CSEP 521
Applied Algorithms
Spring 2005

Research Projects
of
Richard Ladner
Outline for Tonight

• Reduction of subset sum optimization to subset sum decision.
• Windows scheduling for periodic jobs.
• Student Evaluations
• Cache efficient dynamic programming
• Tactile graphics
Windows Scheduling

with
Amotz Bar-Noy
Tami Tamir
Windows Scheduling
Problem Definition

- n unit length repetitive jobs with positive integer windows w_1, w_2, \ldots, w_n
- m processors.
- Scheduling goal: assign jobs on processors so that
 - Job i is scheduled on some processor at least once every w_i time slots.
 - No two jobs are scheduled in the same time slot on the same processor.
- Optimization goal: Given w_1, w_2, \ldots, w_n minimize the number of processors.
Applications

• Video broadcast scheduling
 – On one channel a video can be broadcast so that the worst case waiting time is strictly smaller than the video length

• Periodic maintainance
 – Maintainance must be do at least so often

• Push systems
 – Ads, sports scores, DJ average must be displayed at least so often
Basic Lower Bound

• Let $W = w_1, w_2, \ldots, w_n$ and define

\[h(W) = \sum_{i=1}^{n} \frac{1}{w_i} \]

• Theorem: $\lceil h(W) \rceil$ is a lower bound on the number of processors needed to schedule W.

• Proof: Job i requires $1/w_i$ of a processor
Example 1

- $W = 1, 2, 3$ and $m = 2$

- This is a perfect schedule, that is, each job i is scheduled every w'_i slots for $w'_i \leq w_i$
- 3 is scheduled more often than its window requirement
Example 2

- $W = 4, 5, 6, 7, 8$ and $m = 1$

$$P_1:$$

```
4  6  5  7  4  8  5  6  4  7  5  8  4  6  5  ...
```
Tree Representation of Perfect Schedules
Tree Representation of Perfect Schedules
Tree Representation of Perfect Schedules

Each node is scheduled periodically every p times where p is the product of degrees of its ancestors.
Tree Representation of Perfect Schedules
The Rest of the Talk

• Buffer scheme
• Approximation
• Video-on-demand
Are Perfects Schedules Sufficient?

• No!
• \(W = 3,5,8,8,8 \) and \(m = 1 \)
• There is no perfect schedule on one processor
• Non-perfect windows schedule

\[
\begin{array}{ccccccccccccccc}
3 & 5 & 8a & 3 & 8b & 5 & 3 & 8c & 8a & 3 & 5 & 8b & 3 & 8c & 5 & 3 & 8a & 8b & 3 & 5 & 8c \\
\end{array}
\]

• Non-perfect schedules can be found using a search technique call the buffer scheme.
Impossibility of Perfect 3,5,8,8,8

- 3 must have period 1,2, or 3
- But, $1/2 + 1/5 + 3/8 > 1$
- Hence 3 has period 3.
- 5 must have period 1,2,3,4, or 5
- But, $1/3 + 1/3 + 3/8 > 1$
- 5 must have period 4 or 5.
- But, $\gcd(4,3) = 1$ and $\gcd(5,3) = 1$, Chinese remainder theorem implies there must be a slot in common to the schedules of both 4 and 3, and 5 and 3. $\Rightarrow\Leftarrow$
Buffer Scheme

• A technique for searching all possible schedules.
• Can find non-perfect schedules.
• Can be used to prove impossibility.
• By adding deterministic rules it can be used as an on-line scheduler (jobs can be inserted and deleted at each slot).
Buffer Scheme by Example

- If job i is in buffer location j, then i must be scheduled within j slots.
- Non-deterministic
- Complete - every schedule can be modeled
- Initial configuration

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Buffer
Buffer Scheme Example
Buffer Scheme Example

1

1 2 3 4 5 6 7 8
3 5 8a 8b 8c

5
Buffer Scheme Example

2

1 2 3 4 5 6 7 8
3 5 8b 8a

5 8a
Buffer Scheme Example

3

1 2 3 4 5 6 7 8

3 8b 8a
5 8c

5 8a 3
Buffer Scheme Example

4

1 2 3 4 5 6 7 8

3 8b 8a
5 8c

5 8a 3 X
Buffer Scheme Example

5

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>8b</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8c</td>
<td>8a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 8a 3 x 5
Buffer Scheme Example

6

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>8b</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8c</td>
<td>8a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 8a 3 x 5 3
Buffer Scheme Properties

• Generalize to multiple processors.
 – Schedule $\leq m$ at each slot.
• Non-deterministic finite state machine.
• A cycle reachable from the start state is a schedule.
• Exhaustive search leads to impossibility.
 – Requires early dead-end detection for speed
• By adding a priority scheme it can be made into an on-line windows scheduling algorithm.
Buffer Scheme Impossibility

- $W_{10} = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10$ and $m = 3$
 \[1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{10} \approx 2.929 \]

- Exhaustive search proves there is no windows schedule for W_{10} on 3 processors.
- There is a perfect schedule for W_9
Approximate Windows Scheduling

• Given W, define $H(W)$ to be the minimum number of processors needed to schedule W.

• Theorem: $H(W) = h(W) + O(\log(h(W)))$.

• The schedule can be found in polynomial time.

• Corollary: As $h(W) \to \infty$, windows scheduling is polynomial time approximable with approximation ratio 1.
Special Case: Powers of Two

• Special Case: if all w_i are powers of two then

$$H(W) = \left\lfloor h(W) \right\rfloor = \left\lfloor \sum_{i=1}^{n} \frac{1}{w_i} \right\rfloor$$

• Example: $W = 2, 2, 2, 4, 8, 16$
Upper Bound by Rounding

\[H(W) \leq \left\lfloor 2h(W) \right\rfloor \]

- Proof: Schedule page \(i \) every \(2^k \) slots where \(2^k \) is the largest power of two \(\leq w_i \). (Rounding)
- Example: \(W = 3,3,4,12 \)
 Use \(W' = 2,2,4,8 \) for scheduling

\[
\begin{array}{ccccccccccc}
3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & \cdots \\
4 & 12 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & \cdots \\
\end{array}
\]
Asymptotic Upper Bound

\[H(W) \leq h(W) + e \cdot \ln(h(W)) + \eta \]

where \(h(W) = \sum_{i=1}^{n} \frac{1}{w_i} > 1 \) \(e \approx 2.71828 \) \(\eta \approx 7.3595 \)
Main Ideas in the Upper Bound

• Expand Special Case: If all w_i are of the form $u2^k$ for a fixed u, then

$$H(W) = \lceil h(W) \rceil$$

• Multiple Rounding

• Schedule some windows to fill processors and schedule the residual recursively

• Do all this “optimally”
Multiple Rounding

\[W = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 \]

Round using 3, 4, 5

\[W_3 = 3, 6, 7, 12, 13, 14, 15 \]
\[W'_3 = 3, 6, 6, 12, 12, 12, 12 \]

\[W_4 = 2, 4, 8, 9, 16, 17, 18, 19 \]
\[W'_4 = 2, 4, 8, 8, 16, 16, 16, 16 \]

\[W_5 = 5, 10, 11 \]
\[W'_5 = 5, 10, 10 \]
Find Residual

\[W = 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 \]

Round using 3,4,5

\[W_3 = 3,6,7,12,13,14,15 \quad W'_3 = 3,6,6,12,12,12,12 \]

\[W_4 = 2,4,8,9,16,17,18,19 \quad W'_4 = 2,4,8,8,16,16,16,16 \]

\[W_5 = 5,10,11 \quad W'_5 = 5,10,10 \]

1 processor
Find Residual

\[W = 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 \]

Round using 3,4,5

\[W_3 = 3,6,7,12,13,14,15 \]
\[W'_3 = 3,6,6,12,12,12,12 \]

\[W_4 = 2,4,8,9,16,17,18,19 \]
\[W'_4 = 2,4,8,8,16,16,16,16 \]

\[W_5 = 5,10,11 \]
\[W'_5 = 5,10,10 \]
Find Residual

\[W = 2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 \]

Round using 3,4,5

\[W_3 = 3,6,7,12,13,14,15 \]
\[W'_3 = 3,6,6,12,12,12,12 \]

1 processor

\[W_4 = 2,4,8,9,16,17,18,19 \]
\[W'_4 = 2,4,8,8,16,16,16,16 \]

1 processor + 16,17,18,19

\[W_5 = 5,10,11 \]
\[W'_5 = 5,10,10 \]

0 processors + 5,10,11
Solve Residual

\[\text{Wr} = 5,10,11,16,17,18,19 \]

Round using 2

\[W_2 = 5,10,11,16,17,18,19 \]
\[W'_2 = 4, 8, 8, 16,16,16,16 \]

Total is 3 processors, while simple rounding needs 4.
Summary Asymptotic Bounds

\[\left\lfloor h(W) \right\rfloor \leq H(W) \leq h(W) + e \cdot \ln(h(W)) + \eta \]

- Upper bound is polynomial time
- Rounding sets optimized for the construction
Video-on-Demand Systems

- A database of media objects (movies).
- A limited number of channels.
- Movies are broadcast based on customer demand.
- The goal: Minimizing clients’ maximum waiting time (delay).
- Broadcasting schemes: For popular movies, the system does not wait for client requests, but broadcasts these movies continuously.
Background

- Staggered broadcasting, [Dan, Sitaram, Shahabuddin, 96]:

\[\text{Delay} = \frac{1}{2} \]

Note: each channel is at the playback bandwidth.
Background

- Pyramid Broadcasting, [Viswanathan, Imielinski, 96]:
 - Partition the movie into segments. Early segments are transmitted more frequently.
 - As segments are received either playback or buffer for future playback

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
& 1 & 2 & 3 & 1 & 2 & 3 & 1 & 2 & 3 \\
\hline
C_1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
C_2 & 2 & 3 & 2 & 3 & 2 & 3 & 2 & 3 & \ldots \\
\hline
\end{array}
\]

Delay = 1/3

Note that \(W = 1,2,3 \) and \(m = 2 \)
Windows Scheduling for Video

• Shifting, [Bar-ney, Ladner, Tamir, 2003], Polyharmonic Broadcasting [Paris, 1999]
• Video divided into s equal size segments.
• For a constant $d > 0$ define $W = d, d + 1, d + 2, d + s - 1$, that is, $w_i = d + i - 1$
• Theorem: A windows schedule for W on m processors is a video schedule with s segments on m channels with delay d/s.
Example

- $W = 4, 5, 6, 7, 8$ and $m = 1$ (c.f. Example 2)

Windows Schedule

```
4 6 5 7 4 8 5 6 4 7 5 8 4 6 5 ...
```

Video Schedule

```
1 3 2 4 1 5 2 3 1 4 2 5 1 3 2 ...
```

Delay = $4/5$
Lower Bounds

- Lowerbound [Engebretsen, Sudan, 2002], [Gao, Kurose, Towsley, 2002], [Hu, 2001]
 Delay for m channels is bounded below by

\[
\frac{1}{e^m - 1}
\]

| m \n\hline
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/(e^m-1)</td>
<td>.582</td>
<td>.157</td>
<td>.052</td>
<td>.019</td>
<td>.007</td>
</tr>
<tr>
<td>1 hour video</td>
<td>35 min</td>
<td>9.5 min</td>
<td>3 min</td>
<td>1 min</td>
<td>25 sec</td>
</tr>
</tbody>
</table>
Asymptotic Upper Bound

• For every m and $\varepsilon > 0$, there is a video schedule that achieves delay

\[(1 + \varepsilon) \frac{1}{e^m - 1} \]
Limiting the Number of Segments

- Given s segments what is the best delay possible on one channel. Use the buffer scheme!

<table>
<thead>
<tr>
<th>segments</th>
<th>range</th>
<th>delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4..8</td>
<td>0.800</td>
</tr>
<tr>
<td>6</td>
<td>5..10</td>
<td>0.883</td>
</tr>
<tr>
<td>7</td>
<td>5..11</td>
<td>0.714</td>
</tr>
<tr>
<td>8</td>
<td>6..13</td>
<td>0.750</td>
</tr>
<tr>
<td>120*</td>
<td>75..194</td>
<td>0.625</td>
</tr>
</tbody>
</table>

* Uses RR2 algorithm, not buffer scheme

0.582 optimal
Additional Work

• Receive k channels out of m for video scheduling. [Evans, Kirkpatrick, 2004]
• On-line windows scheduling
 – Buffer scheme - insertions and deletions
 – $H(W) + O(H(W)^{1/2})$ - insertions only
• Windows scheduling with lengths
 – Roughly a 2-approximation algorithm
Cache Efficient Dynamic Programming

with

Cary Cherng
Problem Statement

• Given \(x_1, x_2, \ldots, x_n \) in nonassociative semiring
 – Multiplication is nonassociative
 – Additive inverses not required
• Find the sum of all ways \(x_1x_2\ldots x_n \) can be completely parenthesized
 – \(n = 4 \)
 \[
 x_1((x_2x_3)x_4) + x_1(x_2(x_3x_4)) + (x_1x_2)(x_3x_4) + ((x_1x_2)x_3)x_4 + (x_1(x_2x_3))x_4
 \]
• Examples of nonassociative semirings:
 – Matrix Chain Product
 – Context-free Language Recognition
Standard Dynamic Programming Solution - CYK

- Runs in $O(n^3)$
- Poor cache behavior for large n
- Normalized Time = Time/n^3
Outline

• The Cache
• Dynamic Programming
 – Standard Dynamic Programming Solution - CYK (Cocke, Younger, Kasami 1965)
 – Valiant’s Algorithm (1975)
• Experiments
 – Timing comparison
 – Cache misses
The Cache

- Standard dynamic programming has poor cache locality
- Divide and conquer algorithms typically have good cache locality
Memory Hierarchy

- **SRAM; a few ns**
 - 64-128 ALU registers
 - On-chip cache: split I-cache; D-cache 8-128KB

- **SRAM/DRAM; ≈ 10-20 ns**
 - Off-chip cache; 128KB - 4MB

- **DRAM; 40-100 ns**
 - Main memory; up to 10GB

- a few milliseconds
 - Secondary memory; many GB

- Archival storage
Standard Dynamic Programming

• Matrix of size $n+1$
• Input off the diagonal
• For $i = 1$ to n
 \[D_{i-1,i} = x_i \]
 For $j = 2$ to n
 For $i = j - 2$ to 0
 For $k = i + 1$ to $j - 1$
 \[D_{ij} = D_{ij} + D_{ik} D_{kj} \]
Dynamic Programming

- Computing D_{ij} requires accessing blue region
- Many cache misses if the matrix is large due to poor locality
Valiant’s Algorithm

• Valiant proved in 1975 that context-free language recognition could be done in $O(n^{2.81})$ using Strassen’s matrix multiplication algorithm [1969]

• Current fastest Boolean matrix multiplication runs in $O(n^{2.376})$ due to Coppersmith and Winograd [1987;1990]

• Implies $O(n^{2.376})$ for context-free language recognition using Valiant’s Algorithm
Valiant’s Algorithm

- Divide and Conquer giving good cache locality
- Reorganizes the computation of CKY
- The algorithm can be applied to nonassociative semirings
Matrix Multiply and Accumulate

- Basic building block for the new algorithm.
- U, W, and Z are square arrays of power of 2 size.

$$U := U + W \cdot Z$$
Blocked Matrix Multiply and Accumulate

- Reduces the number of cache misses
- Recursive

\[
\begin{bmatrix}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{bmatrix} := \begin{bmatrix}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{bmatrix} + \begin{bmatrix}
W_{11} & W_{12} \\
W_{21} & W_{22}
\end{bmatrix} \begin{bmatrix}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{bmatrix}
\]

- 8 matrix multiplies
- \(U_{11}\) is computed as

\[
U_{11} := U_{11} + W_{11} Z_{11}
\]

\[
U_{11} := U_{11} + W_{12} Z_{21}
\]
Valiant’s Algorithm

• View X as blocked

$$X = \begin{bmatrix}
X_{11} & X_{12} \\
X_{22} & X_{23} \\
X_{33} & X_{34} \\
X_{44}
\end{bmatrix}$$
Valiant’s Algorithm

• Directly applies only when \(n = 2^k - 1 \)
• Matrix \(X \) of size \(n+1 \)
• \(X^+ \) means the result of applying Valiant’s algorithm to \(X \)
Star Function Input

- A helper function
- Precondition:
 upper left and lower right quadrants are finished.
- X^* completes the dynamic program
Star Function Result

- A helper function
- Precondition: upper left and lower right quadrants are finished.
- \(X^* \) completes the dynamic program
Valiant’s Algorithm

• First step:
 Two recursive calls

\[
\begin{bmatrix}
X_{11} & X_{12} \\
X_{22}
\end{bmatrix} := \begin{bmatrix}
X_{11} & X_{12} \\
X_{22}
\end{bmatrix}^+ \\
\begin{bmatrix}
X_{33} & X_{34} \\
X_{44}
\end{bmatrix} := \begin{bmatrix}
X_{33} & X_{34} \\
X_{44}
\end{bmatrix}^+
\]
Valiant’s Algorithm

• Second step: apply the Star Function
 \(X := X^* \)

• The end of Valiant’s algorithm

• But what is the Star Function?
Star Function

• First step:

\[
\begin{bmatrix}
X_{22} & X_{23} \\
X_{33}
\end{bmatrix}
:=
\begin{bmatrix}
X_{22} & X_{23} \\
X_{33}
\end{bmatrix}^{*}
\]

• Finishes the center quadrant
Star Function

- Second step:
- \(X_{13} := X_{13} + X_{12} X_{23} \)
- means unfinished
Star Function

- Third Step: Recursive Star call

\[
\begin{bmatrix}
X_{11} & X_{13} \\
X_{33}
\end{bmatrix} := \begin{bmatrix}
X_{11} & X_{13} \\
X_{33}
\end{bmatrix}^*
\]

- Finishes \(X_{13}\)
Star Function

- Fourth step:
- \(X_{24} := X_{24} + X_{23} X_{34} \)
- means unfinished
Star Function

• Fifth Step:
 Recursive Star call

\[
\begin{bmatrix}
X_{22} & X_{24} \\
X_{44}
\end{bmatrix}
\xrightarrow{\cdot}
\begin{bmatrix}
X_{22} & X_{24} \\
X_{44}
\end{bmatrix}^*
\]

• Finishes \(X_{24}\)
Star Function

• Fifth Step:

\[X_{14} := X_{14} + X_{12} \; X_{24} \]
Star Function

- Sixth Step:
 \[X_{14} := X_{14} + X_{13} X_{34} \]
Star Function

• Seventh Step:
 Recursive Star call

\[
\begin{bmatrix}
X_{11} & X_{14} \\
X_{44}
\end{bmatrix} := \begin{bmatrix}
X_{11} & X_{14} \\
X_{44}
\end{bmatrix}^*
\]

• Finishes \(X_{44}\)
Time bounds

- n refers to matrix size not problem size
- $T(n)$: Valiant’s algorithm
- $S(n)$: Star function
- $M(n)$: Block Matrix Multiplication
- All are $O(n^3)$

$$T(n) \leq 2T(n/2) + S(n)$$
$$S(n) \leq 4S(n/2) + 4M(n/4)$$
$$M(n) \leq 8M(n/2)$$
Cache-aware Algorithms

• Cache-oblivious algorithms do not depend on cache parameters
• Cache-aware algorithms have a tuning parameter depending on cache size, line size, etc
Blocked Valiant’s Algorithm

- Valiant’s algorithm incurs overhead from recursive calls and blocked matrix multiplication
- Recursion unnecessary for small problems
- Make Valiant’s algorithm cache-aware
- If matrix is sufficiently small use
 - normal matrix multiplication
 - CKY
Experiments

• Compared
 – Valiant’s algorithm
 – Blocked Valiant’s algorithm
 – Three variants of standard dynamic programming

• Time comparison

• Instruction Count

• Cache simulations using Valgrind

• 1 GHz AMD Athlon
 – 64 KByte L1 data cache (2-way)
 – 256 KByte L2 data cache (16-way)
Time Comparison

- Normalized Time = \(\frac{\text{Time}}{n^3} \)
- V256-64
 - Blocked Valiant’s algorithm
 - \(n \leq 256 \) use CKY
 - \(n \leq 64 \) use standard matrix multiplication
Instruction Count

- Valiant’s algorithm uses the most instructions
- Blocked Valiant’s algorithm is near CKY
L2 Cache Misses

- Nearly 100 times more L2 cache misses in standard dynamic programming
L1 Cache Misses

- Blocked Valiant’s algorithm trades instructions for more L1 cache misses
Conclusion

• Instruction count not the only important thing
• Cache misses matter
• Divide and conquer gives good cache behavior
Automatic Tactilization of Graphical Images

With
Matt Renzelman
Satria Krisnandi
The Tactilization Problem

• Graphical images are heavily used in math, science and engineering textbooks and papers
 – Line graphs and bar charts
 – Diagrams
 – Illustrations
• Tactual perception is the best modality for the blind to understand such images
• Tactilization of graphical images
 – Currently done manually
 – Labor-intensive and time consuming
 – How much of this process can be automated?
Outline

• Tactual Perception
• Overview of tactilization process
• Text segmentation
• Braille text placement
• Other subprojects
• Demonstration
Tactile Perception

• Resolution of human fingertip: 25 dpi
• Tactual field of perception is no bigger than the size of the fingertips of two hands
• Color information is replaced by texture information
• Visual bandwidth is 10^6 bits per second, tactile is 10^2 bits per second
Braille

• System to read text by feeling raised dots on paper (or on electronic displays). Invented in 1820s by Louis Braille, a French blind man.

\[
\begin{align*}
a & \quad b & \quad c & \quad z \\
\text{and} & \quad \text{the} & \quad \text{with} & \quad \text{mother} \\
\text{th} & \quad \text{ch} & \quad \text{gh} & \quad \text{Critical fact: Fixed height and width} \\
Z & \quad 3 & \quad & \quad \text{Mode characters: cap and num.}
\end{align*}
\]
Tiger Embosser

- 20 dpi (raised dots per inch)
- 7 height levels (only 3 or 4 are distinguishable)
- Prints Braille text and graphics
- Prints dot patterns for texture
- Invented by a blind man, John Gardner
Automatic Tactilization Process
Key Problems

• Graphical images meant for the visual mode must be modified for the tactual mode.
 – Text ⇒ Braille
 – Colors ⇒ replace with textures or reduce number
 – Area ⇒ Larger for Braille text to fit
 – Resolution ⇒ Lower to 20 dpi
 – Shading or 3-D effects ⇒ replace with outlines
 – Noise ⇒ remove noise, enhance contrast

• Classification of graphical images for mass production
 – Images in the same class require similar processes.
Example

Sample image

Performance relative to AMD Elan SC520

© 2003 Elsevier Science (USA). All rights reserved.

Desired result
Overall Process

1. Identify letters
2. Merge letters into text blocks
3. Identify text blocks: left or right justified or centered
4. Scale image, add texture
5. OCR text blocks, Translate to Braille
Finding Text

• Why not just use standard optical character recognition (OCR)?
 – OCR is not effective for graphical images.

ABBYY FineReader 7.0
Professional Edition

© 2003 Elsevier Science (USA). All rights reserved.
Finding Text Letters

• Uses the following principles
 – Text in an image is usually in one font
 – Fonts are designed to have a uniform density at a distance.
 – In the absence of noise an individual letter tends to be connected component of one color. Exceptions are i and j.

• Train on some simple features of letters. Connected components with similar features are also letters.
Features

Century Gothic

W = width of bounding box
H = height of bounding box
A = area of bounding box
R_i = i-th radial slice density

R_i = number of black pixels in i-th slice where a slice is an angle of 360/n. The total number of slices is n.
Training/Finding

• Training:
 – Sample the connected components and compute their features.

• Finding:
 – For a new connected component compute its features.
 – If there is a close enough match of features with some member of the database then declare the component to be a letter.

• Parameters
 – How close is close enough
 – How many slices
Step 1: training

• Number of components in training set: 271
Step 2: results (1/3)

• No false positives
Step 2: results (2/3)
Step 2: results (3/3)
Finding Text Blocks

• Principles
 – Most text tends to be in horizontal lines
 – Some text is vertical
 – Some text is diagonal

• We are developing methods that find lines using the centroids of the letters found.
 – Minimum spanning tree
 – Merge test using linear regression
Group characters logically
Group characters logically

• Extracting a set of isolated characters from an image is insufficient
 – Need groups of Braille characters for easier placement

• Challenges
 – Text can be at many angles
 – Individual characters may be aligned along multiple axes
Our approach

• Step 1: User provides training set
 – Software examines defining characteristics

• Step 2: Automatically find similar groups in remaining images
 A. Minimum spanning tree
 B. Discard useless edges
 C. Discard inconsistent edges
 D. Create merged groups
Defining characteristics

- Inter-character spacing
- Line of best fit
 - Perpendicular regression vs. linear regression
 - Mean squared error
 - Angle
Minimum spanning tree (1)

Treat the centroid of each connected component as a node
Discard useless edges (2)
Discard inconsistent edges (3)
Final merge step (4)

Merge only if the resultant group is consistent
Classification of Text Boxes

- Text boxes of Braille will be of different size than the original text boxes
 - Mode characters
 - Contractions
 - Braille is fixed width

Example

Example

Example

Left justified

Right justified

Centered
Perfect Text Boxes

Performance relative to AMD Elan SC520

© 2003 Elsevier Science (USA). All rights reserved.
Justification Process

• **Sort** - sort the upper left and lower right points of text boxes first by x then by y. Use a plane sweep algorithm.

• **Left justify** - runs (in y) of text boxes with the same (or similar) left x coordinates.

• **Right justify** - runs (in y) of text boxes with the same (or similar) right x coordinates.

• **Center** - otherwise
Example Plane Sweep
Example Plane Sweep
Example Plane Sweep
Example Plane Sweep
Classification

Performance relative to AMD Elan SC520

© 2003 Elsevier Science (USA). All rights reserved.
Scaling

• General Procedure
 – Scale in y until the text height is an acceptable Braille height
 – Scale in x until the Braille correctly justified fits
• The scale factor in x and y may differ, but the distorted image is usually readable.
 – The Braille text is fully readable.
• Scaling procedure is not always successful because of limited paper size.
 – Automatic abbreviations
Scaling Example
Color Replacement with Texture
Final Result