### CSEP 521 Applied Algorithms Spring 2005

Lossy Image Compression

### Lossy Image Compression Methods

- Scalar quantization (SQ).
- Vector quantization (VQ).
- DCT Compression
  - JPEG
- Wavelet Compression
  - SPIHT
  - UWIC (University of Washington Image Coder)
  - EBCOT (JPEG 2000)

Lecture 7 - Lossy Image Compression

.

### JPEG Standard

- JPEG Joint Photographic Experts Group
  - Current image compression standard. Uses discrete cosine transform, scalar quantization, and Huffman coding.
- JPEG 2000 uses to wavelet compression.

Lecture 7 - Lossy Image Compression

3

# Barbara 32:1 compression ratio .25 bits/pixel (8 bits) VQ Wavelet-SPIHT Lecture 7 - Lossy Image Compression 4









Original

Lecture 7 - Lossy Image Compression 9

### Images and the Eye

- Images are meant to be viewed by the human eye (usually).
- The eye is very good at "interpolation", that is, the eye can tolerate some distortion. So lossy compression is not necessarily bad. The eye has more acuity for luminance (gray scale) than chrominance (color).
  - Gray scale is more important than color.
- Compression is usually done in the YUV color coordinates, Y for luminance and U,V for color.
- U and V should be compressed more than Y
- This is why we will concentrate on compressing gray scale (8 bits per pixel) images.

Lecture 7 - Lossy Image Compression

10

### Distortion original compressed decompressed $x \mapsto \text{Encoder} \quad y \mapsto \text{Decoder} \quad \hat{x} \mapsto x + \hat{x}$

- Lossy compression:  $x \neq \hat{x}$
- Measure of distortion is commonly mean squared error (MSE). Assume x has n real components (pixels).

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{x}_i)^2$$

Lecture 7 - Lossy Image Compression

### **PSNR**

• Peak Signal to Noise Ratio (PSNR) is the standard way to measure fidelity.

$$PSNR = 10log_{10}(\frac{m^2}{MSE})$$

where m is the maximum value of a pixel possible. For gray scale images (8 bits per pixel) m = 255.

- PSNR is measured in decibels (dB).
  - .5 to 1 dB is said to be a perceptible difference.
  - Decent images start at about 30 dB

Lecture 7 - Lossy Image Compression









































### Wavelet Transform Details

- · Conversion to reals.
  - Convert gray scale to floating point.
  - Convert color to Y U V and then convert each to band to floating point. Compress separately.
- After several levels (3-8) of transform we have a matrix of floating point numbers called the wavelet transformed image (coefficients).

Lecture 7 - Lossy Image Compression

33

### **Wavelet Transforms**

- Technically wavelet transforms are special kinds of linear transformations. Easiest to think of them as filters
  - The filters depend only on a constant number of values. (bounded support)
  - Preserve energy (norm of the pixels = norm of the coefficients)
  - Inverse filters also have bounded support.
- Well-known wavelet transforms
  - Haar like the average but orthogonal to preserve energy.
     Not used in practice.
  - Daubechies 9/7 biorthogonal (inverse is not the transpose). Most commonly used in practice.

Lecture 7 - Lossy Image Compression





### Linear Time Complexity of 2D Wavelet Transform

- Let n = number of pixels and let b be the number of coefficients in the filters.
- One level of transform takes time
  - O(bn)
- k levels of transform takes time proportional to
   bn + bn/4 + ... + bn/4<sup>k-1</sup> < (4/3)bn.</li>
- The wavelet transform is linear time when the filters have constant size.
  - The point of wavelets is to use constant size filters unlike many other transforms.

Lecture 7 - Lossy Image Compression

37



### Wavelet Coding

- Normalize the coefficients to be between –1 and 1
- Transmit one bit-plane at a time
- · For each bit-plane
  - Significance pass: Find the newly significant coefficients, transmit their signs.
  - Refinement pass: transmit the bits of the known significant coefficients.

Lecture 7 - Lossy Image Compression

























### **UWIC**

- · A simple image coder based on
  - Bit-plane coding
  - Significance pass
    - Refinement pass
  - Arithmetic coding
  - Careful selection of contexts based on statistical studies
  - Priority queue for selecting contexts to code
- Implemented by undergraduates Amanda Askew and Dane Barney in Summer 2003.

Lecture 7 - Lossy Image Compression

52



### Arithmetic Coding in UWIC

- Performed on each individual bit plane. – Alphabet is  $\Sigma$ ={0,1}
- Uses integer implementation with 32-bit integers. (Initialize L = 0, R = 2<sup>32</sup>-1)
- Uses scaling and adaptation.
- Uses contexts based on statistical studies.

Lecture 7 - Lossy Image Compression

### Coding the Bit-Planes

- · Code most significant bit-planes first
- Significance pass for a bit-plane
  - First code those coefficients that were insignificant in the previous bit-plane.
  - Code coefficients most likely to be significant first (priority queue).
  - If a coefficient becomes significant then code its
- · Refinement pass for a bit-plane
  - Code the refinement bit for each coefficient that is significant in a previous bit-plane

Lecture 7 - Lossy Image Compression

### Contexts (per bit plane)

- Significance pass contexts:
  - Contexts based on

     Subband level
  - · Number of significant neighbors
  - Sign context
- Refinement contexts
  - 1st refinement bit has a context
    All other refinement bits have one context
- Context Principles
  - Bits in a given context have a probability distribution
  - Bits in different contexts have different probability distributions

Lecture 7 - Lossy Image Compression

### Subband Level

- Image is divided into subbands until LL band (subband level 0) is less than 16x16
- Barbara image has 7 subband levels



Lecture 7 - Lossy Image Compression

### Statistics for Subband Levels

### Barbara (8bpp)

| Subband<br>Level | # significant | # insignificant | % significant |
|------------------|---------------|-----------------|---------------|
| 0                | 144           | 364             | 28.3%         |
| 1                | 272           | 1048            | 20.6%         |
| 2                | 848           | 4592            | 15.6%         |
| 3                | 3134          | 23568           | 11.7%         |
| 4                | 12268         | 113886          | 9.7%          |
| 5                | 48282         | 504633          | 8.7%          |
| 6                | 190003        | 2226904         | 7.8%          |

Lecture 7 - Lossy Image Compression

### Significant Neighbor Metric

- · Count # of significant neighbors
  - children count for at most 1
  - -0,1,2,3+



Lecture 7 - Lossy Image Compression

### Number of Significant Neighbors

### Barbara (8bpp)

|                       | ( [ [ ] /     |                 |               |  |
|-----------------------|---------------|-----------------|---------------|--|
| Significant neighbors | # significant | # insignificant | % significant |  |
| 0                     | 4849          | 2252468         | .2%           |  |
| 1                     | 13319         | 210695          | 5.9%          |  |
| 2                     | 22276         | 104252          | 17.6%         |  |
| 3                     | 30206         | 78899           | 27.7%         |  |
| 4                     | 33244         | 55841           | 37.3%         |  |
| 5                     | 27354         | 39189           | 41.1%         |  |
| 6                     | 36482         | 44225           | 45.2%         |  |
| 7                     | 87566         | 91760           | 48.8%         |  |

Lecture 7 - Lossy Image Compression

### Refinement Bit Context Statistics

### Barbara (8bpp)

|                                 | 0's     | 1's     | % 0's |
|---------------------------------|---------|---------|-------|
| 2 <sup>nd</sup> Refinement Bits | 146,293 | 100,521 | 59.3% |
| Other Refinement<br>Bits        | 475,941 | 433,982 | 53.3% |
| Sign Bits                       | 128,145 | 130,100 | 49.6% |

• Barbara at 2bpp: 2<sup>nd</sup> Refinement bit % 0's = 65.8%

Lecture 7 - Lossy Image Compression

### **Context Details**

- Significance pass contexts per bit-plane:

   Max neighbors\* num subband levels contexts
- For Barbara: contexts for sig neighbor counts of 0 3 and subband levels of 0-6 = 4\*7 = 28 contexts

- Index of a context.

   Max neighbors \* subband level + num sig neighbors
- Example num sig neighbors = 2, subband level = 3, index = 4 \* 3 + 2 = 14
- Sign context
- 1 contexts2 Refinement contexts
  - 1st refinement bit is always 1 not transmitted 2nd refinement bit has a context

- all other refinement bits have a context
   Number of contexts per bit-plane for Barbara = 28 + 1 +2 = 31

Lecture 7 - Lossy Image Compression

62

### **Priority Queue**

- Used in significance pass to decide which coefficient to code next
  - Goal code coefficients most likely to become significant
- All non-empty contexts are kept in a max heap
- Priority is determined by:
  - # sig coefficients coded / total coefficients coded

Lecture 7 - Lossy Image Compression

### Reconstruction of Coefficients

- Coefficients are decoded to a certain number of bit planes
  - .101110XXXXX What should X's be?
  - .101110000... < .101110XXXXXX < .101110111...
  - .101110100000 is half-way
- · Handled the same as SPIHT and GTW
  - if coefficient is still insignificant, do no interpolation
  - if newly significant, add on .38 to scale
  - if significant, add on .5 to scale



### Original Barbara Image



Lecture 7 - Lossy Image Compression

Barbara at .5 bpp (PSNR = 31.68)



Lecture 7 - Lossy Image Compression











## UWIC Notes UWIC competitive with JPEG 2000, SPIHT-AC, and GTW. Developed in Java from scratch by two undergraduates in 2 months.