use a plane 
sweep algorithm.

• Left justify - runs (in y) of text boxes with 
the same (or similar) left x coordinates.

• Right justify - runs (in y) of text boxes with 
the same (or similar) right x coordinates.

• Center - otherwise

116

Example Plane Sweep

3L
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Example Plane Sweep
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Example Plane Sweep

4L

119

Example Plane Sweep
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Classification
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Scaling

• General Procedure
– Scale in y until the the text height is an acceptable 

Braille height
– Scale in x until the Braille correctly justified fits

• The scale factor in x and y may differ, but the 
distorted image is usually readable.
– The Braille text is fully readable.

• Scaling procedure is not always successful 
because of limited paper size.
– Automatic abbreviations
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Scaling Example
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Color Replacement with Texture
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Final Result


