
1

1

CSEP 521
Applied Algorithms

Spring 2005

Research Projects
of

Richard Ladner
2

Outline for Tonight

• Reduction of subset sum optimization to
subset sum decision.

• Windows scheduling for periodic jobs.
• Student Evaluations
• Cache efficient dynamic programming
• Tactile graphics

3

Windows Scheduling

with
Amotz Bar-Noy

Tami Tamir

4

Windows Scheduling
Problem Definition

• n unit length repetitive jobs with positive integer
windows w1,w2,…,wn

• m processors.
• Scheduling goal: assign jobs on processors so

that
– Job i is scheduled on some processor at least once

every wi time slots.
– No two jobs are scheduled in the same time slot on

the same processor.

• Optimization goal: Given w1,w2,…,wn minimize
the number of processors.

5

Applications

• Video broadcast scheduling
– On one channel a video can be broadcast so

that the worst case waiting time is strictly
smaller than the video length

• Periodic maintainance
– Maintainance must be do at least so often

• Push systems
– Ads, sports scores, DJ average must be

displayed at least so often

6

Basic Lower Bound

• Let W = w1,w2,…,wn and define

• Theorem: �h(W)� is a lower bound on the
number of number of processors needed
to schedule W.

• Proof: Job i requires 1/wi of a processor

�
=

=
n

1i iw
1

h(W)

2

7

Example 1

• W = 1,2,3 and m = 2

• This is a perfect schedule, that is, each job i is
scheduled every w’i slots for w’i < wi

• 3 is scheduled more often than its window
requirement

P1: 11111 1

2 2 2 333P2:

…

…

8

Example 2

• W = 4,5,6,7,8 and m = 1

P1:

…4 44 46 7 8 6 7 8 655 5 5

9

Tree Representation of Perfect
Schedules

…

10

Tree Representation of Perfect
Schedules

…

11

Tree Representation of Perfect
Schedules

…

4 5

4 44 455 5 5

Each node is scheduled periodically every p times where p
is the product of degrees of its ancesters.

12

Tree Representation of Perfect
Schedules

…

6 874 5

4 44 46 7 8 6 7 8 655 5 5

3

13

The Rest of the Talk

• Buffer scheme
• Approximation
• Video-on-demand

14

Are Perfects Schedules
Sufficient?

• No!
• W = 3,5,8,8,8 and m = 1
• There is no perfect schedule on one processor
• Non-perfect windows schedule

• Non-perfect schedules can be found using a
search technique call the buffer scheme.

3 5 8a 3 8b 5 3 8c 8a 3 5 8b 3 8c 5 3 8a 8b 3 5 8c …

15

Impossibility of Perfect 3,5,8,8,8

• 3 must have period 1,2, or 3
• But, 1/2 + 1/5 + 3/8 > 1
• Hence 3 has period 3.
• 5 must have period 1,2,3,4, or 5
• But, 1/3 + 1/3 + 3/8 > 1
• 5 must have period 4 or 5.
• But, gcd(4,3) = 1 and gcd(5,3) = 1, Chinese

remainder theorem implies there must be a slot
in common to the schedules of both 4 and 3, and
5 and 3. �⇐

16

Buffer Scheme

• A technique for searching all possible
schedules.

• Can find non-perfect schedules.
• Can be used to prove impossibility.
• By adding deterministic rules it can be

used as an on-line scheduler (jobs can
inserted and deleted at each slot).

17

Buffer Scheme by Example

• If job i is in buffer location j, then i must be
scheduled within j slots.

• Non-deterministic
• Complete - every schedule can be modeled
• Initial configuration

3 8a

8b

8c

5

1 2 3 4 5 6 7 8

Buffer

18

Buffer Scheme Example

3 8a

8b

8c

5

1 2 3 4 5 6 7 8

0

4

19

Buffer Scheme Example

3 8a

8b

8c

5

1 2 3 4 5 6 7 8

5

1

20

Buffer Scheme Example

3 8a8b

8c

5

1 2 3 4 5 6 7 8

5

2

8a

21

Buffer Scheme Example

3 8a8b

8c5

1 2 3 4 5 6 7 8

5

3

8a 3

22

Buffer Scheme Example

3 8a8b

8c5

1 2 3 4 5 6 7 8

5

4

8a 3 x

23

Buffer Scheme Example

3

8a

8b

8c

5

1 2 3 4 5 6 7 8

5

5

8a 3 x 5

24

Buffer Scheme Example

3

8a

8b

8c

5

1 2 3 4 5 6 7 8

5

6

8a 3 x 5 3

5

25

Buffer Scheme Properties

• Generalize to multiple processors.
– Schedule < m at each slot.

• Non-deterministic finite state machine.

• A cycle reachable from the start state is a
schedule.

• Exhaustive search leads to impossibility.
– Requires early dead-end detection for speed

• By adding a priority scheme it can be made into
an on-line windows scheduling algorithm.

26

Buffer Scheme Impossibility

• W10 = 1,2,3,4,5,6,7,8,9,10 and m = 3

• Exhausive search proves there is no windows
schedule for W10 on 3 processors.

• There is a perfect schedule for W9

2.929
10
1

3
1

2
1

1 ≈++++ �

1

2

4 5

3

6 87 9

27

Approximate Windows
Scheduling

• Given W, define H(W) to be the minimum
number of processors needed to schedule
W.

• Theorem: H(W) = h(W) + O(log(h(W)).
• The schedule can be found in polynomial

time.
• Corollary: As h(W) → ∞, windows

scheduling is polynomial time
approximable with approximation ratio 1.

28

Special Case: Powers of Two

• Special Case: if all wi are powers of two
then

• Example: W = 2,2,2,4,8,16

� � �
�

�
�
�

�
== �

=

n

1i iw
1

h(W)H(W)

2 2 2 2 2 2 2 2

2 4 2 8 2 4 2 16 2 4 2 8 2 4 2

2 2 2 2 2 2 2 2

......

29

Upper Bound by Rounding

• Proof: Schedule page i every 2k slots where
2k is the largest power of two < wi. (Rounding)

• Example: W = 3,3,4,12
Use W’ = 2,2,4,8 for scheduling

� �2h(W)H(W) ≤

3 3

4 12 4 ...
3 3 3 3 3 3 ...

30

Asymptotic Upper Bound

ln(h(W))eh(W)H(W) +⋅+≤

7.3595�

2.71828e

≈
≈where 1

w
1

h(W)
n

1i i

>=�
=

6

31

Main Ideas in the Upper Bound

• Expand Special Case: If all wi are of the
form u2k for a fixed u, then

• Multiple Rounding
• Schedule some windows to fill processors

and schedule the residual recursively
• Do all this “optimally”

� �h(W)H(W) =

32

Multiple Rounding

W = 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19

Round using 3,4,5

W3 = 3,6,7,12,13,14,15
W’3 = 3,6,6,12,12,12,12

W4 = 2,4,8,9,16,17,18,19
W’4 = 2,4,8,8,16,16,16,16

W5 = 5,10,11
W’5 = 5,10,10

33

Find Residual

W = 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19

Round using 3,4,5

W3 = 3,6,7,12,13,14,15
W’3 = 3,6,6,12,12,12,12

W4 = 2,4,8,9,16,17,18,19
W’4 = 2,4,8,8,16,16,16,16

W5 = 5,10,11
W’5 = 5,10,10

1 processor

34

Find Residual

W = 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19

Round using 3,4,5

W3 = 3,6,7,12,13,14,15
W’3 = 3,6,6,12,12,12,12

W4 = 2,4,8,9,16,17,18,19
W’4 = 2,4,8,8,16,16,16,16

W5 = 5,10,11
W’5 = 5,10,10

1 processor

1 processor + 16,17,18,19

35

Find Residual

W = 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19

Round using 3,4,5

W3 = 3,6,7,12,13,14,15
W’3 = 3,6,6,12,12,12,12

W4 = 2,4,8,9,16,17,18,19
W’4 = 2,4,8,8,16,16,16,16

W5 = 5,10,11
W’5 = 5,10,10

1 processor

0 processors + 5,10,11

1 processor + 16,17,18,19

36

Solve Residual

Wr = 5,10,11,16,17,18,19

Round using 2

W2 = 5,10,11,16,17,18,19
W’2 = 4, 8, 8, 16,16,16,16

Total is 3 processors, while simple rounding needs 4.

1 processor

7

37

Summary Asymptotic Bounds

– Upper bound is polynomial time
– Rounding sets optimized for the construction

� � ln(h(W))eh(W)H(W)h(W) +⋅+≤≤

38

Video-on-Demand Systems

• A database of media
objects (movies).

• A limited number of channels.
• Movies are broadcast based

on customer demand
• The goal: Minimizing clients’ maximum waiting

time (delay).
• Broadcasting schemes: For popular movies, the

system does not wait for client requests, but
broadcasts these movies continuously.

39

Background

• Staggered broadcasting, [Dan, Sitaram,
Shahabuddin, 96]:

C1

C2

…
…

Delay = 1/2

Note: each channel is at the playback bandwidth.

40

Backgound

• Pyramid Broadcasting, [Viswanathan, Imielinski,
96]:
– Partition the movie into segments. Early segments

are transmitted more frequently.
– As segments are received either playback or buffer

for future playback
1 2 3

C1

C2

…
…

Delay = 1/3

2 3
1 1 1 1 1 1 1 1

2 3 2 3 2 3

Note that W = 1,2,3 and m = 2

41

Windows Sceduling for Video

• Shifting, [Bar-noy, Ladner, Tamir, 2003],
Polyharmonic Broadcasting [Paris, 1999]

• Video divided into s equal size segments.
• For a constant d > 0 define

W = d, d +1, d + 2, d + s -1, that is, wi =
d+i-1

• Theorem: A windows schedule for W on m
processors is a video schedule with s
segments on m channels with delay d/s.

42

Example

• W = 4,5,6,7,8 and m = 1 (c.f. Example 2)

…4 44 46 7 8 6 7 8 655 5 5

Windows Schedule

Video Schedule

…1 11 13 4 5 3 4 5 322 2 2

Delay = 4/5

8

43

Lower Bounds

• Lowerbound [Engebretsen, Sudan, 2002],
[Gao,Kurose,Towsley, 2002], [Hu, 2001]
Delay for m channels is bounded below by

1e
1

m −

m

1/(em-1)

7 sec25 sec1 min3 min9.5 min35 min

.002.007.019.052.157.582

654321

1 hour video

44

Asymptotic Upper Bound

• For every m and ε > 0, there is a video
schedule that achives delay

1e
1�)(1 m −

+

45

Limiting the Number of
Segments

• Given s segments what is the best delay
possible on one channel. Use the buffer
scheme!

0.62575..194120*

0.7506..138

0.7145..117

0.8835..106

0.8004..85

delayrangesegments

0.582 optimal* Uses RR2 algorithm,
not buffer scheme

46

Additional Work

• Receive k channels out of m for video
scheduling. [Evans, Kirkpatrick, 2004]

• On-line windows scheduling
– Buffer scheme - insertions and deletions
– H(W) + O(H(W)1/2) - insertions only

• Windows scheduling with lengths
– Roughly a 2-approximation algorithm

47

Cache Efficient Dynamic
Programming

with
Cary Cherng

48

Problem Statement

• Given x1, x2, …, xn in nonassociative semiring
– Multiplication is nonassociative
– Additive inverses not required

• Find the sum of all ways x1x2…xn can be
completely parenthesized
– n = 4

x1((x2x3)x4) + x1(x2(x3x4)) + (x1x2)(x3x4) + ((x1x2)x3)x4 +
(x1(x2x3))x4

• Examples of nonassociative semirings:
– Matrix Chain Product
– Context-free Language Recognition

9

49

Standard Dynamic Programming
Solution - CYK

• Runs in O(n3)

• Poor cache behavior for large n

• Normalized Time = Time/n3

50

Outline

• The Cache
• Dynamic Programming

– Standard Dynamic Programming Solution -
CYK (Cocke, Younger, Kasami 1965)

– Valiant’s Algorithm (1975)

• Experiments
– Timing comparison
– Cache misses

51

The Cache

• Standard dynamic programming has poor
cache locality

• Divide and conquer algorithms typically
have good cache locality

52

Memory Hierarchy

64-128 ALU registers

On-chip cache: split I-cache; D-
cache 8-128KB

Off-chip cache; 128KB - 4MB

Main memory; up to 10GB

Secondary memory; many GB

Archival storage

SRAM; a few ns

SRAM/DRAM;
≈ 10-20 ns

DRAM; 40-100 ns

a few
milliseconds

53

Standard Dynamic
Programming

• Matrix of size n+1

• Input off the diagonal
• For i = 1 to n

Di-1,i = xi

For j = 2 to n

For i = j - 2 to 0

For k = i + 1 to j - 1

Dij = Dij+ Dik Dkj

xn

x2

x10

1

n

0 1 n

54

Dynamic Programming

• Computing Dij

requires accessing
blue region

• Many cache
misses if the matrix
is large due to poor
locality

10

55

Valiant’s Algorithm

• Valiant proved in 1975 that context-free
language recognition could be done in
O(n2.81) using Strassen’s matrix
multiplication algorithm [1969]

• Current fastest Boolean matrix
multiplication runs in O(n2.376) due to
Coppersmith and Winograd [1987;1990]

• Implies O(n2.376) for context-free language
recognition using Valiant’s Algorithm

56

Valiant’s Algorithm

• Divide and Conquer giving good cache
locality

• Reorganizes the computation of CKY
• The algorithm can be applied to

nonassociative semirings

57

Matrix Multiply and Accumulate

• Basic building block for the new algorithm.
• U, W, and Z are square arrays of power of

2 size.

ZWUU ⋅+=:

58

Blocked Matrix Multiply and
Accumulate

• Reduces the number of cache misses
• Recursive

• 8 matrix multiplies
• U11 is computed as

U11 := U11 + W11 Z11

U11 := U11 + W12 Z21

�
�

�
�
�

�
�
�

�
�
�

�
+�

�

�
�
�

�
=�

�

�
�
�

�

2221

1211

2221

1211

2221

1211

2221

1211
:

ZZ

ZZ

WW

WW

UU

UU

UU

UU

59

Valiant’s Algorithm

• View X as blocked

�
�
�
�

�

�

�
�
�
�

�

�

=

44

3433

2322

1211

X

XX

XX

XX

X

60

Valiant’s Algorithm

• Directly applies only
when n = 2k - 1

• Matrix X of size n+1

• X+ means the result
of applying Valiant’s
algorithm to X

0
10

1

n

n

11

61

Star Function Input

• A helper function
• Precondition:

upper left and lower
right quadrants are
finished.

• X* completes the
dynamic program

X

62

• A helper function
• Precondition:

upper left and lower
right quadrants are
finished.

• X* completes the
dynamic program

Star Function Result

X*

63

Valiant’s Algorithm

• First step:
Two recursive calls

+
�
�

�
�
�

�
=�

�

�
�
�

�

22

1211

22

1211
:

X

XX

X

XX

+

�
�

�
�
�

�
=�

�

�
�
�

�

44

3433

44

3433
:

X

XX

X

XX

64

Valiant’s Algorithm

• Second step: apply
the Star Function

• The end of
Valiant’s algorithm

• But what is the
Star Function?

*: XX =

65

Star Function

• First step:

• Finishes the center
quadrant

*
:

33

2322

33

2322

�
�

�
�
�

�
=�

�

�
�
�

�

X

XX

X

XX

66

Star Function

• Second step:
• X13 := X13 + X12 X23

• means unfinished

12

67

Star Function

• Third Step:
Recursive Star call

• Finishes X13

*
:

33

1311

33

1311

�
�

�
�
�

�
=�

�

�
�
�

�

X

XX

X

XX

68

Star Function

• Fourth step:
• X24 := X24 + X23 X34

• means unfinished

69

Star Function

• Fifth Step:
Recursive Star call

• Finishes X24

*
:

44

2422

44

2422

�
�

�
�
�

�
=�

�

�
�
�

�

X

XX

X

XX

70

Star Function

• Fifth Step:
X14 := X14 + X12 X24

71

Star Function

• Sixth Step:
X14 := X14 + X13 X34

72

Star Function

• Seventh Step:
Recursive Star call

• Finishes X44

*
:

44

1411

44

1411

�
�

�
�
�

�
=�

�

�
�
�

�

X

XX

X

XX

13

73

Time bounds

• n refers to matrix size not problem size
• T(n): Valiant’s algorithm
• S(n): Star function
• M(n): Block Matrix Multiplication
• All are O(n3)

)2/(8)(
)4/(4)2/(4)(

)()2/(2)(

nMnM
nMnSnS

nSnTnT

≤
+≤
+≤

74

Cache-aware Algorithms

• Cache-oblivious algorithms do not depend
on cache parameters

• Cache-aware algorithms have a tuning
parameter depending on cache size, line
size, etc

75

Blocked Valiant’s Algorithm

• Valiant’s algorithm incurs overhead from
recursive calls and blocked matrix
multiplication

• Recursion unnecessary for small problems
• Make Valiant’s algorithm cache-aware
• If matrix is sufficiently small use

– normal matrix multiplication
– CKY

76

Experiments

• Compared
– Valiant’s algorithm
– Blocked Valiant’s algorithm
– Three variants of standard dynamic programming

• Time comparison
• Instruction Count
• Cache simulations using Valgrind
• 1 GHz AMD Athlon

– 64 KByte L1 data cache (2-way)
– 256 KByte L2 data cache (16-way)

77

Time Comparison

• Normalized Time =
Time/n3

• V256-64
– Blocked Valiant’s

algorithm
– use CKY
– use standard

matrix multiplication
64≤n
256≤n

78

Instruction Count

• Valiant’s algorithm
uses the most
instructions

• Blocked Valiant’s
algorithm is near CKY

14

79

L2 Cache Misses

• Nearly 100 times
more L2 cache
misses in standard
dynamic
programming

80

L1 Cache Misses

• Blocked Valiant’s
algorithm trades
instructions for
more L1 cache
misses

81

Conclusion

• Instruction count not the only important
thing

• Cache misses matter
• Divide and conquer gives good cache

behavior

82

Automatic Tactilization of
Graphical Images

With
Matt Renzelman
Satria Krisnandi

83

The Tactilization Problem
• Graphical images are heavily used in math,

science and engineering textbooks and papers
– Line graphs and bar charts
– Diagrams
– Illustrations

• Tactual perception is the best modality for the
blind to understand such images

• Tactilization of graphical images
– Currently done manually
– Labor-intensive and time consuming
– How much of this process can be automated?

84

Outline

• Tactual Perception
• Overview of tactilization process
• Text segmentation
• Braille text placement
• Other subprojects
• Demonstration

15

85

Tactile Perception

• Resolution of human fingertip: 25 dpi
• Tactual field of perception is no bigger

than the size of the fingertips of two hands
• Color information is replaced by texture

information
• Visual bandwidth is 106 bits per second,

tactile is 102 bits per second

86

Braille

• System to read text by feeling raised dots on
paper (or on electronic displays). Invented in
1820s by Louis Braille, a French blind man.

a b c z

and the with mother

th ghch Critical fact: Fixed height
and width

Z 3 Mode characters: cap and num.

87

Tiger Embosser

• 20 dpi (raised dots per inch)
• 7 height levels (only 3 or 4 are

distinguishable)
• Prints Braille text and

graphics
• Prints dot patterns for

texture
• Invented by a blind man,

John Gardner
88

Automatic Tactilization Process

89

Key Problems

• Graphical images meant for the visual mode
must be modified for the tactual mode.
– Text � Braille
– Colors � replace with textures or reduce number
– Area � Larger for Braille text to fit
– Resolution � Lower to 20 dpi
– Shading or 3-D effects � replace with outlines
– Noise � remove noise, enhance contrast

• Classification of graphical images for mass
production
– Images in the same class require similar processes.

90

Example

From Computer Architecture, A Quantitative Approach, Third Edition,
by Hennessy and Patterson.

16

91

Sample image

From Computer Architecture, A Quantitative Approach, Third Edition,
by Hennessy and Patterson. 92

Desired result

93

Overall Process

Identify letters

Merge letters into
text blocksIdentify text blocks:

left or right justified
or centered

Scale image,
add texture

OCR text blocks,
Translate to Braille

94

Finding Text

• Why not just use standard optical
character recognition (OCR)?
– OCR is not effective for graphical images.

ABBYY FineReader 7.0
Professional Edition

95

Finding Text Letters

• Uses the following principles
– Text in an image is usually in one font
– Fonts are designed to have a uniform density

at a distance.
– In the absence of noise an individual letter

tends to be connected component of one
color. Exceptions are i and j.

• Train on some simple features of letters.
Connected components with similar
features are also letters.

96

Features

Century Gothic

CW = width of bounding box
H = height of bounding box
A = area of bounding box
Ri = i-th radial slice density

C

W

H A = W • H

Ri = number of black
pixels in i-th slice where
a slice is an angle of
360/n. The total number
of slices is n.

0

1

3

2
Center is center of
mass of black
pixels4

5 6

7

17

97

Training/Finding

• Training:
– Sample the connected components and compute

their features.

• Finding:
– For a new connected component compute its

features.
– If there is a close enough match of features with some

member of the database then declare the component
to be a letter.

• Parameters
– How close is close enough
– How many slices

98

Step 1: training

• Number of components in training set: 271

Ch.1, Figure 23

99

Step 2: results (1/3)

• No false positives

Ch.1, Figure 25 100

Step 2: results (2/3)

Ch.1, Figure 27

101

Step 2: results (3/3)

Ch.1, Figure 28 102

Finding Text Blocks

• Principles
– Most text tends to be in horizonal lines
– Some text is vertical
– Some text is diagonal

• We are developing methods that find lines
using the centroids of the letters found.
– Minimum spanning tree
– Merge test using linear regression

18

103

Group characters logically

104

Group characters logically

• Extracting a set of isolated characters from
an image is insufficient
– Need groups of Braille characters for easier

placement

• Challenges
– Text can be at many angles
– Individual characters may be aligned along

multiple axes

105

Our approach

• Step 1: User provides training set
– Software examines defining characteristics

• Step 2: Automatically find similar groups
in remaining images

A. Minimum spanning tree
B. Discard useless edges
C. Discard inconsistent edges
D. Create merged groups

106

Defining characteristics

• Inter-character spacing
• Line of best fit

– Perpendicular regression vs. linear regression
– Mean squared error
– Angle

107

Minimum spanning tree (1)

Treat the centroid of each connected
component as a node

108

Discard useless edges (2)

19

109

Discard inconsistent edges (3)

110

Final merge step (4)

Merge only if the resultant group is
consistent

111

Pentium III
1600
1500
1400
1.58x per year
1300
1200
1100
1000
HP
9000
900
Relative
800
performance
700
DEC
600
Alpha
500
400
300
1.35x per year
DEC
IBM
HP
MIPS
Alpha
200
Power!
9000
R2000
100
0
#
^
#
^
f
f
f
f
Year
© 2003 Elsevier Science (USA). All rights reserved.
Intel
/

Image of
text boxes

OCR text

112

Classification of Text Boxes

• Text boxes of Braille will be of different size than
the original text boxes
– Mode characters
– Contractions
– Braille is fixed width

Example

��������

Example

��������

Example

��������

Left justified Centered Right justified

113

Perfect Text Boxes

114

Text Boxes Only

20

115

Justification Process

• Sort the upper left and lower right points of
text boxes first by x then by y. Use a plane
sweep algorithm.

• Left justify - runs (in y) of text boxes with
the same (or similar) left x coordinates.

• Right justify - runs (in y) of text boxes with
the same (or similar) right x coordinates.

• Center - otherwise

116

Example Plane Sweep

3L

117

Example Plane Sweep

3L

118

Example Plane Sweep

4L

119

Example Plane Sweep

8R

120

Classification

21

121

Scaling

• General Procedure
– Scale in y until the the text height is an acceptable

Braille height
– Scale in x until the Braille correctly justified fits

• The scale factor in x and y may differ, but the
distorted image is usually readable.
– The Braille text is fully readable.

• Scaling procedure is not always successful
because of limited paper size.
– Automatic abbreviations

122

Scaling Example

123

Color Replacement with Texture

124

Final Result

