CSEP 521
Applied Algorithms
Spring 2005

Lossy Image Compression
Lossy Image Compression Methods

- Scalar quantization (SQ).
- Vector quantization (VQ).
- DCT Compression
 - JPEG
- Wavelet Compression
 - SPIHT
 - UWIC (University of Washington Image Coder)
 - EBCOT (JPEG 2000)
JPEG Standard

• JPEG - Joint Photographic Experts Group

• JPEG 2000 uses to wavelet compression.
Barbara

32:1 compression ratio
.25 bits/pixel (8 bits)
JPEG
SPIHT
Images and the Eye

• Images are meant to be viewed by the human eye (usually).
• The eye is very good at “interpolation”, that is, the eye can tolerate some distortion. So lossy compression is not necessarily bad. The eye has more acuity for **luminance (gray scale)** than **chrominance (color)**.
 – Gray scale is more important than color.
 – Compression is usually done in the YUV color coordinates, Y for luminance and U,V for color.
 – U and V should be compressed more than Y
 – This is why we will concentrate on compressing gray scale (8 bits per pixel) images.
Distortion

- Lossy compression: $x \neq \hat{x}$
- Measure of distortion is commonly mean squared error (MSE). Assume x has n real components (pixels).

$$\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{x}_i)^2$$
PSNR

- Peak Signal to Noise Ratio (PSNR) is the standard way to measure fidelity.

\[
\text{PSNR} = 10 \log_{10} \left(\frac{m^2}{\text{MSE}} \right)
\]

where \(m \) is the maximum value of a pixel possible. For gray scale images (8 bits per pixel) \(m = 255 \).

- PSNR is measured in decibels (dB).
 - .5 to 1 dB is said to be a perceptible difference.
 - Decent images start at about 30 dB
Rate-Fidelity Curve

Properties:
- Increasing
- Slope decreasing
PSNR is not Everything

PSNR = 25.8 dB

PSNR = 25.8 dB
Wavelet Transform

- Wavelet Transform
 - A family of transformations that filters the data into low resolution data plus detail data.
Wavelet Transformed Barbara (Enhanced)

Low resolution subband

Detail subbands
Wavelet Transformed Barbara (Actual)

most of the details are small so they are very dark.
Wavelet Transform Compression

Wavelet coder transmits wavelet transformed image in bit plane order with the most significant bits first.
Bit Planes of Coefficients

Coefficients are normalized between -1 and 1
Why Wavelet Compression Works

• Wavelet coefficients are transmitted in bit-plane order.
 – In most significant bit planes most coefficients are 0 so they can be coded efficiently.
 – Only some of the bit planes are transmitted. This is where fidelity is lost when compression is gained.

• Natural progressive transmission

![Diagram showing compressed bit planes and truncated compressed bit planes](image)
Rate-Fidelity Curve

More bit planes of the wavelet transformed image that is sent the higher the fidelity.
Wavelet Coding Methods

- **EZW** - Shapiro, 1993
 - Embedded Zerotree coding.
- **SPIHT** - Said and Pearlman, 1996
 - Set Partitioning in Hierarchical Trees coding. Also uses “zerotrees”.
- **ECECOW** - Wu, 1997
 - Uses arithmetic coding with context.
- **EBCOT** – Taubman, 2000
 - Uses arithmetic coding with different context.
- **JPEG 2000** – new standard based largely on EBCOT
- **GTW** – Hong, Ladner 2000
 - Uses group testing which is closely related to Golomb codes
- **UWIC** - Ladner, Askew, Barney 2003
 - Like GTW but uses arithmetic coding
A wavelet transform decomposes the image into a low resolution version and details. The details are typically very small so they can be coded in very few bits.
One-Dimensional Average Transform

(1)

How do we represent two data points at lower resolution?
One-Dimensional Average Transform

(2)

\[
\begin{align*}
(x+y)/2 &= L \\
(y-x)/2 &= H
\end{align*}
\]

Transform

Inverse Transform

\[
\begin{align*}
x &= L - H \\
y &= L + H
\end{align*}
\]
One-Dimensional Average Transform

(3)

Note that the low resolution version and the detail together have the same number of values as the original.
One-Dimensional Average Transform

\[(4) \]

\[B[i] = \frac{1}{2} A[2i] + \frac{1}{2} A[2i + 1], \quad 0 \leq i < \frac{n}{2} \]

\[B[n/2 + i] = -\frac{1}{2} A[2i] + \frac{1}{2} A[2i + 1], \quad 0 \leq i < \frac{n}{2} \]

\[L = B[0..n/2-1] \]
\[H = B[n/2..n-1] \]
One-Dimensional Average Inverse Transform

\[A[2i] = B[i] - B[n/2 + i], \quad 0 \leq i < \frac{n}{2} \]

\[A[2i + 1] = B[i] + B[n/2 + i], \quad 0 \leq i < \frac{n}{2} \]
Two Dimensional Transform (1)

Transform each row

Transform each column in L and H

3 detail subbands

Horizontal transform

Vertical transform

Low resolution subband
Two Dimensional Transform (1)

Transform each row in LL

Transform each column in LLL and HLL

2 levels of transform gives 7 subbands.

k levels of transform gives 3k + 1 subbands.
Two Dimensional Average Transform

horizontal transform

negative value

vertical transform

Lecture 7 - Lossy Image Compression
Wavelet Transformed Image

2 levels of wavelet transform

1 low resolution subband

6 detail subbands
Wavelet Transform Details

• Conversion to reals.
 – Convert gray scale to floating point.
 – Convert color to Y U V and then convert each to band to floating point. Compress separately.

• After several levels (3-8) of transform we have a matrix of floating point numbers called the wavelet transformed image (coefficients).
Wavelet Transforms

• Technically wavelet transforms are special kinds of linear transformations. Easiest to think of them as filters.
 – The filters depend only on a constant number of values. (bounded support)
 – Preserve energy (norm of the pixels = norm of the coefficients)
 – Inverse filters also have bounded support.

• Well-known wavelet transforms
 – Haar – like the average but orthogonal to preserve energy. Not used in practice.
 – Daubechies 9/7 – biorthogonal (inverse is not the transpose). Most commonly used in practice.
Haar Filters

low pass $= \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$

high pass $= -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$

low pass $B[i] = \frac{1}{\sqrt{2}} A[2i] + \frac{1}{\sqrt{2}} A[2i+1], \quad 0 \leq i < \frac{n}{2}$

high pass $B[n/2 + i] = -\frac{1}{\sqrt{2}} A[2i] + \frac{1}{\sqrt{2}} A[2i+1], \quad 0 \leq i < \frac{n}{2}$

Want the sum of squares of the filter coefficients $= 1$
Daubechies 9/7 Filters

low pass filter

\[h_j \]

high pass filter

\[g_j \]

low pass

\[B[i] = \sum_{j=-4}^{4} h_j A[2i+j], \quad 0 \leq i < \frac{n}{2} \]

high pass

\[B[n/2+i] = \sum_{j=-3}^{3} g_j A[2i+j], \quad 0 \leq i < \frac{n}{2} \]

reflection used near boundaries

Lecture 7 - Lossy Image Compression
Linear Time Complexity of 2D Wavelet Transform

• Let \(n = \) number of pixels and let \(b \) be the number of coefficients in the filters.

• One level of transform takes time
 – \(O(bn) \)

• \(k \) levels of transform takes time proportional to
 – \(bn + bn/4 + \ldots + bn/4^{k-1} < (4/3)bn \).

• The wavelet transform is linear time when the filters have constant size.
 – The point of wavelets is to use constant size filters unlike many other transforms.
Wavelet Transform

Wavelet coder transmits wavelet transformed image in bit plane order with the most significant bits first.
Wavelet Coding

• Normalize the coefficients to be between -1 and 1
• Transmit one bit-plane at a time
• For each bit-plane
 – **Significance pass**: Find the newly significant coefficients, transmit their signs.
 – **Refinement pass**: transmit the bits of the known significant coefficients.
Significant Coefficients

- magnitude
- bit-plane 1 threshold
- coefficients
Significant Coefficients

magnitude

coefficients

bit-plane 2 threshold
Significance & Refinement Passes

- Code a bit-plane in two passes
 - Significance pass
 - codes previously insignificant coefficients
 - also codes sign bit
 - Refinement pass
 - refines values for previously significant coefficients

- Main idea:
 - Significance-pass bits likely to be 0;
 - Refinement-pass bit are not

<table>
<thead>
<tr>
<th>#</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>010010010110</td>
</tr>
<tr>
<td>2</td>
<td>001011011110</td>
</tr>
<tr>
<td>3</td>
<td>000001001001</td>
</tr>
<tr>
<td>4</td>
<td>000000010110</td>
</tr>
<tr>
<td>5</td>
<td>00010011001</td>
</tr>
<tr>
<td>6</td>
<td>000000100101</td>
</tr>
<tr>
<td>7</td>
<td>1011011010101</td>
</tr>
<tr>
<td>8</td>
<td>0100100111111</td>
</tr>
<tr>
<td>9</td>
<td>001011101101</td>
</tr>
<tr>
<td>10</td>
<td>000010100101</td>
</tr>
</tbody>
</table>

Coefficient List

Bit-plane 3
bit plane 1

bpp .0014

PSNR 15.3
bit planes 1 – 2

bpp .0033

PSNR 16.8
bit planes
1 – 3

bpp
.0072

PSNR
18.8
Lecture 7 - Lossy Image Compression

bit planes 1 – 4

bpp .015

533 : 1

PSNR 20.5
bit planes
1 – 5

bpp
.035

ratio
229 : 1

PSNR
22.2
bit planes
1 – 6

bpp .118

ratio 68 : 1

PSNR 24.8
bit planes

1 – 7

bpp

.303

ratio

26 : 1

PSNR

28.7

Compressed size

Lecture 7 - Lossy Image Compression
bit planes
1 – 8

bpp
.619

ratio
13 : 1

PSNR
32.9

Compressed size
bit planes
1 – 9

bpp
1.116

ratio
7 : 1

PSNR
37.5
UWIC

- A simple image coder based on
 - Bit-plane coding
 • Significance pass
 • Refinement pass
 - Arithmetic coding
 - Careful selection of contexts based on statistical studies
 • Priority queue for selecting contexts to code

- Implemented by undergraduates Amanda Askew and Dane Barney in Summer 2003.
Encoder:
1. Image (pixels) to wavelet transform
2. Transformed image (coefficients)
3. Subtract LL Avg
4. Divide into bit-planes
5. Bit plane encoding using AC

Decoder:
1. Bit planes decoding using AC
2. Recombine bit-planes
3. Add LL Avg
4. Transformed image (approx coefficients)
5. Inverse wavelet transform
6. Distorted image
Arithmetic Coding in UWIC

• Performed on each individual bit plane.
 – Alphabet is $\Sigma=\{0,1\}$
• Uses integer implementation with 32-bit integers. (Initialize $L = 0$, $R = 2^{32}-1$)
• Uses scaling and adaptation.
• Uses contexts based on statistical studies.
Coding the Bit-Planes

• Code most significant bit-planes first

• Significance pass for a bit-plane
 – First code those coefficients that were insignificant in the previous bit-plane.
 – Code coefficients most likely to be significant first (priority queue).
 – If a coefficient becomes significant then code its sign.

• Refinement pass for a bit-plane
 – Code the refinement bit for each coefficient that is significant in a previous bit-plane
Contexts (per bit plane)

- **Significance pass contexts:**
 - Contexts based on
 - Subband level
 - Number of significant neighbors
 - Sign context

- **Refinement contexts**
 - 1st refinement bit has a context
 - All other refinement bits have one context

- **Context Principles**
 - Bits in a given context have a probability distribution
 - Bits in different contexts have different probability distributions
Subband Level

• Image is divided into subbands until LL band (subband level 0) is less than 16x16
• Barbara image has 7 subband levels
Statistics for Subband Levels

Barbara (8bpp)

<table>
<thead>
<tr>
<th>Subband Level</th>
<th># significant</th>
<th># insignificant</th>
<th>% significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>144</td>
<td>364</td>
<td>28.3%</td>
</tr>
<tr>
<td>1</td>
<td>272</td>
<td>1048</td>
<td>20.6%</td>
</tr>
<tr>
<td>2</td>
<td>848</td>
<td>4592</td>
<td>15.6%</td>
</tr>
<tr>
<td>3</td>
<td>3134</td>
<td>23568</td>
<td>11.7%</td>
</tr>
<tr>
<td>4</td>
<td>12268</td>
<td>113886</td>
<td>9.7%</td>
</tr>
<tr>
<td>5</td>
<td>48282</td>
<td>504633</td>
<td>8.7%</td>
</tr>
<tr>
<td>6</td>
<td>190003</td>
<td>2226904</td>
<td>7.8%</td>
</tr>
</tbody>
</table>
Significant Neighbor Metric

- Count # of significant neighbors
 - children count for at most 1
 - 0, 1, 2, 3+
Number of Significant Neighbors

Barbara (8bpp)

<table>
<thead>
<tr>
<th>Significant neighbors</th>
<th># significant</th>
<th># insignificant</th>
<th>% significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4849</td>
<td>2252468</td>
<td>.2%</td>
</tr>
<tr>
<td>1</td>
<td>13319</td>
<td>210695</td>
<td>5.9%</td>
</tr>
<tr>
<td>2</td>
<td>22276</td>
<td>104252</td>
<td>17.6%</td>
</tr>
<tr>
<td>3</td>
<td>30206</td>
<td>78899</td>
<td>27.7%</td>
</tr>
<tr>
<td>4</td>
<td>33244</td>
<td>55841</td>
<td>37.3%</td>
</tr>
<tr>
<td>5</td>
<td>27354</td>
<td>39189</td>
<td>41.1%</td>
</tr>
<tr>
<td>6</td>
<td>36482</td>
<td>44225</td>
<td>45.2%</td>
</tr>
<tr>
<td>7</td>
<td>87566</td>
<td>91760</td>
<td>48.8%</td>
</tr>
</tbody>
</table>
Refinement Bit Context Statistics

<table>
<thead>
<tr>
<th></th>
<th>0’s</th>
<th>1’s</th>
<th>% 0’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd Refinement Bits</td>
<td>146,293</td>
<td>100,521</td>
<td>59.3%</td>
</tr>
<tr>
<td>Other Refinement Bits</td>
<td>475,941</td>
<td>433,982</td>
<td>53.3%</td>
</tr>
<tr>
<td>Sign Bits</td>
<td>128,145</td>
<td>130,100</td>
<td>49.6%</td>
</tr>
</tbody>
</table>

- Barbara at 2bpp: 2nd Refinement bit % 0’s = 65.8%
Context Details

- Significance pass contexts per bit-plane:
 - Max neighbors * num subband levels contexts
 - For Barbara: contexts for sig neighbor counts of 0 - 3 and subband levels of 0-6 = 4*7 = 28 contexts
 - Index of a context:
 - Max neighbors * subband level + num sig neighbors
 - Example num sig neighbors = 2, subband level = 3, index = 4 * 3 + 2 = 14

- Sign context
 - 1 contexts

- 2 Refinement contexts
 - 1st refinement bit is always 1 not transmitted
 - 2nd refinement bit has a context
 - all other refinement bits have a context

- Number of contexts per bit-plane for Barbara = 28 + 1 +2 = 31
Priority Queue

• Used in significance pass to decide which coefficient to code next
 – Goal code coefficients most likely to become significant
• All non-empty contexts are kept in a max heap
• Priority is determined by:
 – # sig coefficients coded / total coefficients coded
Reconstruction of Coefficients

- Coefficients are decoded to a certain number of bit planes
 - \(.101110XXXX \): What should X’s be?
 - \(.1011100000 \ldots < .101110XXXX < .1011101111 \ldots \)
 - \(.101110100000 \) is half-way
- Handled the same as SPIHT and GTW
 - if coefficient is still insignificant, do no interpolation
 - if newly significant, add on .38 to scale
 - if significant, add on .5 to scale

\[|A| = k \]

\[.A000\ldots +.38 +.5 .A111\ldots \]
\[.A01100 \quad .A100\ldots \]
Original Barbara Image
Barbara at .5 bpp (PSNR = 31.68)
Barbara at .25 bpp (PSNR = 27.75)
Barbara at .1 bpp (PSNR = 24.53)
Results

Compression of Barbara

Lecture 7 - Lossy Image Compression
Results

Compression of Lena

- PSNR (dB)
- Bit rate (bits/pixel)

Graph showing the relationship between PSNR and bit rate for different compression methods:
- UWIC
- GTW
- SPIHT
- JPEG2000
- JPEG
Results

Compression of Rough Wall

![Graph showing PSNR vs. Bit rate for different compression methods.]

- UWIC
- GTW
- SPIHT
- JPEG2000
- JPEG
UWIC Notes

• UWIC competitive with JPEG 2000, SPIHT-AC, and GTW.
• Developed in Java from scratch by two undergraduates in 2 months.