CSEP 521 Applied Algorithms

Spring 2005

Statistical Lossless Data Compression

Outline for Tonight

- Basic Concepts in Data Compression
- Entropy
- Prefix codes
- Huffman Coding
- Arithmetic Coding
- Run Length Coding (Golomb Code)

Reading

- Huffman Coding: CLRS 385-392
- Other sources can be found:
- Data Compression: The Complete Reference, 3rd Edition by David Salomon
- Introduction to Data Compression by Khalid Sayood.

Basic Data Compression Concepts

original

compressed
decompressed

- Lossless compression $x=\hat{x}$
- Also called entropy coding, reversible coding.
- Lossy compression $x \neq \hat{x}$
- Also called irreversible coding.
- Compression ratio $=|x| /|y|$
$-|x|$ is number of bits in x.

Why Compress

- Conserve storage space
- Reduce time for transmission
- Faster to encode, send, then decode than to send the original
- Progressive transmission
- Some compression techniques allow us to send the most important bits first so we can get a low resolution version of some data before getting the high fidelity version
- Reduce computation
- Use less data to achieve an approximate answer

Braille

- System to read text by feeling raised dots on paper (or on electronic displays). Invented in 1820s by Louis Braille, a French blind man.

$$
\begin{aligned}
& \text { a } \because 0 \quad \mathrm{~b} \quad \because \quad \mathrm{c} \quad \because \quad \mathrm{Z} \quad \AA \\
& \text { and } \because: \text { the } \because \text { with } \because: \text { mother } \because \because \because \\
& \text { th } \because \text { ch } \because \quad \text { gh } \because
\end{aligned}
$$

Braille Example

Clear text:
Call me Ishmael. Some years ago -- never mind how long precisely -- having
 little or no money in my purse, and nothing particular to interest me on shore, $\ \backslash I$ thought I would sail about a little and see the watery part of the world. (238 characters)
Grade 2 Braille:

Lossless Compression

- Data is not lost - the original is really needed.
- text compression
- compression of computer binary files
- Compression ratio typically no better than 4:1 for lossless compression on many kinds of files.
- Statistical Techniques
- Huffman coding
- Arithmetic coding
- Golomb coding
- Dictionary techniques
- LZW, LZ77
- Sequitur
- Burrows-Wheeler Method
- Standards - Morse code, Braille, Unix compress, gzip, zip, bzip, GIF, JBIG, Lossless JPEG

Lecture 5 - Statistical Lossless Data Compression

Lossy Compression

- Data is lost, but not too much.
- audio
- video
- still images, medical images, photographs
- Compression ratios of 10:1 often yield quite high fidelity results.
- Major techniques include
- Vector Quantization
- Wavelets
- Block transforms
- Standards - JPEG, JEPG2000, MPEG, H. 264

Why is Data Compression Possible

- Most data from nature has redundancy
- There is more data than the actual information contained in the data.
- Squeezing out the excess data amounts to compression.
- However, unsqueezing is necessary to be able to figure out what the data means.
- Information theory is needed to understand the limits of compression and give clues on how to compress well.

What is Information

- Analog data
- Also called continuous data
- Represented by real numbers (or complex numbers)
- Digital data
- Finite set of symbols $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$
- All data represented as sequences (strings) in the symbol set.
- Example: \{a,b,c,d,r\} abracadabra
- Digital data can be an approximation to analog data

Symbols

- Roman alphabet plus punctuation
- ASCII - 256 symbols
- Binary - $\{0,1\}$
- 0 and 1 are called bits
- All digital information can be represented efficiently in binary
- \{a,b,c,d\} fixed length representation

symbol	a	b	c	d
binary	00	01	10	11

- 2 bits per symbol

Information Theory

- Developed by Shannon in the 1940's and 50's
- Attempts to explain the limits of communication using probability theory.
- Example: Suppose English text is being sent
- It is much more likely to receive an "e" than a "z".
- In some sense "z" has more information than "e".

First-order Information

- Suppose we are given symbols $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$.
- $P\left(a_{i}\right)=$ probability of symbol a_{i} occurring in the absence of any other information.
$-P\left(a_{1}\right)+P\left(a_{2}\right)+\ldots+P\left(a_{m}\right)=1$
- $\inf \left(\mathrm{a}_{\mathrm{i}}\right)=\log _{2}\left(1 / \mathrm{P}\left(\mathrm{a}_{\mathrm{i}}\right)\right)$ bits is the information of a_{i} in bits.

Example

- $\{a, b, c\}$ with $P(a)=1 / 8, P(b)=1 / 4, P(c)=5 / 8$
$-\inf (a)=\log _{2}(8)=3$
$-\inf (b)=\log _{2}(4)=2$
$-\inf (c)=\log _{2}(8 / 5)=.678$
- Receiving an "a" has more information than receiving a "b" or "c".

First Order Entropy

- The first order entropy is defined for a probability distribution over symbols $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$.

$$
H=\sum_{i=1}^{m} P\left(a_{i}\right) \log _{2}\left(\frac{1}{P\left(a_{i}\right)}\right)
$$

- H is the average number of bits required to code up a symbol, given all we know is the probability distribution of the symbols.
- H is the Shannon lower bound on the average number of bits to code a symbol in this "source model".
- Stronger models of entropy include context.

Entropy Examples

- $\{a, b, c\}$ with a $1 / 8, b 1 / 4, ~ c 5 / 8$.
$-H=1 / 8 * 3+1 / 4 * 2+5 / 8^{*} .678=1.3$ bits/symbol
- $\{a, b, c\}$ with a $1 / 3, b 1 / 3, c 1 / 3$. (worst case)
$-H=3^{*}(1 / 3)^{*} \log _{2}(3)=1.6$ bits/symbol
- Note that a standard code takes 2 bits per symbol

symbol	a	b	C
binary code	00	01	10

An Extreme Case

- $\{a, b, c\}$ with a 1, b 0, c 0
$-\mathrm{H}=$?

Entropy Curve

- Suppose we have two symbols with probabilities x and $1-x$, respectively.

A Simple Prefix Code

- $\{a, b, c\}$ with a $1 / 8, b 1 / 4, ~ c 5 / 8$.
- A prefix code is defined by a binary tree
- Prefix code property
- no output is a prefix of another
binary tree

input output

ccabccbccc
1100011101111
Lecture 5 - Statistical Lossless Data Compression

Decoding a Prefix Code

repeat
start at root of tree repeat
if read bit = 1 then go right else go left
until node is a leaf report leaf
until end of the code

11000111100

Decoding a Prefix Code

11000111100

Decoding a Prefix Code

11000111100

C

Decoding a Prefix Code

11000111100

C

Decoding a Prefix Code

11000111100

CC

Decoding a Prefix Code

$11 \underline{0} 00111100$

CC

Decoding a Prefix Code

11000111100

CC

Decoding a Prefix Code

11000111100

cca

Decoding a Prefix Code

$1100 \underline{0} 111100$

cca

Decoding a Prefix Code

11000111100

cca

Decoding a Prefix Code

11000111100

ccab

Decoding a Prefix Code

11000111100

ccabccca

How Good is the Code

bit rate $=(1 / 8) 2+(1 / 4) 2+(5 / 8) 1=11 / 8=1.375 \mathrm{bps}$ Entropy $=1.3$ bps Standard code $=2 \mathrm{bps}$
(bps = bits per symbol)

Design a Prefix Code 1

- abracadabra
- Design a prefix code for the 5 symbols $\{a, b, r, c, d\}$ which compresses this string the most.

Design a Prefix Code 2

- Suppose we have n symbols each with probability $1 / n$. Design a prefix code with minimum average bit rate.
- Consider $n=2,3,4,5,6$ first.

Huffman Coding

- Huffman (1951)
- Uses frequencies of symbols in a string to build a variable rate prefix code.
- Each symbol is mapped to a binary string.
- More frequent symbols have shorter codes.
- No code is a prefix of another.
- Example:

a	0
b	100
c	101
d	11

Variable Rate Code Example

- Example: a 0, b 100, c 101, d 11
- Coding:
- aabddcaa = 16 bits
- 00100111110100 = 14 bits
- Prefix code ensures unique decodability.
- 00100111110100

Cost of a Huffman Tree

- Let $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{m}}$ be the probabilities for the symbols $a_{1}, a_{2}, \ldots, a_{m}$, respectively.
- Define the cost of the Huffman tree T to be

$$
C(T)=\sum_{i=1}^{m} p_{i} r_{i}
$$

where r_{i} is the length ${ }^{i=1} f$ the path from the root to a_{i}.

- $C(T)$ is the expected length of the code of a symbol coded by the tree T. $\mathrm{C}(\mathrm{T})$ is the average bit rate (ABR) of the code.

Example of Cost

- Example: a $1 / 2$, b $1 / 8$, c $1 / 8$, d $1 / 4$

$C(T)=1 \times 1 / 2+3 \times 1 / 8+3 \times 1 / 8+2 \times 1 / 4=1.75$

Huffman Tree

- Input: Probabilities $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{m}}$ for symbols $a_{1}, a_{2}, \ldots, a_{m}$, respectively.
- Output: A tree that minimizes the average number of bits (bit rate) to code a symbol. That is, minimizes

$$
\mathrm{HC}(\mathrm{~T})=\sum_{\mathrm{i}=1}^{m} \mathrm{p}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}} \quad \text { bit rate }
$$

where r_{i} is the length of the path from the root to a_{i}. This is the Huffman tree or Huffman code

Optimality Principle 1

- In a Huffman tree a lowest probability symbol has maximum distance from the root.
- If not exchanging a lowest probability symbol with one at maximum distance will lower the cost.

$$
C\left(T^{\prime}\right)=C(T)+h p-h q+k q-k p=C(T)-(h-k)(q-p)<C(T)
$$

Optimality Principle 2

- The second lowest probability is a sibling of the the smallest in some Huffman tree.
- If not, we can move it there not raising the cost.

Optimality Principle 3

- Assuming we have a Huffman tree T whose two lowest probability symbols are siblings at maximum depth, they can be replaced by a new symbol whose probability is the sum of their probabilities.
- The resulting tree is optimal for the new symbol set.

Lecture 5 - Statistical Lossless Data Compression

Optimality Principle 3 (cont')

- If T' were not optimal then we could find a lower cost tree T". This will lead to a lower cost tree T'" for the original alphabet.

$C\left(T^{\prime \prime \prime}\right)=C\left(T^{\prime \prime}\right)+p+q<C\left(T^{\prime}\right)+p+q=C(T)$ which is a contradiction

Recursive Huffman Tree Algorithm

1. If there is just one symbol, a tree with one node is optimal. Otherwise
2. Find the two lowest probability symbols with probabilities p and q respectively.
3. Replace these with a new symbol with probability p + q.
4. Solve the problem recursively for new symbols.
5. Replace the leaf with the new symbol with an internal node with two children with the old symbols.

Iterative Huffman Tree Algorithm

```
form a node for each symbol a with weight pi;
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do
    min1 := delete-min;
    min2 := delete-min;
    create a new node n;
    n.weight := min1.weight + min2.weight;
    n.left := min1;
    n.right := min2;
    insert(n)
return the last node in the priority queue.
```


Example of Huffman Tree Algorithm (1)

- $\mathrm{P}(\mathrm{a})=.4, \mathrm{P}(\mathrm{b})=.1, \mathrm{P}(\mathrm{c})=.3, \mathrm{P}(\mathrm{d})=.1, \mathrm{P}(\mathrm{e})=.1$

Example of Huffman Tree Algorithm (2)

Example of Huffman Tree Algorithm (3)

Lecture 5 - Statistical Lossless Data Compression

Example of Huffman Tree Algorithm (4)

Lecture 5 - Statistical Lossless Data Compression

Huffman Code

Optimal Huffman Code vs. Entropy

- $\mathrm{P}(\mathrm{a})=.4, \mathrm{P}(\mathrm{b})=.1, \mathrm{P}(\mathrm{c})=.3, \mathrm{P}(\mathrm{d})=.1, \mathrm{P}(\mathrm{e})=.1$

Entropy
$\mathrm{H}=-\left(.4 \times \log _{2}(.4)+.1 \times \log _{2}(.1)+.3 \times \log _{2}(.3)\right.$ $\left.+.1 \times \log _{2}(.1)+.1 \times \log _{2}(.1)\right)$
$=2.05$ bits per symbol
Huffman Code
$\mathrm{HC}=.4 \times 1+.1 \times 4+.3 \times 2+.1 \times 3+.1 \times 4$
$=2.1$ bits per symbol pretty good!

In Class Exercise

- $P(a)=1 / 2, P(b)=1 / 4, P(c)=1 / 8, P(d)=1 / 16$, $P(e)=1 / 16$
- Compute the Huffman tree and its bit rate.
- Compute the Entropy
- Compare
- Hint: For the tree change probabilities to be integers: a:8, b:4, c:2, d:1, e:1. Normalize at the end.

Quality of the Huffman Code

- The Huffman code is within one bit of the entropy lower bound.

$$
\mathrm{H} \leq \mathrm{HC} \leq \mathrm{H}+1
$$

- Huffman code does not work well with a two symbol alphabet.
- Example: $\mathrm{P}(0)=1 / 100, \mathrm{P}(1)=99 / 100$
- HC = 1 bits/symbol

$-H=-\left((1 / 100)^{*} \log _{2}(1 / 100)+(99 / 100) \log _{2}(99 / 100)\right)$
$=.08 \mathrm{bits} / \mathrm{symbol}$
- If probabilities are powers of two then $\mathrm{HC}=\mathrm{H}$.

Extending the Alphabet

- Assuming independence $P(a b)=P(a) P(b)$, so we can lump symbols together.
- Example: $P(0)=1 / 100, P(1)=99 / 100$
$-P(00)=1 / 10000, P(01)=P(10)=99 / 10000$, $P(11)=9801 / 10000$.

HC $=1.03$ bits/symbol (2 bit symbol)
$=.515 \mathrm{bits} / \mathrm{bit}$
Still not that close to $\mathrm{H}=.08$ bits/bit

Quality of Extended Alphabet

- Suppose we extend the alphabet to symbols of length k then

$$
H \leq H C \leq H+1 / k
$$

- Pros and Cons of Extending the alphabet
+ Better compression
- 2^{k} symbols
- padding needed to make the length of the input divisible by k

Context Modeling

- Data does not usually come from a 1 st order statistical source.
- English text: "u" almost always follows "q"
- Images: a pixel next to a blue pixel is likely to be blue
- Practical coding: Divide the data by contexts and code the data in each context as its own 1st order source.

Huffman Codes with Context

- Suppose we add a one symbol context. That is in compressing a string $x_{1} x_{2} \ldots x_{n}$ we want to take into account x_{k-1} when encoding x_{k}.
- New model, so entropy based on just independent probabilities of the symbols doesn't hold. The new entropy model (2nd order entropy) has for each symbol a probability for each other symbol following it.
- Example: $\{a, b, c\}$

		next			
	prev	b	c		
a	.4	.2	.4		
b	.1	.9	0		
c	.1	.1	.8		

Multiple Codes

| Code for first symbol |
| :--- | :--- |
| a 00 |
| b 01 |
| c 10 |

$$
\underline{00} \underline{00} \underline{0} \underline{1} \underline{01} \underline{0}
$$

Complexity of Huffman Code Design

- Time to design Huffman Code is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ where n is the number of symbols.
- Each step consists of a constant number of priority queue operations (2 deletemin's and 1 insert)

Approaches to Huffman Codes

1. Frequencies computed for each input

- Must transmit the Huffman code or frequencies as well as the compressed input
- Requires two passes

2. Fixed Huffman tree designed from training data

- Do not have to transmit the Huffman tree because it is known to the decoder.
- H. 263 video coder

3. Adaptive Huffman code

- One pass
- Huffman tree changes as frequencies change

Arithmetic Coding

- Basic idea in arithmetic coding:
- represent each string x of length n by a unique interval $[L, R)$ in $[0,1)$.
- The width R-L of the interval [L,R) represents the probability of x occurring.
- The interval [L,R) can itself be represented by any number, called a tag, within the half open interval.
- The k significant bits of the tag $\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \ldots$ is the code of x. That is,.$t_{1} t_{2} t_{3} \ldots t_{k} 000 \ldots$ is in the interval [L,R).
- It turns out that $k \approx \log _{2}(1 /(R-L))$.

Example of Arithmetic Coding (1)

Some Tags are Better than Others

Alternative tag $=14 / 37=.100001001 \ldots$ code = 1

Example of Codes

- $P(a)=1 / 3, P(b)=2 / 3$.

$$
\operatorname{tag}=(L+R) / 2 \quad \text { code }
$$

Code Generation from Tag

- If binary tag is $._{1} t_{2} t_{3} \ldots=(L+R) / 2$ in $[L, R)$ then we want to choose k to form the code $t_{1} t_{2} \ldots \mathrm{t}_{\mathrm{k}}$.
- Short code:
- choose k to be as small as possible so that $\mathrm{L} \leq \mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{k}} 000 \ldots<\mathrm{R}$.
- Guaranteed code:
- choose $k=\left\lceil\log _{2}(1 /(R-L))\right\rceil+1$
$-L \leq . t_{1} t_{2} \ldots t_{k} b_{1} b_{2} b_{3} \ldots<R$ for any bits $b_{1} b_{2} b_{3} \ldots$
- for fixed length strings provides a good prefix code.
- example: [.000000000..., .000010010...), tag = .000001001... Short code: 0
Guaranteed code: 000001

Guaranteed Code Example

- $P(a)=1 / 3, P(b)=2 / 3$.

$\operatorname{tag}=(L+R) / 2$| short | Prefix |
| :--- | :--- |
| code | code |

Arithmetic Coding Algorithm

- $P\left(a_{1}\right), P\left(a_{2}\right), \ldots, P\left(a_{m}\right)$
- $C\left(a_{i}\right)=P\left(a_{1}\right)+P\left(a_{2}\right)+\ldots+P\left(a_{i-1}\right)$
- Encode $x_{1} x_{2} \ldots x_{n}$

$$
\begin{aligned}
& \text { Initialize } L:=0 \text { and } R:=1 ; \\
& \text { for } i=1 \text { to } n \text { do } \\
& \text { W :=R }-L ; \\
& L:=L+W^{*} C\left(x_{i}\right) ; \\
& R:=L+W{ }^{*} P\left(x_{i}\right) ; \\
& t:=(L+R) / 2 ; \\
& \text { choose code for the tag }
\end{aligned}
$$

Arithmetic Coding Example

- $P(a)=1 / 4, P(b)=1 / 2, P(c)=1 / 4$
- $C(a)=0, C(b)=1 / 4, C(c)=3 / 4$
- abca

$$
\begin{aligned}
& \begin{array}{lcccc}
& \text { symbol } & \mathrm{W} & \mathrm{~L} & \mathrm{R} \\
& & & 0 & 1 \\
\mathrm{~W}:=\mathrm{R}-\mathrm{L} ; & \mathrm{a} & 1 & 0 & 1 / 4 \\
\mathrm{~L}:=\mathrm{L}+\mathrm{W}(\mathrm{x}) ; & \mathrm{b} & 1 / 4 & 1 / 16 & 3 / 16 \\
\mathrm{R}:=\mathrm{L}+\mathrm{W} \mathrm{P}(\mathrm{x}) & \mathrm{c} & 1 / 8 & 5 / 32 & 6 / 32 \\
& \mathrm{a} & 1 / 32 & 5 / 32 & 21 / 128
\end{array} \\
& \operatorname{tag}=(5 / 32+21 / 128) / 2=41 / 256=.001010010 \ldots \\
& \mathrm{~L}=.001010000 \ldots \\
& R=.001010100 \ldots \\
& \text { code }=00101 \\
& \text { prefix code }=00101001
\end{aligned}
$$

Arithmetic Coding Exercise

- $P(a)=1 / 4, P(b)=1 / 2, P(c)=1 / 4$
- $C(a)=0, C(b)=1 / 4, C(c)=3 / 4$
- bbbb

$$
\begin{aligned}
& \text { tag }= \\
& L= \\
& R= \\
& \text { code }= \\
& \text { prefix code = }
\end{aligned}
$$

Decoding (1)

- Assume the length is known to be 3.
- 0001 which converts to the tag .0001000...

output a

Decoding (2)

- Assume the length is known to be 3.
- 0001 which converts to the tag .0001000...

Decoding (3)

- Assume the length is known to be 3.
- 0001 which converts to the tag .0001000...

Arithmetic Decoding Algorithm

- $P\left(a_{1}\right), P\left(a_{2}\right), \ldots, P\left(a_{m}\right)$
- $C\left(a_{i}\right)=P\left(a_{1}\right)+P\left(a_{2}\right)+\ldots+P\left(a_{i-1}\right)$
- Decode $b_{1} b_{2} \ldots b_{k}$, number of symbols is n.

$$
\begin{aligned}
& \text { Initialize } \mathrm{L}:=0 \text { and } R:=1 \text {; } \\
& \mathrm{t}:=. \mathrm{b}_{1} \mathrm{~b}_{2} \ldots \mathrm{~b}_{\mathrm{k}} 000 \ldots \\
& \text { for } \mathrm{i}=1 \text { to } n \text { do } \\
& \mathrm{W}:=R-\mathrm{L} ; \\
& \text { find } j \text { such that } \mathrm{L}+\mathrm{W}^{*} \mathrm{C}\left(\mathrm{a}_{\mathrm{j}}\right) \leq \mathrm{t}<\mathrm{L}+\mathrm{W}^{*}\left(\mathrm{C}\left(\mathrm{a}_{\mathrm{j}}\right)+\mathrm{P}\left(\mathrm{a}_{\mathrm{j}}\right)\right) \\
& \text { output } \mathrm{a}_{\mathrm{j}} ; \\
& \mathrm{L}:=\mathrm{W} \text { * } \mathrm{C}\left(\mathrm{a}_{\mathrm{j}}\right) ; \\
& \mathrm{R}:=\mathrm{L}+\mathrm{W}^{*} \mathrm{P}\left(\mathrm{a}_{\mathrm{j}}\right) ;
\end{aligned}
$$

Decoding Example and Exercise

- $P(a)=1 / 4, P(b)=1 / 2, P(c)=1 / 4$
- $C(a)=0, C(b)=1 / 4, C(c)=3 / 4$
- 00101 and $n=4$

$\operatorname{tag}=.00101000 \ldots=5 / 32$			
W	L	R	output
	0	1	
1	0	$1 / 4$	a
$1 / 4$	$1 / 16$	$3 / 16$	b
$1 / 8$	$5 / 32$	$6 / 32$	c
$1 / 32$	$5 / 32$	$21 / 128$	a

Decoding Issues

- There are at least two ways for the decoder to know when to stop decoding.

1. Transmit the length of the string
2. Transmit a unique end of string symbol

Practical Arithmetic Coding

- Scaling:
- By scaling we can keep L and R in a reasonable range of values so that $W=R-L$ does not underflow.
- Context:
- Different contexts can be handled easily
- Adaptivity:
- Coding can be done adaptively, learning the distribution of symbols dynamically
- Integer arithmetic coding avoids floating point altogether.

Scaling

- Scaling:
- By scaling we can keep L and R in a reasonable range of values so that $W=R-L$ does not underflow.
- The code can be produced progressively, not at the end.
- Complicates decoding some.

Scaling Principle

Example

- baa

Lecture 5 - Statistical Lossless Data Compression

Example

- baa

Example

- baa

Lecture 5 - Statistical Lossless Data Compression

Example

- baa

Scale lower half

Lecture 5 - Statistical Lossless Data Compression

Example

- baa $\underline{01}$

Lecture 5 - Statistical Lossless Data Compression

Example

- baa 011

In end $\mathrm{L}<1 / 2<\mathrm{R}$, choose tag to be $1 / 2$

Lecture 5 - Statistical Lossless Data Compression

Decoding with Scaling

- Use the same scaling algorithm as the encoder
- There is no need to keep track of C because we know the complete tag.
- Each scaling step will consume a symbol of the tag
- Lower half: $0 x \rightarrow x \quad(10 \times .0 x=. x$ in binary $)$
- Upper half: $1 x \rightarrow x \quad(10 \times .1 x-1=. x)$
- Middle half: $10 x \rightarrow 1 x$ or $01 x \rightarrow 0 x$ $(10 \times .10 x-.1=.1 x$ or $10 \times .01 x-.1=.0 x)$

Integer Implementation

- m bit integers
- Represent 0 with 000... 0 (m times)
- Represent 1 with 111... 1 (m times)
- Probabilities represented by frequencies
- n_{i} is the number of times that symbol a_{i} occurs
$-C_{i}=n_{1}+n_{2}+\ldots+n_{i-1}$
$-N=n_{1}+n_{2}+\ldots+n_{m}$
W:=R-L+1
$L^{\prime}:=L+\left|\frac{W \cdot C_{i}}{N}\right| \quad$ Coding the i-th symbol using integer calculations.
$R:=L+\left|\frac{W \cdot C_{i+1}}{N}\right|_{-1} \quad$ Must use scaling!
L:=L'
Lecture 5 - Statistical Lossless Data Compression

Context

- Consider 1 symbol context.
- Example: 3 contexts.

prev	next			
		a	b	C
	a	. 4	. 2	4
	b	. 1	. 8	1
	C	. 25	. 25	. 5

Example with Context and Scaling

Equally Likely modelecture 5 - Statistical Lossless Data Compression

Arithmetic Coding with Context

- Maintain the probabilities for each context.
- For the first symbol use the equal probability model
- For each successive symbol use the model for the previous symbol.

Adaptation

- Simple solution - Equally Probable Model.
- Initially all symbols have frequency 1.
- After symbol x is coded, increment its frequency by 1
- Use the new model for coding the next symbol
- Example in alphabet a,b,c,d

a a b a a c	After aabaa
1233455	The proba
1112222	a 5/10 b 2/10
1111	
	c 2/10 d 1/10

Zero Frequency Problem

- How do we weight symbols that have not occurred yet.
- Equal weights? Not so good with many symbols
- Escape symbol, but what should its weight be?
- When a new symbol is encountered send the <esc>, followed by the symbol in the equally probable model. (Both encoded arithmetically.)

Arithmetic vs. Huffman

- Both compress very well. For m symbol grouping.
- Huffman is within $1 / \mathrm{m}$ of entropy.
- Arithmetic is within $2 / \mathrm{m}$ of entropy.
- Symbols
- Huffman needs a reasonably large set of symbols
- Arithmetic works fine on binary symbols
- Context
- Huffman needs a tree for every context.
- Arithmetic needs a small table of frequencies for every context.
- Adaptation
- Huffman has an elaborate adaptive algorithm
- Arithmetic has a simple adaptive mechanism.
- Bottom Line - Arithmetic is more flexible than Huffman.

Run-Length Coding

- Lots of 0's and not too many 1's.
- Fax of letters
- Graphics
- Simple run-length code
- Input 00000010000000001000000000010001001.....
- Symbols 691032 ...
- Code the bits as a sequence of integers
- Problem: How long should the integers be?

Golomb Code of Order m
 Variable Length Code for Integers

- Let $\mathrm{n}=\mathrm{qm}+\mathrm{r}$ where $0 \leq r<m$.
- Divide m into n to get the quotient q and remainder r .
- Code for n has two parts:

1. q is coded in unary
2. r is coded as a fixed prefix code

Example: $m=5$

code for r

Example

- $\mathrm{n}=\mathrm{qm}+\mathrm{r}$ is represented by:

- where \hat{r} is the fixed prefix code for r
- Example ($\mathrm{m}=5$):

$$
\begin{array}{ccccc}
2 & 6 & 9 & 10 & 27 \\
010 & 1001 & 10111 & 11000 & 11111010
\end{array}
$$

Alternative Explanation Golomb Code of order 5

Variable length to variable length code.

Run Length Example: $\mathrm{m}=5$

00000010000000001000000000010001001
1
$00000010000000001000000000010001001 . . .$.
001
$00000010000000001000000000010001001 . . .$.
1
$00000010000000001000000000010001001 . . .$.
0111
In this example we coded 17 bit in only 9 bits.

Choosing m

- Suppose that 0 has the probability p and 1 has probability 1-p.
- The probability of $0^{n 1}$ is $p^{n}(1-p)$. The Golomb code of order
is optimal.

$$
m=\left\lceil-1 / \log _{2} p\right\rceil
$$

- Example: $p=127 / 128$.

$$
m=\left\lceil-1 / \log _{2}(127 / 128)\right\rceil=89
$$

Golomb Coding Exercise

- Construct the Golomb Code of order 9. Show it as a prefix code (a binary tree).

PPM

- Prediction with Partial Matching
- Cleary and Witten (1984)
- State of the art arithmetic coder
- Arbitrary order context
- The context chosen is one that does a good prediction given the past
- Adaptive
- Example
- Context "the" does not predict the next symbol "a" well. Move to the context "he" which does.

Summary

- Statistical codes are very common as parts of image, video, music, and speech coder.
- Arithmetic and Huffman are most popular.
- Special statistical codes like Golomb codes are used in some situations.

