

Outline for the Evening

- DNA
- Approximate String Matching
- Approximate String Searching
- Dynamic Progamming
- Longest Common Subsequence
- DNA reconstruction
- Contiguous Ordering and PQ-trees

Approximate Matching

- Two DNA sequences approximately match if one can be transformed into the other by a short sequence of replacements and insertions of gaps.
- Example:
- $\mathrm{s}=\mathrm{AGCATG}$
- $\mathrm{T}=\mathrm{AGATCGT}$
- Approximate matching
- is a gap
$-S^{\prime}=A G--C A T G$
$-T^{\prime}=A G A T C G T-$

DNA

- DNA is a large molecule that can be abstractly defined as a sequence of symbols from the set, A, C, G, T, called nucleotides.
- The human genome has about 3 billion nucleotides.
- A huge percentage of the genome is shared by all humans.
- Some of the variation makes us different.
- Some of the variation is inconsequential.
- The human genome is still being discovered.

Applications of Approximate Matching

- DNA string alignment.
- Given two similar DNA sequences find the best way to align them to the same length.
- DNA database searching.
- Find DNA sequences that are similar to the query.
- Approximate text matching for searching.
- agrep in unix
- Spell checking
- Find the words that most closely match the misspelled word.

Scoring an Approximate Matching

- We need a way of scoring the quality of an approximate matching.
- A scoring function is a mapping σ from $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T},-\}^{2}$ to integers.
- The quantity $\sigma(x, y)$ is the score of a pair of symbols, x and y .
- Example:
- $\sigma(x, y)=+2$ if $x=y$ and x in $\{A, C, G, T\}$
- $\sigma(x, y)=-1$ otherwise

Approximate String Matching Problem

- Input: Two strings S and T in an alphabet Σ and a scoring function σ.
- Output: Two strings S' and T' in the alphabet $\Sigma^{\prime}=\Sigma$ union $\{-\}$ with the properties:
$-S=S$ ' with the -'s removed.
$-\mathrm{T}=\mathrm{T}$ ' with the -'s removed.
$-\left|S^{\prime}\right|=\left|T^{\prime}\right|$
- The score $\sum_{i=1}^{\left|S^{\prime}\right|} \sigma\left(S^{\prime}[i], \mathrm{T}^{\prime}[i]\right)$ is maximized.

Dynamic Programming for Approximate String Matching

- Assume S has length m and T has length n.
- For all i and $j, 0 \leq i \leq m$ and $0 \leq j \leq n$, we find the maximum score for the sequences $\mathrm{S}[1 . . \mathrm{i}]$ and T[1..j].
- The "dynamic program" fills in a $(m+1) x(n+1)$ matrix M in increasing order of i and j with these maximum values.
- Once the dynamic program has completed we can recover the optimal string S' and T' from the matrix M .

Scoring Example

- Example:
- $\mathrm{S}^{\prime}=\mathrm{A}$ G - - CATG
$-\mathrm{T}^{\prime}=\mathrm{AGATCGT}-$
- Score $=4 \times 2+4 \times(-1)=4$
- Is this the best match between the two strings with this scoring function?
- $\mathrm{S}=\mathrm{AGCATG}$
$-\mathrm{T}=$ AGATCGT

Algorithms for Approximate String Matching

- $\mathrm{O}(\mathrm{mn})$ time and storage algorithm (using dynamic programming) invented by Needleman and Wunch, 1970.
- Fischer and Paterson, 1974, invented a very similar algorithm for computing the minimum edit distance between two strings.

Max Score Recurrence

- Define $M[i, j]=$ maximum score for a match between $\mathrm{S}[1 . . \mathrm{i}]$ and $\mathrm{T}[1 . . \mathrm{j}]$.

$$
\begin{aligned}
& M[i, 0]= \sum_{k=1}^{i} \sigma(S[k],-) \quad \text { match of } S[1 . . i] \text { with empty string } \\
& M[0, j]= \sum_{k=1}^{j} \sigma(-, T[k]) \quad \text { match of } T[1 . . j] \text { with empty string } \\
& M[i, j]= \max \{ \\
& M[i-1, j-1]+\sigma(S[i], T[j]), \\
& M[i-1, j]+\sigma(S[i],-), \\
&M[i, j-1]+\sigma(-, T[j])\} \\
& \text { Lecture 9 - Dynamic Programming, PQ-trees }
\end{aligned}
$$

Dynamic Program Initialization

```
S = AGCATG }\quadl
```


Dynamic Program Example (1)

$\mathrm{S}=$ AGCATG	scoring function
$\mathrm{T}=$ AGATCGT	+2 for exact match
	-1 otherwise

$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ A G A T C G T

0 | 0 | -1 | -2 | -3 | -4 | -5 | -6 | -7 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | -1 | 2 | | | | | | |

1	A	-1
2	G	-2

| 3 | C | -3 |
| :--- | :--- | :--- | :--- |
| | | |

4 A -4

The Dynamic Programming Pattern

$\mathrm{d}=\mathrm{a}+2$ if $\mathrm{s}=\mathrm{t}$
=a-1 otherwise
$\mathrm{h}=\mathrm{c}-1$
$v=b-1$
$x=\max (d, h, v)$

Dynamic Program Example (2)

$S=$ AGCATG	scoring function
$T=$ AGATCGT	+2 for exact match
	-1 otherwise

$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ A G A T C G T

Dynamic Program Example (3)

$\mathrm{S}=$ AGCATG	scoring function
$\mathrm{T}=$ AGATCGT	+2 for exact match
	-1 otherwise

$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
A G A T C G T

0	0	-1	-2	-3	-4	-5	-6	-7
1 A	-1	2	1	0				
2 G	-2	1	4					
3 C	-3	0						
4 A	-4							
	-5							
6 G	-6							

Lecture 9 - Dynamic Programming, PQ-trees

Dynamic Program Example (4)

$\mathrm{S}=$ AGCATG	scoring function
$\mathrm{T}=$ AGATCGT	+2 for exact match
	-1 otherwise

$\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
A GA T C G T

$$
\begin{array}{cc|c|c|c|c|c|c|c|c}
1 & A & -1 & 2 & 1 & 0 & -1 & -2 & -3 & -4 \\
2 & G & -2 & 1 & 4 & 3 & 2 & 1 & 0 & -1 \\
\cline { 3 - 8 } & & -3 & 0 & 3 & 3 & 2 & 4 & 3 & 2
\end{array}
$$

$$
\begin{array}{ll|l|l|l|l|l|l|l|l}
4 & \mathrm{~A} & -4 & -1 & 2 & 5 & 4 & 3 & 3 & 2 \\
5 & \mathrm{~T} & -5 & -2 & 1 & 4 & 7 & 6 & 5 & \\
\cline { 2 - 8 } & & -6 & -3 & 0 & 3 & 6 & 6 & &
\end{array}
$$

$$
\begin{aligned}
& 6 \\
& 6
\end{aligned} \begin{array}{|l|l|l|l|l|l|l|l}
\hline-6 & -3 & 0 & 3 & 6 & 6 & & \\
\hline
\end{array}
$$

Dynamic Program Example (5)

$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

5	T	-5	-2	1	4	7	6
5	5	5					

Dynamic Programming Order

By row
for $i=1$ to m do
for $j=1$ to n do
$M[i, j]:=\ldots$

By column
for $j=1$ to
for $j=1$ to n do
for $i=1$ to m do
$\mathrm{M}[i, \mathrm{j}]:=$

Which order is best?

Computing the Matching Graph (1)
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Computing the Matching Graph (3)

	$\begin{array}{cccccccc} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & A & G & A & T & C & G & T \end{array}$							
0	0	-1	-2	-3	-4	-5	-6	-7
1 A	-1	2	1	0	-1	-2	-3	-4
	-2	1	4	3	2	1	0	
3 C	-3	0	3	3	2	4	3	
4 A	-4	-1	2	5	4	3	3	
5 T	-5	-2	1	4			5	
6 G	-6	-3	0	3	6	6		

Computing the Matching Graph

	$\begin{array}{cccccccc} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & A & G & A & T & C & G & T \\ \hline \end{array}$							
0	0	-1	-2	-3	-4	-5	-6	-7
1 A	-1	2	1	0	-1	-2	-3	-4
2 G	-2	1	4	3	2	1	0	-1
3 C	-3	0	3	3	2	4	3	2
4 A	-4	-1	2	5	4	3	3	2
5 T	-5	-2	1	4	7		5	5
6 G	-6	-3	0	3	6	6		-7

Algorithm to find Matching

- Follow any path in the matching graph starting at (m, n).
- The path will end up at $(0,0)$.
- Output each pair (i, j) visited to make a list of pairs forming a matching path.

Computing the Matching Path

Algorithm to find Matching	
- Follow any path in the matching graph	
starting at (m, n).	
- The path will end up at $(0,0)$.	
- Output each pair ($\mathrm{i}, \mathrm{j})$ visited to make a list of	
pairs forming a matching path.	

Computing the Match	
$p=$ length of the matching path P $\mathrm{i}:=1$;	P
$\mathrm{j}:=1$;	0 (0,0)
for $k=1$ to p do	$1(1,1)$
if $P[k]$.first $=P[k-1]$.first then	$2(2,2)$
$\mathrm{S}^{\prime}[\mathrm{k}]:=-$;	3 (3,2)
else	4 (4,3)
$\mathrm{S}^{\prime}[\mathrm{k}]:=\mathrm{S}[\mathrm{i}]$;	$5(5,4)$
$\mathrm{i}:=\mathrm{i}+1$;	6 (5,5)
if $P[k]$.second $=P[k-1]$.second then	7 (6,6)
T'[k] := -	$8(6,7)$
$\begin{aligned} & \text { else } \\ & \quad T^{\prime}[k]:=T[j] ; \\ & j:=j+1 ; \end{aligned}$	
Lecture 9 - Dynamic Programming, PQ-trees	28

Creating the Matching

P	
0	
	$(0,0)$
1	$(1,1)$
2	$(2,2)$
3	$(3,2)$
4	$(4,3)$
5	$(5,4)$
6	$(5,5)$
7	$(6,6)$
8	$(6,7)$

$\quad \begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 \\ S & A & G & C & A & T & G \\ T & A & G & A & T & C & G\end{array}$

$S^{\prime}=A$
$T^{\prime}=A$

Example of Multiple Paths

	0						5 T	Multiple matching with same score - A C G C T G C A T G - T -	
0			-2	-3	-4	4	-5		
1 A	${ }_{-1}$	-1	1	0	-1	1	-2	$\begin{aligned} & \text { A C G C T G - } \\ & -\mathrm{C} \\ & \hline \end{aligned}$	
2 C	-2	1.	0	0	-1		-2		
3 G	-3	0	0	-1	2	2	1	$\begin{aligned} & \text { A C G C T G - } \\ & -- \text { C A T G } \end{aligned}$	
4 C	-4	-1	-1	-1			1		
5 T	-5	-2	-2	1.	0	0	3	$\begin{aligned} \text { score } & =3 \times 2+4 \times(-1) \\ & =2 \end{aligned}$	
6 G	-6	-3	-3	0			-2		

30

Exercise

- Find an optimal approximate matching for - A G T TC
- ACTATC

		$\begin{aligned} & 1 \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2 \\ & C \end{aligned}$	$\begin{aligned} & 3 \\ & \mathrm{~T} \end{aligned}$	4	$\begin{aligned} & 5 \\ & \mathrm{~T} \end{aligned}$	6	6
0	0	-1	-2	-3	-4	-5	-6	6
1 A	-1							
2 G	-2							
3 T	-3							
4 T	-4							
5 C	-5							

Search Algorithm

- We change the previous dynamic program slightly.

$$
\begin{aligned}
& M[i, 0]=\sum_{k=1} \sigma(Q[k],-) \\
& M[0, j]=0 \quad \text { We don't care where the match begins in } T \\
& M[i, j]=\max \{ \\
& M[i-1, j-1]+\sigma(Q[i], T[j]) \text {, } \\
& M[i-1, j]+\sigma(Q[i],-), \\
& M[i, j-1]+\sigma(-, T[j])\}
\end{aligned}
$$

Choose all k such that $\mathrm{M}[\mathrm{m}, \mathrm{k}] \geq \mathrm{r}$ where m is the length of Q .

Recovering the Matchings

Q	AGTA	Q	A--GTA-
T	AG-A 1-3	T	ATCGTAG $3-9$
Q	A--GTA	Q	AGTA
T	ATCGTA $3-8$	T	AGT- 8-10

FASTA and BLAST

- Two of best known approximate search algorithms for DNA database searching
- Both use the idea of exclusion search
- Parameter k for number of possible errors
- Exact search on $k+1$ substrings. At least one must succeed
$k=4 \quad$ search string

1. Find all the exact matches for at least one of the strings
2. For each such match do an approximate matching

Dynamic Programming

- A strategy for designing algorithms.
- A technique, not an algorithm.
- The word "programming" is historical and predates computer programming.
- Ideal when the problem breaks down into recurring small sub-problems.

LCS Algorithm

- Brute-force algorithm: 2^{m} subsequences of x each takes $\mathrm{O}(\mathrm{n})$ to search in $\mathrm{y}: \mathrm{O}\left(\mathrm{n} 2^{m}\right)$
- We can do better: for now, let's only worry about the problem of finding the length of the LCS
- When finished we will see how to backtrack from this solution back to the actual LCS.
- Notice LCS problem has optimal substructure
- Subproblems: LCS of pairs of prefixes of x and y

Finding LCS Length

- Define $c[i, j]$ to be the length of the LCS of $X_{i}=x[1 . . i]$ and $Y_{j}=y[1 . . j]$
- What is the length of LCS of x and y ? $\mathrm{c}[\mathrm{m}, \mathrm{n}]$
- Theorem:
$c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max (c[i, j-1], c[i-1, j]) & \text { otherwise }\end{cases}$

LCS Recurrence

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max (c[i, j-1], c[i-1, j]) & \text { otherwise }\end{cases}
$$

Proof: When calculating c[i,j], there are two cases to consider:

- First case: $x[i]=y[j]$: one more symbol in strings X and Y matches, so the length of LCS X_{i} and Y_{j} equals to the length of LCS of smaller strings $\mathrm{X}_{\mathrm{i}-1}$ and $\mathrm{Y}_{\mathrm{i}-1}$, plus 1 .

LCS recursive solution

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max (c[i, j-1], c[i-1, j]) & \text { otherwise }\end{cases}
$$

Why not just take the length of $\operatorname{LCS}\left(\mathrm{X}_{\mathrm{i}-1}, \mathrm{Y}_{\mathrm{j}-1}\right)$?
Answer: Let $\mathrm{x}=\mathrm{abc} \mathrm{y}=\mathrm{db}$
$c[3,2]=\max (c[3,1], c[2,2])=\max (0,1)=1$
$c[3,2] \neq c[2,1]=0$

Exercise: Create a Dynamic Program

- Design a dynamic program for knapsack problem.
- Input: $\left(\mathrm{s}_{1}, \mathrm{c}_{1}\right),\left(\mathrm{s}_{2}, \mathrm{c}_{2}\right), \ldots,\left(\mathrm{s}_{\mathrm{n}}, \mathrm{c}_{\mathrm{n}}\right), \mathrm{S}$
- Output: find a subset X of $\{1,2, \ldots, n\}$ such that

$$
\sum_{i \in X} \mathrm{~s}_{\mathrm{i}} \leq \mathrm{S} \text { and } \sum_{i \in X} \mathrm{c}_{\mathrm{i}} \text { is maximized }
$$

- Hint: For $\mathrm{i} \leq \mathrm{n}$ and $\mathrm{k} \leq \mathrm{S}$ recursively define

$$
c(i, k)=\max \left\{\sum_{i \in X} c_{j}: X \subseteq\{1,2, \ldots, i\} \text { and } \sum_{j \in X} s_{j}=k\right\}
$$

DNA Sequence Reconstruction

- DNA can only be sequenced in relatively small pieces, up to about 1,000 nucleotides.
- By chemistry a much longer DNA sequence can be broken up into overlapping sequences called clones. Clones are 10's of thousands of nucleotides long.

Tagging the Clones

- By chemistry the clones can be tagged by identifying a region of the DNA uniquely.

- Each clone is then tagged correspondingly.

Problem to Solve

- Given a set of tagged clones, find a consistent ordering of the tags that determines a possible ordering of the DNA molecule.

input

clone tag

1. $\{E, G\}$

2.	$\{\mathrm{F}, \mathrm{G}, \mathrm{H}\}$	output
3.	$\{\mathrm{A}, \mathrm{I}\}$	EGFHAIBDC
4.	$\{\mathrm{C}, \mathrm{D}\}$	1

$\begin{array}{ll}\text { 3. } & \{\mathrm{A}, \mathrm{I}\} \\ \text { 4. } & \{\mathrm{C}, \mathrm{D}\} \\ \text { 5. } & \{\mathrm{E}, \mathrm{G}\}\end{array}$
6. $\{A, H, I\}$
7. $\{B, D\}$
8. $\{\mathrm{F}, \mathrm{H}\}$
9. $\{A, B, D, I\}$
10. $\{C, D\}$

Lecture 9 - Dynamic Programming, PQ-trees

Contiguous Ordering Solutions

Linear Time Algorithm

- Booth and Lueker, 1976, designed an algorithm that runs in time $\mathrm{O}(\mathrm{n}+\mathrm{m}+\mathrm{s})$.
$-n$ is the size of the universe, m is the number of sets, and s is the sum of the sizes of the sets.
- It requires a novel data structure called the $P Q$ tree that represents a set of orderings.
- PQ trees can also be used to test whether an undirected graph is planar.

Orderings Defined by a PQ Tree

- Given a PQ tree T the orderings defined by T is

PQ Tree Solution for the Contiguous Ordering Problem

- Input: A universe U and a set $S=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ of subsets of U.
- Output: A PQ tree T with leaves U with the property that $\mathrm{PQ}(\mathrm{T})$ is the set of all orderings of U where each set in S is contiguous in the ordering.

PQ Tree Restriction

High Level PQ tree Algorithm

- Input is $U=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, and subsets S_{1}, S_{2}, ..., S_{m} of U .
- Initialization:
$-T=P$ node with children $A_{1}, A_{2}, \ldots, A_{n}$
- Calculate m restrictions:
$-\operatorname{for} \mathrm{j}=1$ to m do
$\mathrm{T}:=$ Restrict($\mathrm{T}, \mathrm{S}_{\mathrm{i}}$)
- At the end of iteration k :
$-\mathrm{PQ}(\mathrm{T})=$ the set of ordering of U where each set S_{1}, $\mathrm{S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}}$ are contiguous.

Marking Nodes

- Given a set S and $P Q$ tree T we can mark nodes either full or partial.
- A leaf is full if it is a member of S.
- A node is full if all its children are full.
- A node is partial if either it has both full and nonfull children or it has a partial child.
- A node is doubly partial if it has two partial children.

Restrict(T,S)

- Mark the full and partial nodes from the bottom up.
- In the process the marked leaves become contiguous.
- Locate the key node.
- Deepest node with the property that all the full leaves are descendents of the node.
- Restrict the key node.
- In the process of restricting the key node we will have to recursively direct partial nodes.
- Directing a node returns a sequence of nodes.

Restricting a P Node with Partial Children

65

Restricting a P node with no Partial Children

Lecture 9 - Dynamic Programming, PQ-trees 66

Exercise

- Restrict with to make $\{A, B, D, E, G\}$ contiguous

Linear Number of Nodes Processed

- Let n be the size of the universe, m the number of sets, and s the sum of the sizes of the sets.
- Number of full nodes processed $\leq 2 \mathrm{~s}$.
- Number of key nodes processed $=m$.
- Number of partial nodes with partial children processed below the key node $\leq m+n$.
- Number of partial nodes with no partial children $\leq 2 \mathrm{~m}$.
- Number of partial nodes processed above the key node $\leq m+n$.

Number of Processed Nodes Amortized

Partials with Partial Children Below the Key Node

- Amortized complexity argument.
- Consider the quantities:
- q = number of Q nodes, $\mathrm{cp}=$ number of children of P nodes.
- We examine the quantity $x=q+c p$
$-x$ is initially n and never negative.
- Each restrict of a key node increases x by at most 1 .
- Each direct of a partial node with a partial child decreases x by at least 1 .
- Since there are m restricts of a key node then there are most $n+m$ directs of partials with partial children.

Lecture 9 - Dynamic Programming, PQ-trees

Restricting a P node with no Partial Children

Lecture 9 - Dynamic Programming, PQ-trees

Restricting a P Node with Partial Children

PQ Tree Notes

- In algorithmic design only a linear number of nodes are ever processed.
- Designing the data structures to make the linear time processing a reality is very tricky.
- PQ trees solve the idealized DNA ordering problem.
- In reality, because of errors, the DNA ordering problem is NP-hard and other techniques are used.

Example of Data Structure Trick

- Linking the children of a Q node

Lecture 9 - Dynamic Programming. PQ-trees
92

