CSEP 521
Applied Algorithms
Spring 2005

Dynamic Programming
Contiguous Ordering - PQ Trees
Reading

- Chapter 15
Outline for the Evening

- DNA
- Approximate String Matching
- Approximate String Searching
- Dynamic Programming
- Longest Common Subsequence
- DNA reconstruction
- Contiguous Ordering and PQ-trees
DNA

- DNA is a large molecule that can be abstractly defined as a sequence of symbols from the set, A, C, G, T, called nucleotides.
- The human genome has about 3 billion nucleotides.
 - A huge percentage of the genome is shared by all humans.
 - Some of the variation makes us different.
 - Some of the variation is inconsequential.
 - The human genome is still being discovered.
Approximate Matching

• Two DNA sequences approximately match if one can be transformed into the other by a short sequence of replacements and insertions of gaps.

• Example:
 – S = AGCATG
 – T = AGATCGT

• Approximate matching
 – S’ = AG——CATG
 – T’ = AGATC——GT
 – is a gap
Applications of Approximate Matching

• DNA string alignment.
 – Given two similar DNA sequences find the best way to align them to the same length.

• DNA database searching.
 – Find DNA sequences that are similar to the query.

• Approximate text matching for searching.
 – agrep in unix

• Spell checking
 – Find the words that most closely match the misspelled word.
Scoring an Approximate Matching

• We need a way of scoring the quality of an approximate matching.

• A scoring function is a mapping σ from $\{A, C, G, T, -\}^2$ to integers.
 – The quantity $\sigma(x,y)$ is the score of a pair of symbols, x and y.

• Example:
 – $\sigma(x,y) = +2$ if $x=y$ and x in $\{A,C,G,T\}$
 – $\sigma(x,y) = -1$ otherwise
Scoring Example

• Example:
 - $S' = A G __ C A T G$
 - $T' = A G A T C G T _ -$

• Score $= 4 \times 2 + 4 \times (-1) = 4$

• Is this the best match between the two strings with this scoring function?
 - $S = A G C A T G$
 - $T = A G A T C G T$
Approximate String Matching Problem

• Input: Two strings S and T in an alphabet Σ and a scoring function σ.

• Output: Two strings S' and T' in the alphabet $\Sigma' = \Sigma$ union $\{-\}$ with the properties:
 - $S = S'$ with the -'s removed.
 - $T = T'$ with the -'s removed.
 - $|S'| = |T'|$
 - The score $\sum_{i=1}^{S'} \sigma(S'[i], T'[i])$ is maximized.
Algorithms for Approximate String Matching

• O(mn) time and storage algorithm (using dynamic programming) invented by Needleman and Wunch, 1970.

• Fischer and Paterson, 1974, invented a very similar algorithm for computing the minimum edit distance between two strings.
Dynamic Programming for Approximate String Matching

• Assume S has length m and T has length n.
• For all i and j, 0 ≤ i ≤ m and 0 ≤ j ≤ n, we find the maximum score for the sequences S[1..i] and T[1..j].
• The “dynamic program” fills in a (m+1)x(n+1) matrix M in increasing order of i and j with these maximum values.
• Once the dynamic program has completed we can recover the optimal string S’ and T’ from the matrix M.
Max Score Recurrence

• Define \(M[i,j] = \) maximum score for a match between \(S[1..i] \) and \(T[1..j] \).

\[
M[i,0] = \sum_{k=1}^{i} \sigma(S[k],-) \\
\text{match of } S[1..i] \text{ with empty string}
\]

\[
M[0,j] = \sum_{k=1}^{j} \sigma(-,T[k]) \\
\text{match of } T[1..j] \text{ with empty string}
\]

\[
M[i,j] = \max\{ \\
M[i-1,j-1] + \sigma(S[i],T[j]), \\
M[i-1,j] + \sigma(S[i],-), \\
M[i,j-1] + \sigma(-,T[j])\}
\]
Dynamic Program Initialization

Scoring Function

- +2 for exact match
- -1 otherwise

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
<td>-6</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Dynamic Programming Pattern

\[
\begin{align*}
 d &= a + 2 \text{ if } s = t \\
 &= a - 1 \text{ otherwise} \\
 h &= c - 1 \\
 v &= b - 1 \\
 x &= \max(d, h, v)
\end{align*}
\]
Dynamic Program Example (1)

\[S = \text{AGCATG} \]
\[T = \text{AGATCGT} \]

scoring function
+2 for exact match
-1 otherwise

\[
\begin{array}{cccccccc}
 & A & G & A & T & C & G & T \\
0 & 0 & -1 & -2 & -3 & -4 & -5 & -6 & -7 \\
1 & -1 & 2 & & & & & & \\
2 & -2 & & & & & & & \\
3 & -3 & & & & & & & \\
4 & -4 & & & & & & & \\
5 & -5 & & & & & & & \\
6 & -6 & & & & & & & \\
\end{array}
\]
Dynamic Program Example (2)

S = AGCATG
T = AGATCGT

scoring function
+2 for exact match
-1 otherwise

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
<td>-6</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dynamic Program Example (3)

S = AGCATG
T = AGATCGT

scoring function
+2 for exact match
-1 otherwise

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
<td>-6</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dynamic Program Example (4)

S = AGCATG
T = AGATCGT

scoring function
+2 for exact match
-1 otherwise
Dynamic Program Example (5)

\[S = \text{AGCATG} \]
\[T = \text{AGATCGT} \]

scoring function
+2 for exact match
-1 otherwise

Max score for any matching
Dynamic Programming Order

By row

\[
\text{for } i = 1 \text{ to } m \text{ do} \\
\text{for } j = 1 \text{ to } n \text{ do} \\
M[i,j] := \ldots
\]

By column

\[
\text{for } j = 1 \text{ to } n \text{ do} \\
\text{for } i = 1 \text{ to } m \text{ do} \\
M[i,j] := \ldots
\]

By diagonal

Which order is best?
How to Find the Matching

• To find S’ and T’ we build a matching graph.

\[
\begin{align*}
x &= a + 2 \text{ if } s = t \\
 &= a - 1 \text{ otherwise?}
\end{align*}
\]

\[
\begin{align*}
x &= c - 1 \text{?} \\
x &= b - 1 ?
\end{align*}
\]

If the answer is yes, include the corresponding edge.
Computing the Matching Graph (1)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
<td>-6</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>-4</td>
<td>-1</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>-5</td>
<td>-2</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>-6</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

Lecture 9 - Dynamic Programming, PQ-trees
Computing the Matching Graph (2)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
<td>-6</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>-4</td>
<td>-1</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>-5</td>
<td>-2</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>-6</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>
Computing the Matching Graph (3)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
<td>-6</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>-4</td>
<td>-1</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>-5</td>
<td>-2</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>-6</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

Lecture 9 - Dynamic Programming, PQ-trees
Computing the Matching Graph

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
<td>-6</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>-4</td>
<td>-1</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>-5</td>
<td>-2</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>-6</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>
```
Computing the Matching Path

The table below shows the matching path for a given sequence comparison. The path is indicated by the arrows, and the matching path is:

- (0,0)
- (1,1)
- (2,2)
- (3,2)
- (4,3)
- (5,4)
- (5,5)
- (6,6)
- (6,7)

There can be multiple paths.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
<td>-6</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>-4</td>
<td>-1</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>-5</td>
<td>-2</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>-6</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

Matching Path:
- (0,0)
- (1,1)
- (2,2)
- (3,2)
- (4,3)
- (5,4)
- (5,5)
- (6,6)
- (6,7)
Algorithm to find Matching

- Follow any path in the matching graph starting at \((m,n)\).
- The path will end up at \((0,0)\).
- Output each pair \((i,j)\) visited to make a list of pairs forming a matching path.
Computing the Matching

\[p = \text{length of the matching path } P \]
\[i := 1; \]
\[j := 1; \]

for \(k = 1 \) to \(p \) do

\[\text{if } P[k].\text{first} = P[k-1].\text{first} \text{ then} \]
\[\quad S'[k] := -; \]
\[\text{else} \]
\[\quad S'[k] := S[i]; \]
\[\quad i := i + 1; \]

\[\text{if } P[k].\text{second} = P[k-1].\text{second} \text{ then} \]
\[\quad T'[k] := -; \]
\[\text{else} \]
\[\quad T'[k] := T[j]; \]
\[\quad j := j + 1; \]
Creating the Matching

\[
\begin{array}{ccccccc}
& 1 & 2 & 3 & 4 & 5 & 6 \\
S &=& A & G & C & A & T & G \\
T &=& A & G & A & T & C & G & T \\
\end{array}
\]

\[
\begin{array}{ccccccc}
S' &=& A & G & C & A & T & - & G & - \\
T' &=& A & G & - & A & T & C & G & T \\
\end{array}
\]

Score = 5 x 2 + 3 x (-1) = 7
Example of Multiple Paths

- **Multiple matching with same score**

 - $A C G C T G - T -$
 - $C A T G - T -$
 - $A C G C T G -$
 - $- C A - T G T$
 - $A C G C T G -$
 - $- - C A T G T$

 \[
 \text{score} = 3 \times 2 + 4 \times (-1) \\
 = 2
 \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>-4</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>-5</td>
<td>-2</td>
<td>-2</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>-6</td>
<td>-3</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Exercise

• Find an optimal approximate matching for
 - A G T T C
 - A C T A T C

```
  0  1  2  3  4  5  6
A  0  -1 -2 -3 -4 -5 -6
C
T
T
T
C
```
Approximate String Searching

• Input: Query string Q and target string T in an alphabet Σ and a scoring function σ, and a minimum score r.

• Output: The set of k such that for some $i \leq k$ $\text{score}(Q, T[i..k]) \geq r$. That is, an approximate match of some substring of T that ends at index k has a score of at least r.

 – $\text{score}(X, Y)$ is the maximum score for all matchings between X and Y.
Search Algorithm

• We change the previous dynamic program slightly.

\[M[i,0] = \sum_{k=1}^{i} \sigma(Q[k], -) \]

\[M[0, j] = 0 \quad \text{We don’t care where the match begins in T} \]

\[M[i, j] = \max\{ \]

\[M[i-1, j-1] + \sigma(Q[i], T[j]), \]

\[M[i-1, j] + \sigma(Q[i], -), \]

\[M[i, j-1] + \sigma(-, T[j]) \}\]

Choose all k such that \(M[m,k] \geq r \) where m is the length of Q.
Example of Approximate Matching

\[Q = \text{AGTA} \]
\[T = \text{AGATCGTAGT} \]

scoring function
+2 for exact match
-1 otherwise

\[
\begin{array}{cccccccccccc}
 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
A & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
G & -1 & 2 & 1 & 2 & 1 & 0 & -1 & -1 & 2 & 1 & 0 \\
A & -2 & 1 & 4 & 3 & 2 & 1 & 2 & 1 & 1 & 4 & 3 \\
T & -3 & 0 & 3 & 3 & 5 & 4 & 3 & 4 & 3 & 3 & 6 \\
A & -4 & -1 & 2 & 5 & 4 & 4 & 3 & 3 & 6 & 5 & 5 \\
\end{array}
\]

output is 3, 8, 9, 10
Recovering the Matchings

\[Q = \text{AGTA} \]
\[T = \text{AGATCGTAGT} \]

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
A & G & A & T & C & G & T & A & G & T \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 2 & 1 & 2 & 1 & 0 & -1 & -1 & 2 & 1 & 0 \\
2 & -2 & 1 & 4 & 3 & 2 & 1 & 2 & 1 & 1 & 4 & 3 \\
3 & -3 & 0 & 3 & 3 & 5 & 4 & 3 & 4 & 3 & 3 & 6 \\
4 & -4 & -1 & 2 & 5 & 4 & 4 & 3 & 3 & 6 & 5 & 5 \\
\end{array}
\]
Notes on Approximate Matching

- Time complexity $O(mn)$
- Storage complexity $O(mn)$
 - Storage in the dynamic program can be reduced to $O(m+n)$ by just keeping the frontier.
 - Recovering the matching can be done in time $O(m+n)$ cleverly.
FASTA and BLAST

• Two of best known approximate search algorithms for DNA database searching
• Both use the idea of exclusion search
 – Parameter k for number of possible errors
 – Exact search on $k+1$ substrings. At least one must succeed

$k = 4$

1. Find all the exact matches for at least one of the strings
2. For each such match do an approximate matching
Example

\[k = 2 \]

\[
\text{AGTTATGCC} \rightarrow \text{AGT TAT GCC}
\]

\[
\text{TTAGACGTTCATGACCTGAGAGTTATG}
\]

Dynamic Programming \(O(mn) \)
Exclusion Search \(O(sm^2 + n) \)

\(m \) search string length
\(n \) database length
\(s \) number of successes in exact search
Dynamic Programming

- A strategy for designing algorithms.
- A technique, not an algorithm.
- The word “programming” is historical and predates computer programming.
- Ideal when the problem breaks down into recurring small sub-problems.
Longest Common Subsequence

- Longest common subsequence (LCS) problem:
 - Given two sequences $x[1..m]$ and $y[1..n]$, find the longest subsequence which occurs in both (not necessarily contiguous).
 - Example: $x = A B C B D A B$, $y = B D C A B A$
 - $B C$ and $A A$ are both subsequences of both
 - What is the LCS? **BCAB, BCBA**
 - Brute-force algorithm: For every subsequence of x, check if it’s a subsequence of y
 - How many subsequences of x are there?
 - What will be the running time of the brute-force alg?
LCS Algorithm

• Brute-force algorithm: 2^m subsequences of x each takes $O(n)$ to search in y: $O(n \cdot 2^m)$
• We can do better: for now, let’s only worry about the problem of finding the length of the LCS
 – When finished we will see how to backtrack from this solution back to the actual LCS.
• Notice LCS problem has optimal substructure
 – Subproblems: LCS of pairs of prefixes of x and y
Finding LCS Length

• Define $c[i,j]$ to be the length of the LCS of $X_i = x[1..i]$ and $Y_j = y[1..j]$
 – What is the length of LCS of x and y?
 $$c[m,n]$$

• Theorem:

$$c[i,j] = \begin{cases}
 c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\
 \max(c[i,j-1], c[i-1,j]) & \text{otherwise}
\end{cases}$$
LCS Recurrence

\[
c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}
\]

Proof: When calculating \(c[i,j]\), there are two cases to consider:

- **First case**: \(x[i]=y[j]\): one more symbol in strings \(X\) and \(Y\) matches, so the length of \(LCS \ X_i \) and \(Y_j\) equals to the length of \(LCS\) of smaller strings \(X_{i-1}\) and \(Y_{j-1}\), plus 1.
LCS Recurrence

\[
c[i, j] = \begin{cases}
 c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\
 \max(c[i, j-1], c[i-1, j]) & \text{otherwise}
\end{cases}
\]

• **Second case:** \(x[i] \neq y[j] \)

• As symbols don’t match, our solution is not improved, and the length of \(\text{LCS}(X_i, Y_j) \) is the maximum of \(\text{LCS}(X_i, Y_{j-1}) \) and \(\text{LCS}(X_{i-1}, Y_j) \)

Why not just take the length of \(\text{LCS}(X_{i-1}, Y_{j-1}) \) ?
LCS recursive solution

\[c[i, j] = \begin{cases}
 c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\
 \max(c[i, j-1], c[i-1, j]) & \text{otherwise}
\end{cases} \]

Why not just take the length of LCS\((X_{i-1}, Y_{j-1})\)?

Answer: Let \(x=abc\) \(y=db\)

\[c[3,2] = \max(c[3,1], c[2,2]) = \max(0,1) = 1 \]

\[c[3,2] \neq c[2,1] = 0 \]
Exercise: Write the Program

1. \(m = \text{length}(X) \) // # of symbols in X
2. \(n = \text{length}(Y) \) // # of symbols in Y
3. for \(i = 1 \) to \(m \) \(\quad c[i,0] = 0 \) // special case: \(Y_0 \)
4. for \(j = 1 \) to \(n \) \(\quad c[0,j] = 0 \) // special case: \(X_0 \)

Finish it
Exercise: Create a Dynamic Program

- Design a dynamic program for knapsack problem.
- Input: \((s_1,c_1), (s_2,c_2), \ldots, (s_n,c_n), S\)
- Output: find a subset \(X\) of \(\{1,2,\ldots,n\}\) such that
 \[
 \sum_{i \in X} s_i \leq S \quad \text{and} \quad \sum_{i \in X} c_i \quad \text{is maximized}
 \]
- Hint: For \(i \leq n\) and \(k \leq S\) recursively define
 \[
 c(i,k) = \max\{\sum_{j \in X} c_j : X \subseteq \{1,2,\ldots,i\} \quad \text{and} \quad \sum_{j \in X} s_j = k\}
 \]
DNA Sequence Reconstruction

- DNA can only be sequenced in relatively small pieces, up to about 1,000 nucleotides.
- By chemistry a much longer DNA sequence can be broken up into overlapping sequences called clones. Clones are 10’s of thousands of nucleotides long.
Tagging the Clones

- By chemistry the clones can be tagged by identifying a region of the DNA uniquely.

- Each clone is then tagged correspondingly.
Problem to Solve

- Given a set of tagged clones, find a consistent ordering of the tags that determines a possible ordering of the DNA molecule.

<table>
<thead>
<tr>
<th>Clone</th>
<th>Tag</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{E, G}</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>{F, G, H}</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>{A, I}</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>{C, D}</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>{E, G}</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>{A, H, I}</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>{B, D}</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>{F, H}</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>{A, B, D, I}</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>{C, D}</td>
<td>10</td>
</tr>
</tbody>
</table>
Contiguous Ordering Solutions

Contiguous ordering problem

\(U = \{A, B, C, D, E, F, G, H, I\} \)
\(S = \{\{E, G\}, \{F, G, H\}, \{A, I\}, \{C, D\}, \{E, G\}, \{A, H, I\}, \{B, D\}, \{F, H\}, \{A, B, D, I\}, \{C, D\}\} \)

Solution

\(E \ G \ F \ H \ A \ I \ B \ D \ C \)

Alternate Solutions

interchange I and A

\(E \ G \ F \ H \ I \ A \ B \ D \ C \)

reversal

\(C \ D \ B \ I \ A \ H \ F \ G \ E \)

\(C \ D \ B \ A \ I \ H \ F \ G \ E \)
Linear Time Algorithm

• Booth and Lueker, 1976, designed an algorithm that runs in time $O(n+m+s)$.
 – n is the size of the universe, m is the number of sets, and s is the sum of the sizes of the sets.

• It requires a novel data structure called the PQ tree that represents a set of orderings.

• PQ trees can also be used to test whether an undirected graph is planar.
PQ Trees

• PQ trees are built from three types of nodes

- P node
 - Children can be reordered.

- Q node
 - Children can be reversed.

- Leaf
 - Each leaf has a unique label.
Example PQ-Tree

The frontier of T defines the ordering $F(T) = FCABDE$, just read the leaves left to right.

T' is equivalent to T if T can be transformed into T by reordering the children of P nodes and reversing the children of Q nodes.
Equivalent PQ Trees

FCABDE

FEBDAC
Orderings Defined by a PQ Tree

• Given a PQ tree T the orderings defined by T is

 $\text{PQ}(T) = \{ F(T') : T' \text{ is equivalent to } T \}$

There are $6 \times 2 \times 2 = 24$ distinct orderings in $\text{PQ}(T)$.

Generally, if a PQ tree T has q Q node and p P nodes with number of children c_1, c_2, \ldots, c_p, then the number of orderings in $\text{PQ}(T)$ is $2^q c_1! c_2! \ldots c_p!$.

$n! = 1 \times 2 \times \ldots \times n$
PQ Tree Solution for the Contiguous Ordering Problem

- Input: A universe U and a set $S = \{S_1, S_2, \ldots, S_m\}$ of subsets of U.
- Output: A PQ tree T with leaves U with the property that $\text{PQ}(T)$ is the set of all orderings of U where each set in S is contiguous in the ordering.
Example Solution

U = \{A,B,C,D,E,F\}
S = \{\{A,C,E\}, \{A,C,F\}, \{B,D,E\}\}

There are 8 orderings that are possible in keeping each of these sets contiguous.
PQ Tree Restriction

• Let $U = \{A_1, A_2, \ldots, A_n\}$, $S = \{A_1, A_2, \ldots, A_k\}$, and T a PQ tree.

• We will define a function Restrict with the following properties:
 – $\text{Restrict}(T, S)$ is a PQ tree.
 – $\text{PQ}(\text{Restrict}(T, S)) = \text{PQ}(T) \text{ intersect } \text{PQ}(T')$ where
High Level PQ tree Algorithm

• Input is \(U = \{A_1, A_2, \ldots, A_n\} \), and subsets \(S_1, S_2, \ldots, S_m \) of \(U \).

• Initialization:
 – \(T = \) P node with children \(A_1, A_2, \ldots, A_n \)

• Calculate m restrictions:
 – for \(j = 1 \) to \(m \) do
 \(T := \) Restrict(\(T, S_j \))

• At the end of iteration \(k \):
 – \(PQ(T) = \) the set of ordering of \(U \) where each set \(S_1, S_2, \ldots, S_k \) are contiguous.
Marking Nodes

- Given a set S and PQ tree T we can mark nodes either full or partial.
 - A leaf is full if it is a member of S.
 - A node is full if all its children are full.
 - A node is partial if either it has both full and non-full children or it has a partial child.
 - A node is doubly partial if it has two partial children.
Marks of Nodes

Mark the leaves in S full.
Bottom up mark the nodes full or partial.
The members of S will become contiguous.

$S = \{A, C, F, H, I\}$
Structure of the Marked PQ Tree

- **root**
- **Key Node** possibly doubly partial
- **left partial**
- **right partial**
- **partials with exactly one partial child**
- **Full**
Restrict(T,S)

- Mark the full and partial nodes from the bottom up.
 - In the process the marked leaves become contiguous.
- Locate the key node.
 - Deepest node with the property that all the full leaves are descendents of the node.
- Restrict the key node.
 - In the process of restricting the key node we will have to recursively direct partial nodes.
 - Directing a node returns a sequence of nodes.
Restricting a P Node with Partial Children

right partial

left partial

full

restrict a P node

direct then attach

Lecture 9 - Dynamic Programming, PQ-trees
Restricting a P node with no Partial Children

Lecture 9 - Dynamic Programming, PQ-trees
Restricting a Q node

direct then attach
Directing a P Node

left direct a P node

Directing a node produces a sequence of nodes.
Directing a Q Node

left direct a Q node
Example (1)

\[U = \{A, B, C, D, E, F, G, H, I, J\} \]
\[S_1 = \{A, C, E, G, I\} \]
Example (2)

\[U = \{A,B,C,D,E,F,G,H,I,J\} \]
\[S_1 = \{A,C,E,G,I\} \]

special case because
no partial child.
Example (3)

\[U = \{A, B, C, D, E, F, G, H, I, J\} \]
\[S_2 = \{C, D, F, G, I, J\} \]
Example (4)

U = \{A, B, C, D, E, F, G, H, I, J\}
S_2 = \{C, D, F, G, I, J\}

restrict P node

Lecture 9 - Dynamic Programming, PQ-trees
Example (5)

\[U = \{A, B, C, D, E, F, G, H, I, J\} \]
\[S_2 = \{C, D, F, G, I, J\} \]
Example (6)

\[\text{U} = \{A, B, C, D, E, F, G, H, I, J\}\]
\[S_2 = \{C, D, F, G, I, J\}\]
Example (7)

\[U = \{A, B, C, D, E, F, G, H, I, J\} \]

\[S_3 = \{A, B, E, G\} \]
Example (8)

\[U = \{A, B, C, D, E, F, G, H, I, J\} \]
\[S_3 = \{A, B, E, G\} \]
Example (9)

U = \{A,B,C,D,E,F,G,H,I,J\}
S_3 = \{A,B,E,G\}
Example (10)

U = \{A, B, C, D, E, F, G, H, I, J\}
S_3 = \{A, B, E, G\}

direct P node
Example (11)

\[U = \{A, B, C, D, E, F, G, H, I, J\} \]
\[S_3 = \{A, B, E, G\} \]
Example (12)

U = \{A, B, C, D, E, F, G, H, I, J\}
S_1 = \{A, C, E, G, I\}
S_2 = \{C, D, F, G, I, J\}
S_3 = \{A, B, E, G\}
Exercise

• Restrict with to make \{A, B, D, E, G\} contiguous
Linear Number of Nodes Processed

• Let \(n \) be the size of the universe, \(m \) the number of sets, and \(s \) the sum of the sizes of the sets.
 - Number of full nodes processed \(\leq 2s \).
 - Number of key nodes processed = \(m \).
 - Number of partial nodes with partial children processed below the key node \(\leq m + n \).
 - Number of partial nodes with no partial children \(\leq 2m \).
 - Number of partial nodes processed above the key node \(\leq m + n \).
Number of Processed Nodes Amortized

- Partially with exactly one partial child: \(\leq m+n \)
- Key Nodes: \(m \)
- Partial with partial children: \(\leq m+n \)
- Full: \(\leq 2s \)
- Partial with no partial children: \(\leq 2m \)

Legend:
- \(n \): Size of universe
- \(m \): Number of sets
- \(s \): Sum of size of sets

Lecture 9 - Dynamic Programming, PQ-trees
Partials with Partial Children Below the Key Node

• Amortized complexity argument.
• Consider the quantities:
 – \(q \) = number of Q nodes,
 \(cp \) = number of children of P nodes.
 – We examine the quantity \(x = q + cp \)
 – \(x \) is initially \(n \) and never negative.
 – Each restrict of a key node increases \(x \) by at most 1.
 – Each direct of a partial node with a partial child decreases \(x \) by at least 1.
 – Since there are \(m \) restricts of a key node then there are most \(n + m \) directs of partials with partial children.
Restricting a P Node with Partial Children

change in $q + cp$ is at most +1.
Restricting a P node with no Partial Children

change in q + cp is exactly +1.
Restricting a Q node

restrict a Q node no change in q, cp

direct then attach
Directing a P Node

Assume partial child

change in q + cp is -1

Lecture 9 - Dynamic Programming, PQ-trees
Directing a Q Node

change in \(q + cp \) is -1

Lecture 9 - Dynamic Programming, PQ-trees
PQ Tree Notes

• In algorithmic design only a linear number of nodes are ever processed.
• Designing the data structures to make the linear time processing a reality is very tricky.
• PQ trees solve the idealized DNA ordering problem.
• In reality, because of errors, the DNA ordering problem is NP-hard and other techniques are used.
Example of Data Structure Trick

- Linking the children of a Q node

Linking of siblings can be in any order. Middle children don’t know parents. End children know parents.