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Outline for Tonight

• Basic Concepts in Data Compression

• Entropy
• Prefix codes

• Huffman Coding
• Arithmetic Coding

• Run Length Coding (Golomb Code)
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Reading

• Huffman Coding: CLRS 385-392

• Other sources can be found:
– Data Compression: The Complete Reference, 3rd 

Edition by David Salomon
– Introduction to Data Compression by Khalid 

Sayood.
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Basic Data Compression Concepts

Encoder Decoder

compressedoriginal

x y x̂

• Lossless compression
– Also called entropy coding, reversible coding.

• Lossy compression
– Also called irreversible coding. 

• Compression ratio =             
– is number of bits in x.

xx ˆ=

xx ˆ≠

yx
x

decompressed
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Why Compress
• Conserve storage space
• Reduce time for transmission

– Faster to encode, send, then decode than to send 
the original

• Progressive transmission
– Some compression techniques allow us to send 

the most important bits first so we can get a low 
resolution version of some data before getting the 
high fidelity version

• Reduce computation
– Use less data to achieve an approximate answer
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Braille

• System to read text by feeling raised dots on 
paper (or on electronic displays).  Invented in 
1820s by Louis Braille, a French blind man.

a b c z

and the with mother 

th ghch
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Braille Example
Clear text:
Call me Ishmael.  Some years ago -- never mind how 
long precisely -- having \\ little or no money in my purse, 
and nothing particular to interest me on shore, \\ I thought 
I would sail about a little and see the watery part of the 
world.   (238 characters)

Grade 2 Braille:
�����������	
����������������������

��������������������������� �����		 ��

����������� �����������	 ���!��

�����������"��#$�%�������	
�����		 ���

�!����&�����'����� �( � �� 	 ����)

'�#$������*�)�	+'� (203 characters) 238/203 = 1.17 



Lecture 5 - Statistical Lossless Data Compression 8

Lossless Compression
• Data is not lost - the original is really needed.

– text compression
– compression of computer binary files

• Compression ratio typically no better than 4:1 for 
lossless compression on many kinds of files.

• Statistical Techniques
– Huffman coding
– Arithmetic coding
– Golomb coding

• Dictionary techniques
– LZW, LZ77 
– Sequitur 
– Burrows-Wheeler Method

• Standards - Morse code, Braille, Unix compress, gzip, 
zip, bzip, GIF, JBIG, Lossless JPEG
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Lossy Compression 
• Data is lost, but not too much.

– audio
– video
– still images, medical images, photographs

• Compression ratios of 10:1 often yield quite 
high fidelity results.

• Major techniques include
– Vector Quantization
– Wavelets
– Block transforms
– Standards - JPEG, JEPG2000, MPEG, H.264
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Why is Data Compression Possible

• Most data from nature has redundancy
– There is more data than the actual information 

contained in the data.
– Squeezing out the excess data amounts to 

compression.
– However, unsqueezing is necessary to be able to 

figure out what the data means.

• Information theory is needed to understand 
the limits of compression and give clues on 
how to compress well.
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What is Information

• Analog data
– Also called continuous data
– Represented by real numbers (or complex 

numbers)

• Digital data
– Finite set of symbols {a1, a2, ... , am}
– All data represented as sequences (strings) in the 

symbol set.
– Example: {a,b,c,d,r}   abracadabra
– Digital data can be an approximation to analog 

data
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Symbols

• Roman alphabet plus punctuation

• ASCII - 256 symbols
• Binary - {0,1}

– 0 and 1 are called bits
– All digital information can be represented 

efficiently in binary
– {a,b,c,d} fixed length representation

– 2 bits per symbol
11100100binary

dcbasymbol
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Information Theory

• Developed by Shannon in the 1940’s and 50’s

• Attempts to explain the limits of communication 
using probability theory.

• Example: Suppose English text is being sent
– It is much more likely to receive an “e” than a “z”.
– In some sense “z” has more information than “e”.
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First-order Information
• Suppose we are given symbols {a1, a2, ... , am}.
• P(ai) = probability of symbol ai occurring in the 

absence of any other information.
– P(a1) + P(a2) + ... + P(am) = 1

• inf(ai) = log2(1/P(ai)) bits is the information of ai
in bits.
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Example

• {a, b, c} with P(a) = 1/8, P(b) = 1/4, P(c) = 5/8
– inf(a) = log2(8) = 3
– inf(b) = log2(4) = 2
– inf(c) = log2(8/5) = .678

• Receiving an “a” has more information than 
receiving a “b” or “c”.



Lecture 5 - Statistical Lossless Data Compression 16

First Order Entropy

• The first order entropy is defined for a probability 
distribution over symbols {a1, a2, ... , am}.

• H is the average number of bits required to code up a 
symbol, given all we know is the probability distribution 
of the symbols.

• H is the Shannon lower bound on the average number of 
bits to code a symbol in this “source model”.

• Stronger models of entropy include context. 

)
)(

1
(log)( 2

1 i

m

i
i aP

aPH �
=

=
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Entropy Examples

• {a, b, c} with a 1/8, b 1/4, c 5/8.
– H = 1/8 *3 + 1/4 *2 + 5/8* .678 = 1.3 bits/symbol

• {a, b, c} with a 1/3, b 1/3, c 1/3. (worst case)
– H = 3* (1/3)*log2(3) = 1.6 bits/symbol

• Note that a standard code takes 2 bits per 
symbol

100100binary code

cbasymbol
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An Extreme Case

• {a, b, c} with a 1, b 0, c 0
– H = ?
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Entropy Curve

• Suppose we have two symbols with probabilities 
x and 1-x, respectively.
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A Simple Prefix Code

• {a, b, c} with a 1/8, b 1/4, c 5/8.
• A prefix code is defined by a binary tree
• Prefix code property

– no output is a prefix of another

b

c

a

0

0

1

1
1c

01b

00a

ccabccbccc
1 1 00 01 1 1 01 1 1 1

input output

code

binary tree
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Decoding a Prefix Code

b

c

a

0

0

1

1

repeat
start at root of tree

repeat
if read bit = 1 then go right
else go left

until node is a leaf
report leaf

until end of the code

11000111100
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Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100
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Decoding a Prefix Code
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Decoding a Prefix Code
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Decoding a Prefix Code
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Decoding a Prefix Code
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Decoding a Prefix Code
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Decoding a Prefix Code
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Decoding a Prefix Code
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Decoding a Prefix Code
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Decoding a Prefix Code

b

c

a
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11000111100

ccab
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Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

ccabccca
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How Good is the Code

b

c

a

0

0

1

1

1/8 1/4

5/8

bit rate = (1/8)2 + (1/4)2 + (5/8)1 = 11/8 = 1.375 bps
Entropy = 1.3 bps
Standard code = 2  bps

(bps = bits per symbol)
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Design a Prefix Code 1

• abracadabra 

• Design a prefix code for the 5 symbols 
{a,b,r,c,d} which compresses this string the 
most. 
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Design a Prefix Code 2

• Suppose we have n symbols each with 
probability 1/n.  Design a prefix code with 
minimum average bit rate.

• Consider n = 2,3,4,5,6 first.
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Huffman Coding

• Huffman (1951)
• Uses frequencies of symbols in a string to build a 

variable rate prefix code.
– Each symbol is mapped to a binary string.
– More frequent symbols have shorter codes.
– No code is a prefix of another.

• Example:   
a  0
b  100
c  101
d  11

b c

a

d

0

0

0

1

1

1
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Variable Rate Code Example

• Example:   a  0, b  100, c  101, d  11

• Coding: 
– aabddcaa = 16 bits
– 0 0 100 11 11 101 0 0= 14 bits

• Prefix code ensures unique decodability.
– 00100111110100

– a a b d d c a a 
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Cost of a Huffman Tree
• Let p1, p2, ... , pm be the probabilities for the 

symbols a1, a2, ... ,am, respectively.
• Define the cost of the Huffman tree T to be

where ri is the length of the path from the root 
to ai.

• C(T) is the expected length of the code of a 
symbol coded by the tree T.   C(T) is the 
average bit rate (ABR) of the code.

i

m

1i
irpC(T) �

=

=
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Example of Cost

• Example:   a  1/2, b  1/8, c  1/8, d  1/4

b c

a

d

0

0

0

1

1

1

T

C(T) = 1 x 1/2 + 3 x 1/8 + 3 x 1/8 + 2 x 1/4 = 1.75
a            b             c             d
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Huffman Tree

• Input: Probabilities p1, p2, ... , pm for symbols 
a1, a2, ... ,am, respectively.

• Output: A tree that minimizes the average 
number of bits (bit rate) to code a symbol. 
That is, minimizes

where ri is the length of the path from the root 
to ai.  This is the Huffman tree or Huffman 
code

i

m

1i
irpHC(T) �

=

= bit rate
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Optimality Principle 1
• In a Huffman tree a lowest probability symbol 

has maximum distance from the root.
– If not exchanging a lowest probability symbol with 

one at maximum distance will lower the cost.

q

p

T

q

T’

p

C(T’) = C(T) + hp - hq + kq - kp = C(T) - (h-k)(q-p) < C(T)

p smallest
p < q
k < h

h

k
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Optimality Principle 2

• The second lowest probability is a sibling of 
the the smallest in some Huffman tree. 
– If not, we can move it there not raising the cost.

p

q

T p smallest
q 2nd smallest

q < r
k < h

r p

r

T’

q

C(T’) = C(T) + hq - hr + kr - kq = C(T) - (h-k)(r-q) < C(T)

h

k
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Optimality Principle 3
• Assuming we have a Huffman tree T whose two 

lowest probability symbols are siblings at 
maximum depth, they can be replaced by a new 
symbol whose probability is the sum of their 
probabilities.  
– The resulting tree is optimal for the new symbol set.

p

T

q

T’

q+p

p smallest
q 2nd smallest

C(T’) = C(T) + (h-1)(p+q) - hp -hq = C(T) - (p+q)

h
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Optimality Principle 3 (cont’)

• If T’ were not optimal then we could find a 
lower cost tree T’’.  This will lead to a lower 
cost tree T’’’ for the original alphabet.

T’

q+p

T’’

q+p

T’’’

q p

C(T’’’) = C(T’’) + p + q < C(T’) + p + q = C(T) which is a contradiction
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Recursive Huffman Tree Algorithm

1. If there is just one symbol, a tree with one
node is optimal.  Otherwise

2. Find the two lowest probability symbols with 
probabilities p and q respectively.

3. Replace these with a new symbol with 
probability p + q.

4. Solve the problem recursively for new symbols.
5. Replace the leaf with the new symbol with an 

internal node with two children with the old symbols.
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Iterative Huffman Tree Algorithm
form a node for each symbol ai with weight pi;
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do

min1 := delete-min;
min2 := delete-min;
create a new node n;
n.weight := min1.weight + min2.weight;
n.left := min1;
n.right := min2;
insert(n)

return the last node in the priority queue.
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Example of Huffman Tree Algorithm (1)

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

a b c d e
.4 .1 .3 .1 .1

a

b

c d

e

.4 .3 .1.2
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Example of Huffman Tree Algorithm (2)

a

b

c d

e

.4 .3 .1.2

a

b

c

d

e

.4 .3.3
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Example of Huffman Tree Algorithm (3)

a

b

c

d

e

.4 .3.3
a

b

c

d

e

.4 .6
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Example of Huffman Tree Algorithm (4)

a

b

c

d

e

.4 .6

a

b

c

d

e

1
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Huffman Code

a

b

c

d

e

a   0
b   1110
c   10
d   110
e   1111

0 1

1

1

1

0

0

0

average number of bits per symbol is
.4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4 = 2.1
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Optimal Huffman Code vs. Entropy

Entropy

H = -(.4 x log2(.4) + .1 x log2(.1) + .3 x log2(.3) 
+ .1 x log2(.1) + .1 x log2(.1)) 

= 2.05 bits per symbol

Huffman Code

HC = .4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4 
= 2.1 bits per symbol

pretty good!

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1
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In Class Exercise

• P(a) = 1/2, P(b) = 1/4, P(c) = 1/8, P(d) = 1/16, 
P(e) = 1/16

• Compute the Huffman tree and its bit rate.

• Compute the Entropy
• Compare
• Hint: For the tree change probabilities to be 

integers: a:8, b:4, c:2, d:1, e:1.  Normalize at 
the end.



Lecture 5 - Statistical Lossless Data Compression 54

Quality of the Huffman Code

• The Huffman code is within one bit of the entropy 
lower bound. 

• Huffman code does not work well with a two symbol 
alphabet.
– Example: P(0) = 1/100, P(1) = 99/100
– HC = 1 bits/symbol

– H = -((1/100)*log2(1/100) + (99/100)log2(99/100))
= .08 bits/symbol

• If probabilities are powers of two then HC = H.

1HHCH +≤≤

1 0

10
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Extending the Alphabet 
• Assuming independence P(ab) = P(a)P(b), so 

we can lump symbols together.
• Example: P(0) = 1/100, P(1) = 99/100

– P(00) = 1/10000, P(01) = P(10) = 99/10000, 
P(11) = 9801/10000. 

01

11

10

00

1

1

1

0

0

0

HC = 1.03 bits/symbol (2 bit symbol)
= .515 bits/bit

Still not that close to H = .08 bits/bit
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Quality of Extended Alphabet

• Suppose we extend the alphabet to symbols 
of length k then

• Pros and Cons of Extending the alphabet
+ Better compression
- 2k symbols
- padding needed to make the length of the input 

divisible by k

1/kHHCH +≤≤
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Context Modeling

• Data does not usually come from a 1st order 
statistical source.
– English text: “u” almost always follows “q”
– Images: a pixel next to a blue pixel is likely to be 

blue

• Practical coding: Divide the data by contexts 
and code the data in each context as its own 
1st order source.
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Huffman Codes with Context
• Suppose we add a one symbol context.  That is in 

compressing a string x1x2...xn we want to take into 
account xk-1 when encoding xk.
– New model, so entropy based on just independent 

probabilities of the symbols doesn’t hold.  The new entropy 
model (2nd order entropy) has for each symbol a probability 
for each other symbol following it.  

– Example: {a,b,c}

a    b    c
a  .4   .2   .4
b  .1   .9    0
c  .1   .1 .8

prev

next
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Multiple Codes

a    b    c
a  .4   .2   .4
b  .1   .9    0
c  .1   .1 .8

prev

next

a

b

1

1

0

0

c

b

10

c

a

1

1

0

0

b

a

a b c

a b b a c c

Code for first symbol
a  00
b  01
c  10

00 00 0 1 01 0
.2

.4

.4

.9 .1

.1.1

.8
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Complexity of Huffman Code Design

• Time to design Huffman Code is O(n log n) 
where n is the number of symbols.
– Each step consists of a constant number of priority 

queue operations (2 deletemin’s and 1 insert)
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Approaches to Huffman Codes

1. Frequencies computed for each input
– Must transmit the Huffman code or 

frequencies as well as the compressed input
– Requires two passes

2. Fixed Huffman tree designed from training data
– Do not have to transmit the Huffman tree 

because it is known to the decoder.
– H.263 video coder

3. Adaptive Huffman code
– One pass
– Huffman tree changes as frequencies change
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Arithmetic Coding

• Basic idea in arithmetic coding:
– represent each string x of length n by a unique 

interval [L,R) in [0,1). 
– The width R-L of the interval [L,R) represents the 

probability of x occurring.
– The interval [L,R) can itself be represented by any 

number, called a tag, within the half open interval.
– The k significant bits of the tag .t1t2t3... is the code 

of x.  That is, . .t1t2t3...tk000... is in the interval 
[L,R). 

• It turns out that k ≈ log2(1/(R-L)).
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Example of Arithmetic Coding (1)

a

b

bb

0

1

bba
15/27

19/27

.100011100...

.101101000...

tag = 17/27 = .101000010...
code = 101

1. tag must be in the half open interval.
2. tag can be chosen to be (L+R)/2.
3. code is the significant bits of the tag.1/3

2/3
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Some Tags are Better than Others

a

b

ba

0

1

bab
11/27

15/27

.011010000...

.100011100...

1/3

2/3

Using tag = (L+R)/2
tag = 13/27 = .011110110...
code = 0111

Alternative tag = 14/37 = .100001001...
code = 1
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Example of Codes

• P(a) = 1/3, P(b) = 2/3.

a

b

aa

ab

ba

bb

aaa
aab
aba

abb

baa

bab

bba

bbb

0

1

0/27
1/27
3/27

9/27

5/27

11/27

15/27

19/27

27/27

.000010010...

.000000000...

.000111000...

.001011110...

.010101010...

.011010000...

.100011100...

.101101000...

.111111111...

.000001001...     0          aaa

.000100110...     0001    aab

.001001100...     001      aba

.010000101...     01        abb

.010111110...     01011  baa

tag = (L+R)/2        code

.011110111...     0111    bab

.101000010...     101      bba

.110110100...     11        bbb

.95 bits/symbol

.92 entropy lower bound
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Code Generation from Tag
• If binary tag is .t1t2t3... = (L+R)/2  in [L,R) then 

we want to choose k to form the code t1t2...tk.
• Short code: 

– choose k to be as small as possible so that 
L < .t1t2...tk000... < R.

• Guaranteed code:
– choose
– L < .t1t2...tkb1b2b3... < R for any bits b1b2b3...
– for fixed length strings provides a good prefix code.
– example: [.000000000..., .000010010...), tag = .000001001...

Short code: 0
Guaranteed code: 000001

� � 1L))(1/(R logk 2 +−=
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Guaranteed Code Example
• P(a) = 1/3, P(b) = 2/3.

a

b

aa

ab

ba

bb

aaa
aab
aba

abb

baa

bab

bba

bbb

0

1

0/27
1/27
3/27

9/27

5/27

11/27

15/27

19/27

27/27

.000001001...     0          0000  aaa

.000100110...     0001    0001  aab

.001001100...     001      001  aba

.010000101...     01        0100  abb

.010111110...     01011  01011  baa

tag = (L+R)/2

.011110111...     0111    0111  bab

.101000010...     101      101  bba

.110110100...     11        11  bbb

short
code

Prefix
code
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Arithmetic Coding Algorithm

• P(a1), P(a2), … , P(am)
• C(ai) = P(a1) + P(a2) + … + P(ai-1) 
• Encode x1x2...xn

Initialize L := 0 and R:= 1;
for i = 1 to n do

W := R - L;
L := L + W * C(xi);
R := L + W * P(xi);

t := (L+R)/2;
choose code for the tag
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Arithmetic Coding Example
• P(a) = 1/4, P(b) = 1/2, P(c) = 1/4
• C(a) = 0, C(b) = 1/4, C(c) = 3/4
• abca

symbol      W         L           R  
0          1

a           1          0        1/4
b          1/4      1/16     3/16
c          1/8      5/32     6/32
a         1/32     5/32    21/128

tag = (5/32 + 21/128)/2 = 41/256 = .001010010...
L = .001010000...
R = .001010100...
code = 00101
prefix code = 00101001

W := R - L;
L := L + W C(x);  
R := L + W P(x)
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Arithmetic Coding Exercise
• P(a) = 1/4, P(b) = 1/2, P(c) = 1/4
• C(a) = 0, C(b) = 1/4, C(c) = 3/4
• bbbb

symbol      W         L           R  
0          1

b          1
b
b
b

tag =
L = 
R =
code = 
prefix code =

W := R - L;
L := L + W C(x);  
R := L + W P(x)
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Decoding (1)
• Assume the length is known to be 3.
• 0001 which converts to the tag .0001000...

a

b

0

1

.0001000... output a
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Decoding (2)
• Assume the length is known to be 3.
• 0001 which converts to the tag .0001000...

a

b

0

1

aa

ab

.0001000... output a
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Decoding (3)
• Assume the length is known to be 3.
• 0001 which converts to the tag .0001000...

a

b

0

1

aa

ab

aab.0001000... output b
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Arithmetic Decoding Algorithm

• P(a1), P(a2), … , P(am)

• C(ai) = P(a1) + P(a2) + … + P(ai-1) 
• Decode b1b2...bk, number of symbols is n.

Initialize L := 0 and R := 1;
t := .b1b2...bk000...
for i = 1 to n do

W := R - L;
find j such that L + W * C(aj) < t < L + W * (C(aj)+P(aj))
output aj;
L := L + W * C(aj);
R := L + W * P(aj);
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Decoding Example and Exercise

• P(a) = 1/4, P(b) = 1/2, P(c) = 1/4

• C(a) = 0, C(b) = 1/4, C(c) = 3/4
• 00101 and n = 4

tag = .00101000... = 5/32
W         L            R              output

0          1
1          0        1/4                 a
1/4      1/16     3/16               b
1/8      5/32     6/32               c
1/32    5/32    21/128            a
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Decoding Issues

• There are at least two ways for the decoder 
to know when to stop decoding.
1. Transmit the length of the string
2. Transmit a unique end of string symbol
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Practical Arithmetic Coding 

• Scaling:
– By scaling we can keep L and R in a reasonable 

range of values so that W = R - L does not 
underflow.  

• Context: 
– Different contexts can be handled easily

• Adaptivity:
– Coding can be done adaptively, learning the 

distribution of symbols dynamically

• Integer arithmetic coding avoids floating point 
altogether.
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Scaling 

• Scaling:
– By scaling we can keep L and R in a reasonable 

range of values so that W = R – L does not 
underflow.  

– The code can be produced progressively, not at 
the end.

– Complicates decoding some.
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Scaling Principle
Lower half
If  [L,R) is contained in [0,.5) then 

L := 2L; R := 2R 
output 0, followed by  C 1’s
C := 0.

Upper half
If [L,R) is contained in  [.5,1) then 

L := 2L –1, R := 2R - 1 
output 1, followed by C 0’s
C := 0

Middle Half
If [L,R) is contained in  [.25,.75)  then 

L := 2L –.5, R := 2R -.5 
C := C + 1.
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Example

• baa    

a

b

0

1

1/3

2/3

L = 1/3  R = 3/3

C = 0
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Example

• baa        

a

b

0

1

1/3

2/3

Scale middle half

L = 1/3  R = 3/3 
L = 3/9  R = 5/9

C = 0
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Example

• baa        

a

b

0

1

1/3

2/3

L = 3/9  R = 5/9
L = 3/18 R = 11/18

C = 1

ba
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Example

• baa

a

b

0

1

1/3

2/3

L = 3/18 R = 11/18
L = 9/54 R = 17/54

C = 1

ba

baa
Scale lower half



Lecture 5 - Statistical Lossless Data Compression 84

Example

• baa 01

a

b

0

1

1/3

2/3

L = 9/54 R = 17/54
L = 18/54 R = 34/54

C = 0

ba

baa
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Example

• baa   011

a

b

0

1

1/3

2/3

L = 9/54 R = 17/54
L = 18/54 R = 34/54

C = 0

ba

baa .0101…

.1000… = tag

.1010…

In end L < ½ < R, choose tag to be 1/2
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Decoding with Scaling

• Use the same scaling algorithm as the 
encoder
– There is no need to keep track of C because we 

know the complete tag.
– Each scaling step will consume a symbol of the 

tag

• Lower half:   0x → x    (10 × .0x = .x in binary)
• Upper half: 1x → x    (10 × .1x - 1= .x)
• Middle half: 10x → 1x or 01x → 0x 

(10 × .10x - .1= .1x or 10 × .01x - .1= .0x)
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Integer Implementation

• m bit integers
– Represent 0 with  000…0 (m times)
– Represent 1 with  111…1 (m times)

• Probabilities represented by frequencies
– ni is the number of times that symbol ai occurs
– Ci = n1 + n2 + … + ni-1

– N = n1 + n2 + … + nm

L' : L

1
N
CW

L :R

N
CW

L:L'

1LR:W

1i

i

=

−��
�

��

� ⋅+=

��

�
��

� ⋅+=

+−=

+

Coding the i-th symbol using
integer calculations. 
Must use scaling!
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Context

• Consider 1 symbol context.

• Example: 3 contexts.

prev

next

a    b    c
a  .4    .2   .4
b  .1    .8   .1
c  .25  .25  .5



Lecture 5 - Statistical Lossless Data Compression 89

Example with Context and Scaling

• acc   a    b    c
a  .4    .2   .4
b  .1    .8   .1
c  .25  .25  .5

prev

next

a

Equally Likely model

ac

1/3 

1/3 

1/3 

0                          10            1  

a model

c model

.4

.2

.4 

.25

.25

.5 acc

0

1/3

0

2/3

2/5

2/3

3/10

5/6

17/30

5/6

first half           middle half              second half

2/3

2/15

Code = 0101
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Arithmetic Coding with Context

• Maintain the probabilities for each context.

• For the first symbol use the equal probability 
model

• For each successive symbol use the model 
for the previous symbol.
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Adaptation

• Simple solution – Equally Probable Model.
– Initially all symbols have frequency 1.
– After symbol x is coded, increment its frequency 

by 1
– Use the new model for coding the next symbol

• Example in alphabet a,b,c,d

a  a  b  a  a  c
a  1   2  3  3  4  5  5
b  1   1  1  2  2  2  2
c  1   1  1  1  1  1  2
d  1   1  1  1  1  1  1

After aabaac is encoded
The probability model is
a 5/10      b 2/10
c 2/10      d 1/10
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Zero Frequency Problem

• How do we weight symbols that have not occurred yet.
– Equal weights?  Not so good with many symbols
– Escape symbol, but what should its weight be? 
– When a new symbol is encountered send the <esc>, followed 

by the symbol in the equally probable model.  (Both encoded 
arithmetically.)

a  a  b  a  a  c
a       0    1  2  2  3  4  4
b       0    0  0  1  1  1  1
c       0    0  0  0  0  0  1
d       0    0  0  0  0  0  0

<esc>  1    1  1  1  1  1  1

After aabaac is encoded
The probability model is
a 4/7      b 1/7
c 1/7      d 0
<esc> 1/7
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Arithmetic vs. Huffman

• Both compress very well. For m symbol grouping.
– Huffman is within 1/m of entropy.
– Arithmetic is within 2/m of entropy.

• Symbols
– Huffman needs a reasonably large set of symbols
– Arithmetic works fine on binary symbols

• Context
– Huffman needs a tree for every context.
– Arithmetic needs a small table of frequencies for every 

context.
• Adaptation

– Huffman has an elaborate adaptive algorithm
– Arithmetic has a simple adaptive mechanism.

• Bottom Line – Arithmetic is more flexible than Huffman.
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Run-Length Coding

• Lots of 0’s and not too many 1’s.
– Fax of letters
– Graphics

• Simple run-length code
– Input 

00000010000000001000000000010001001.....
– Symbols

6 9 10 3 2 ...
– Code the bits as a sequence of integers
– Problem: How long should the integers be?
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Golomb Code of Order m
Variable Length Code for Integers

• Let n = qm + r where 0 < r < m.
– Divide m into n to get the quotient q and 

remainder r.

• Code for n has two parts:
1. q is coded in unary
2. r is coded as a fixed prefix code
Example: m = 5

0 1 2

3 4

00

0

0

1

1 1

1

code for r
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Example

• n = qm + r  is represented by:

– where      is the fixed prefix code for r

• Example (m = 5):
2      6         9        10           27

010 1001 10111 11000 11111010

r0111

q

ˆ
���
�

r̂
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Alternative Explanation
Golomb Code of order 5

1 01 001

00

0

0

1

1 1

1

0001 00001

0

00000

1

0001

00101

010001

01100001

011100001

100000

input      output

Variable length to variable length code.
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Run Length Example: m = 5

00000010000000001000000000010001001.....
1
00000010000000001000000000010001001.....
001
00000010000000001000000000010001001.....
1
00000010000000001000000000010001001.....
0111

In this example we coded 17 bit in only 9 bits.
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Choosing m

• Suppose that 0 has the probability p and 1 
has probability 1-p.

• The probability of 0n1 is pn(1-p). The Golomb 
code of order

is optimal.
• Example: p = 127/128.  

��
�

��
�= p log

1-m
2

89(127/128) log
1-m

2
=

��
�

��
�=
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Golomb Coding Exercise

• Construct the Golomb Code of order 9.  Show 
it as a prefix code (a binary tree).
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PPM

• Prediction with Partial Matching
– Cleary and Witten (1984)

• State of the art arithmetic coder
– Arbitrary order context
– The context chosen is one that does a good 

prediction given the past
– Adaptive

• Example
– Context “the” does not predict the next symbol “a” 

well.  Move to the context “he” which does.
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Summary

• Statistical codes are very common as parts of 
image, video, music, and speech coder.

• Arithmetic and Huffman are most popular.

• Special statistical codes like Golomb codes 
are used in some situations.


