
CSEP 521
Applied Algorithms

Spring 2005

Statistical Lossless Data Compression

Lecture 5 - Statistical Lossless Data Compression 2

Outline for Tonight

• Basic Concepts in Data Compression

• Entropy
• Prefix codes

• Huffman Coding
• Arithmetic Coding

• Run Length Coding (Golomb Code)

Lecture 5 - Statistical Lossless Data Compression 3

Reading

• Huffman Coding: CLRS 385-392

• Other sources can be found:
– Data Compression: The Complete Reference, 3rd

Edition by David Salomon
– Introduction to Data Compression by Khalid

Sayood.

Lecture 5 - Statistical Lossless Data Compression 4

Basic Data Compression Concepts

Encoder Decoder

compressedoriginal

x y x̂

• Lossless compression
– Also called entropy coding, reversible coding.

• Lossy compression
– Also called irreversible coding.

• Compression ratio =
– is number of bits in x.

xx ˆ=

xx ˆ≠

yx
x

decompressed

Lecture 5 - Statistical Lossless Data Compression 5

Why Compress
• Conserve storage space
• Reduce time for transmission

– Faster to encode, send, then decode than to send
the original

• Progressive transmission
– Some compression techniques allow us to send

the most important bits first so we can get a low
resolution version of some data before getting the
high fidelity version

• Reduce computation
– Use less data to achieve an approximate answer

Lecture 5 - Statistical Lossless Data Compression 6

Braille

• System to read text by feeling raised dots on
paper (or on electronic displays). Invented in
1820s by Louis Braille, a French blind man.

a b c z

and the with mother

th ghch

Lecture 5 - Statistical Lossless Data Compression 7

Braille Example
Clear text:
Call me Ishmael. Some years ago -- never mind how
long precisely -- having \\ little or no money in my purse,
and nothing particular to interest me on shore, \\ I thought
I would sail about a little and see the watery part of the
world. (238 characters)

Grade 2 Braille:
�����������	
����������������������

��������������������������� �����		 ��

����������� �����������	 ���!��

�����������"��#$�%�������	
�����		 ���

�!����&�����'����� �(� �� 	 ����)

'�#$������*�)�	+'� (203 characters) 238/203 = 1.17

Lecture 5 - Statistical Lossless Data Compression 8

Lossless Compression
• Data is not lost - the original is really needed.

– text compression
– compression of computer binary files

• Compression ratio typically no better than 4:1 for
lossless compression on many kinds of files.

• Statistical Techniques
– Huffman coding
– Arithmetic coding
– Golomb coding

• Dictionary techniques
– LZW, LZ77
– Sequitur
– Burrows-Wheeler Method

• Standards - Morse code, Braille, Unix compress, gzip,
zip, bzip, GIF, JBIG, Lossless JPEG

Lecture 5 - Statistical Lossless Data Compression 9

Lossy Compression
• Data is lost, but not too much.

– audio
– video
– still images, medical images, photographs

• Compression ratios of 10:1 often yield quite
high fidelity results.

• Major techniques include
– Vector Quantization
– Wavelets
– Block transforms
– Standards - JPEG, JEPG2000, MPEG, H.264

Lecture 5 - Statistical Lossless Data Compression 10

Why is Data Compression Possible

• Most data from nature has redundancy
– There is more data than the actual information

contained in the data.
– Squeezing out the excess data amounts to

compression.
– However, unsqueezing is necessary to be able to

figure out what the data means.

• Information theory is needed to understand
the limits of compression and give clues on
how to compress well.

Lecture 5 - Statistical Lossless Data Compression 11

What is Information

• Analog data
– Also called continuous data
– Represented by real numbers (or complex

numbers)

• Digital data
– Finite set of symbols {a1, a2, ... , am}
– All data represented as sequences (strings) in the

symbol set.
– Example: {a,b,c,d,r} abracadabra
– Digital data can be an approximation to analog

data

Lecture 5 - Statistical Lossless Data Compression 12

Symbols

• Roman alphabet plus punctuation

• ASCII - 256 symbols
• Binary - {0,1}

– 0 and 1 are called bits
– All digital information can be represented

efficiently in binary
– {a,b,c,d} fixed length representation

– 2 bits per symbol
11100100binary

dcbasymbol

Lecture 5 - Statistical Lossless Data Compression 13

Information Theory

• Developed by Shannon in the 1940’s and 50’s

• Attempts to explain the limits of communication
using probability theory.

• Example: Suppose English text is being sent
– It is much more likely to receive an “e” than a “z”.
– In some sense “z” has more information than “e”.

Lecture 5 - Statistical Lossless Data Compression 14

0

1

2

3

4

5

6

7

0.
01

0.
08

0.
15

0.
22

0.
29

0.
36

0.
43 0
.5

0.
57

0.
64

0.
71

0.
78

0.
85

0.
92

0.
99

x

y

-log(x)

First-order Information
• Suppose we are given symbols {a1, a2, ... , am}.
• P(ai) = probability of symbol ai occurring in the

absence of any other information.
– P(a1) + P(a2) + ... + P(am) = 1

• inf(ai) = log2(1/P(ai)) bits is the information of ai
in bits.

Lecture 5 - Statistical Lossless Data Compression 15

Example

• {a, b, c} with P(a) = 1/8, P(b) = 1/4, P(c) = 5/8
– inf(a) = log2(8) = 3
– inf(b) = log2(4) = 2
– inf(c) = log2(8/5) = .678

• Receiving an “a” has more information than
receiving a “b” or “c”.

Lecture 5 - Statistical Lossless Data Compression 16

First Order Entropy

• The first order entropy is defined for a probability
distribution over symbols {a1, a2, ... , am}.

• H is the average number of bits required to code up a
symbol, given all we know is the probability distribution
of the symbols.

• H is the Shannon lower bound on the average number of
bits to code a symbol in this “source model”.

• Stronger models of entropy include context.

)
)(

1
(log)(2

1 i

m

i
i aP

aPH �
=

=

Lecture 5 - Statistical Lossless Data Compression 17

Entropy Examples

• {a, b, c} with a 1/8, b 1/4, c 5/8.
– H = 1/8 *3 + 1/4 *2 + 5/8* .678 = 1.3 bits/symbol

• {a, b, c} with a 1/3, b 1/3, c 1/3. (worst case)
– H = 3* (1/3)*log2(3) = 1.6 bits/symbol

• Note that a standard code takes 2 bits per
symbol

100100binary code

cbasymbol

Lecture 5 - Statistical Lossless Data Compression 18

An Extreme Case

• {a, b, c} with a 1, b 0, c 0
– H = ?

Lecture 5 - Statistical Lossless Data Compression 19

Entropy Curve

• Suppose we have two symbols with probabilities
x and 1-x, respectively.

0

0.2

0.4

0.6

0.8

1

1.2

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

probability of first symbol

en
tr

op
y

-(x log x + (1-x)log(1-x))

maximum entropy at .5

Lecture 5 - Statistical Lossless Data Compression 20

A Simple Prefix Code

• {a, b, c} with a 1/8, b 1/4, c 5/8.
• A prefix code is defined by a binary tree
• Prefix code property

– no output is a prefix of another

b

c

a

0

0

1

1
1c

01b

00a

ccabccbccc
1 1 00 01 1 1 01 1 1 1

input output

code

binary tree

Lecture 5 - Statistical Lossless Data Compression 21

Decoding a Prefix Code

b

c

a

0

0

1

1

repeat
start at root of tree

repeat
if read bit = 1 then go right
else go left

until node is a leaf
report leaf

until end of the code

11000111100

Lecture 5 - Statistical Lossless Data Compression 22

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

Lecture 5 - Statistical Lossless Data Compression 23

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

c

Lecture 5 - Statistical Lossless Data Compression 24

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

c

Lecture 5 - Statistical Lossless Data Compression 25

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

cc

Lecture 5 - Statistical Lossless Data Compression 26

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

cc

Lecture 5 - Statistical Lossless Data Compression 27

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

cc

Lecture 5 - Statistical Lossless Data Compression 28

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

cca

Lecture 5 - Statistical Lossless Data Compression 29

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

cca

Lecture 5 - Statistical Lossless Data Compression 30

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

cca

Lecture 5 - Statistical Lossless Data Compression 31

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

ccab

Lecture 5 - Statistical Lossless Data Compression 32

Decoding a Prefix Code

b

c

a

0

0

1

1

11000111100

ccabccca

Lecture 5 - Statistical Lossless Data Compression 33

How Good is the Code

b

c

a

0

0

1

1

1/8 1/4

5/8

bit rate = (1/8)2 + (1/4)2 + (5/8)1 = 11/8 = 1.375 bps
Entropy = 1.3 bps
Standard code = 2 bps

(bps = bits per symbol)

Lecture 5 - Statistical Lossless Data Compression 34

Design a Prefix Code 1

• abracadabra

• Design a prefix code for the 5 symbols
{a,b,r,c,d} which compresses this string the
most.

Lecture 5 - Statistical Lossless Data Compression 35

Design a Prefix Code 2

• Suppose we have n symbols each with
probability 1/n. Design a prefix code with
minimum average bit rate.

• Consider n = 2,3,4,5,6 first.

Lecture 5 - Statistical Lossless Data Compression 36

Huffman Coding

• Huffman (1951)
• Uses frequencies of symbols in a string to build a

variable rate prefix code.
– Each symbol is mapped to a binary string.
– More frequent symbols have shorter codes.
– No code is a prefix of another.

• Example:
a 0
b 100
c 101
d 11

b c

a

d

0

0

0

1

1

1

Lecture 5 - Statistical Lossless Data Compression 37

Variable Rate Code Example

• Example: a 0, b 100, c 101, d 11

• Coding:
– aabddcaa = 16 bits
– 0 0 100 11 11 101 0 0= 14 bits

• Prefix code ensures unique decodability.
– 00100111110100

– a a b d d c a a

Lecture 5 - Statistical Lossless Data Compression 38

Cost of a Huffman Tree
• Let p1, p2, ... , pm be the probabilities for the

symbols a1, a2, ... ,am, respectively.
• Define the cost of the Huffman tree T to be

where ri is the length of the path from the root
to ai.

• C(T) is the expected length of the code of a
symbol coded by the tree T. C(T) is the
average bit rate (ABR) of the code.

i

m

1i
irpC(T) �

=

=

Lecture 5 - Statistical Lossless Data Compression 39

Example of Cost

• Example: a 1/2, b 1/8, c 1/8, d 1/4

b c

a

d

0

0

0

1

1

1

T

C(T) = 1 x 1/2 + 3 x 1/8 + 3 x 1/8 + 2 x 1/4 = 1.75
a b c d

Lecture 5 - Statistical Lossless Data Compression 40

Huffman Tree

• Input: Probabilities p1, p2, ... , pm for symbols
a1, a2, ... ,am, respectively.

• Output: A tree that minimizes the average
number of bits (bit rate) to code a symbol.
That is, minimizes

where ri is the length of the path from the root
to ai. This is the Huffman tree or Huffman
code

i

m

1i
irpHC(T) �

=

= bit rate

Lecture 5 - Statistical Lossless Data Compression 41

Optimality Principle 1
• In a Huffman tree a lowest probability symbol

has maximum distance from the root.
– If not exchanging a lowest probability symbol with

one at maximum distance will lower the cost.

q

p

T

q

T’

p

C(T’) = C(T) + hp - hq + kq - kp = C(T) - (h-k)(q-p) < C(T)

p smallest
p < q
k < h

h

k

Lecture 5 - Statistical Lossless Data Compression 42

Optimality Principle 2

• The second lowest probability is a sibling of
the the smallest in some Huffman tree.
– If not, we can move it there not raising the cost.

p

q

T p smallest
q 2nd smallest

q < r
k < h

r p

r

T’

q

C(T’) = C(T) + hq - hr + kr - kq = C(T) - (h-k)(r-q) < C(T)

h

k

Lecture 5 - Statistical Lossless Data Compression 43

Optimality Principle 3
• Assuming we have a Huffman tree T whose two

lowest probability symbols are siblings at
maximum depth, they can be replaced by a new
symbol whose probability is the sum of their
probabilities.
– The resulting tree is optimal for the new symbol set.

p

T

q

T’

q+p

p smallest
q 2nd smallest

C(T’) = C(T) + (h-1)(p+q) - hp -hq = C(T) - (p+q)

h

Lecture 5 - Statistical Lossless Data Compression 44

Optimality Principle 3 (cont’)

• If T’ were not optimal then we could find a
lower cost tree T’’. This will lead to a lower
cost tree T’’’ for the original alphabet.

T’

q+p

T’’

q+p

T’’’

q p

C(T’’’) = C(T’’) + p + q < C(T’) + p + q = C(T) which is a contradiction

Lecture 5 - Statistical Lossless Data Compression 45

Recursive Huffman Tree Algorithm

1. If there is just one symbol, a tree with one
node is optimal. Otherwise

2. Find the two lowest probability symbols with
probabilities p and q respectively.

3. Replace these with a new symbol with
probability p + q.

4. Solve the problem recursively for new symbols.
5. Replace the leaf with the new symbol with an

internal node with two children with the old symbols.

Lecture 5 - Statistical Lossless Data Compression 46

Iterative Huffman Tree Algorithm
form a node for each symbol ai with weight pi;
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do

min1 := delete-min;
min2 := delete-min;
create a new node n;
n.weight := min1.weight + min2.weight;
n.left := min1;
n.right := min2;
insert(n)

return the last node in the priority queue.

Lecture 5 - Statistical Lossless Data Compression 47

Example of Huffman Tree Algorithm (1)

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

a b c d e
.4 .1 .3 .1 .1

a

b

c d

e

.4 .3 .1.2

Lecture 5 - Statistical Lossless Data Compression 48

Example of Huffman Tree Algorithm (2)

a

b

c d

e

.4 .3 .1.2

a

b

c

d

e

.4 .3.3

Lecture 5 - Statistical Lossless Data Compression 49

Example of Huffman Tree Algorithm (3)

a

b

c

d

e

.4 .3.3
a

b

c

d

e

.4 .6

Lecture 5 - Statistical Lossless Data Compression 50

Example of Huffman Tree Algorithm (4)

a

b

c

d

e

.4 .6

a

b

c

d

e

1

Lecture 5 - Statistical Lossless Data Compression 51

Huffman Code

a

b

c

d

e

a 0
b 1110
c 10
d 110
e 1111

0 1

1

1

1

0

0

0

average number of bits per symbol is
.4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4 = 2.1

Lecture 5 - Statistical Lossless Data Compression 52

Optimal Huffman Code vs. Entropy

Entropy

H = -(.4 x log2(.4) + .1 x log2(.1) + .3 x log2(.3)
+ .1 x log2(.1) + .1 x log2(.1))

= 2.05 bits per symbol

Huffman Code

HC = .4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4
= 2.1 bits per symbol

pretty good!

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

Lecture 5 - Statistical Lossless Data Compression 53

In Class Exercise

• P(a) = 1/2, P(b) = 1/4, P(c) = 1/8, P(d) = 1/16,
P(e) = 1/16

• Compute the Huffman tree and its bit rate.

• Compute the Entropy
• Compare
• Hint: For the tree change probabilities to be

integers: a:8, b:4, c:2, d:1, e:1. Normalize at
the end.

Lecture 5 - Statistical Lossless Data Compression 54

Quality of the Huffman Code

• The Huffman code is within one bit of the entropy
lower bound.

• Huffman code does not work well with a two symbol
alphabet.
– Example: P(0) = 1/100, P(1) = 99/100
– HC = 1 bits/symbol

– H = -((1/100)*log2(1/100) + (99/100)log2(99/100))
= .08 bits/symbol

• If probabilities are powers of two then HC = H.

1HHCH +≤≤

1 0

10

Lecture 5 - Statistical Lossless Data Compression 55

Extending the Alphabet
• Assuming independence P(ab) = P(a)P(b), so

we can lump symbols together.
• Example: P(0) = 1/100, P(1) = 99/100

– P(00) = 1/10000, P(01) = P(10) = 99/10000,
P(11) = 9801/10000.

01

11

10

00

1

1

1

0

0

0

HC = 1.03 bits/symbol (2 bit symbol)
= .515 bits/bit

Still not that close to H = .08 bits/bit

Lecture 5 - Statistical Lossless Data Compression 56

Quality of Extended Alphabet

• Suppose we extend the alphabet to symbols
of length k then

• Pros and Cons of Extending the alphabet
+ Better compression
- 2k symbols
- padding needed to make the length of the input

divisible by k

1/kHHCH +≤≤

Lecture 5 - Statistical Lossless Data Compression 57

Context Modeling

• Data does not usually come from a 1st order
statistical source.
– English text: “u” almost always follows “q”
– Images: a pixel next to a blue pixel is likely to be

blue

• Practical coding: Divide the data by contexts
and code the data in each context as its own
1st order source.

Lecture 5 - Statistical Lossless Data Compression 58

Huffman Codes with Context
• Suppose we add a one symbol context. That is in

compressing a string x1x2...xn we want to take into
account xk-1 when encoding xk.
– New model, so entropy based on just independent

probabilities of the symbols doesn’t hold. The new entropy
model (2nd order entropy) has for each symbol a probability
for each other symbol following it.

– Example: {a,b,c}

a b c
a .4 .2 .4
b .1 .9 0
c .1 .1 .8

prev

next

Lecture 5 - Statistical Lossless Data Compression 59

Multiple Codes

a b c
a .4 .2 .4
b .1 .9 0
c .1 .1 .8

prev

next

a

b

1

1

0

0

c

b

10

c

a

1

1

0

0

b

a

a b c

a b b a c c

Code for first symbol
a 00
b 01
c 10

00 00 0 1 01 0
.2

.4

.4

.9 .1

.1.1

.8

Lecture 5 - Statistical Lossless Data Compression 60

Complexity of Huffman Code Design

• Time to design Huffman Code is O(n log n)
where n is the number of symbols.
– Each step consists of a constant number of priority

queue operations (2 deletemin’s and 1 insert)

Lecture 5 - Statistical Lossless Data Compression 61

Approaches to Huffman Codes

1. Frequencies computed for each input
– Must transmit the Huffman code or

frequencies as well as the compressed input
– Requires two passes

2. Fixed Huffman tree designed from training data
– Do not have to transmit the Huffman tree

because it is known to the decoder.
– H.263 video coder

3. Adaptive Huffman code
– One pass
– Huffman tree changes as frequencies change

Lecture 5 - Statistical Lossless Data Compression 62

Arithmetic Coding

• Basic idea in arithmetic coding:
– represent each string x of length n by a unique

interval [L,R) in [0,1).
– The width R-L of the interval [L,R) represents the

probability of x occurring.
– The interval [L,R) can itself be represented by any

number, called a tag, within the half open interval.
– The k significant bits of the tag .t1t2t3... is the code

of x. That is, . .t1t2t3...tk000... is in the interval
[L,R).

• It turns out that k ≈ log2(1/(R-L)).

Lecture 5 - Statistical Lossless Data Compression 63

Example of Arithmetic Coding (1)

a

b

bb

0

1

bba
15/27

19/27

.100011100...

.101101000...

tag = 17/27 = .101000010...
code = 101

1. tag must be in the half open interval.
2. tag can be chosen to be (L+R)/2.
3. code is the significant bits of the tag.1/3

2/3

Lecture 5 - Statistical Lossless Data Compression 64

Some Tags are Better than Others

a

b

ba

0

1

bab
11/27

15/27

.011010000...

.100011100...

1/3

2/3

Using tag = (L+R)/2
tag = 13/27 = .011110110...
code = 0111

Alternative tag = 14/37 = .100001001...
code = 1

Lecture 5 - Statistical Lossless Data Compression 65

Example of Codes

• P(a) = 1/3, P(b) = 2/3.

a

b

aa

ab

ba

bb

aaa
aab
aba

abb

baa

bab

bba

bbb

0

1

0/27
1/27
3/27

9/27

5/27

11/27

15/27

19/27

27/27

.000010010...

.000000000...

.000111000...

.001011110...

.010101010...

.011010000...

.100011100...

.101101000...

.111111111...

.000001001... 0 aaa

.000100110... 0001 aab

.001001100... 001 aba

.010000101... 01 abb

.010111110... 01011 baa

tag = (L+R)/2 code

.011110111... 0111 bab

.101000010... 101 bba

.110110100... 11 bbb

.95 bits/symbol

.92 entropy lower bound

Lecture 5 - Statistical Lossless Data Compression 66

Code Generation from Tag
• If binary tag is .t1t2t3... = (L+R)/2 in [L,R) then

we want to choose k to form the code t1t2...tk.
• Short code:

– choose k to be as small as possible so that
L < .t1t2...tk000... < R.

• Guaranteed code:
– choose
– L < .t1t2...tkb1b2b3... < R for any bits b1b2b3...
– for fixed length strings provides a good prefix code.
– example: [.000000000..., .000010010...), tag = .000001001...

Short code: 0
Guaranteed code: 000001

� � 1L))(1/(R logk 2 +−=

Lecture 5 - Statistical Lossless Data Compression 67

Guaranteed Code Example
• P(a) = 1/3, P(b) = 2/3.

a

b

aa

ab

ba

bb

aaa
aab
aba

abb

baa

bab

bba

bbb

0

1

0/27
1/27
3/27

9/27

5/27

11/27

15/27

19/27

27/27

.000001001... 0 0000 aaa

.000100110... 0001 0001 aab

.001001100... 001 001 aba

.010000101... 01 0100 abb

.010111110... 01011 01011 baa

tag = (L+R)/2

.011110111... 0111 0111 bab

.101000010... 101 101 bba

.110110100... 11 11 bbb

short
code

Prefix
code

Lecture 5 - Statistical Lossless Data Compression 68

Arithmetic Coding Algorithm

• P(a1), P(a2), … , P(am)
• C(ai) = P(a1) + P(a2) + … + P(ai-1)
• Encode x1x2...xn

Initialize L := 0 and R:= 1;
for i = 1 to n do

W := R - L;
L := L + W * C(xi);
R := L + W * P(xi);

t := (L+R)/2;
choose code for the tag

Lecture 5 - Statistical Lossless Data Compression 69

Arithmetic Coding Example
• P(a) = 1/4, P(b) = 1/2, P(c) = 1/4
• C(a) = 0, C(b) = 1/4, C(c) = 3/4
• abca

symbol W L R
0 1

a 1 0 1/4
b 1/4 1/16 3/16
c 1/8 5/32 6/32
a 1/32 5/32 21/128

tag = (5/32 + 21/128)/2 = 41/256 = .001010010...
L = .001010000...
R = .001010100...
code = 00101
prefix code = 00101001

W := R - L;
L := L + W C(x);
R := L + W P(x)

Lecture 5 - Statistical Lossless Data Compression 70

Arithmetic Coding Exercise
• P(a) = 1/4, P(b) = 1/2, P(c) = 1/4
• C(a) = 0, C(b) = 1/4, C(c) = 3/4
• bbbb

symbol W L R
0 1

b 1
b
b
b

tag =
L =
R =
code =
prefix code =

W := R - L;
L := L + W C(x);
R := L + W P(x)

Lecture 5 - Statistical Lossless Data Compression 71

Decoding (1)
• Assume the length is known to be 3.
• 0001 which converts to the tag .0001000...

a

b

0

1

.0001000... output a

Lecture 5 - Statistical Lossless Data Compression 72

Decoding (2)
• Assume the length is known to be 3.
• 0001 which converts to the tag .0001000...

a

b

0

1

aa

ab

.0001000... output a

Lecture 5 - Statistical Lossless Data Compression 73

Decoding (3)
• Assume the length is known to be 3.
• 0001 which converts to the tag .0001000...

a

b

0

1

aa

ab

aab.0001000... output b

Lecture 5 - Statistical Lossless Data Compression 74

Arithmetic Decoding Algorithm

• P(a1), P(a2), … , P(am)

• C(ai) = P(a1) + P(a2) + … + P(ai-1)
• Decode b1b2...bk, number of symbols is n.

Initialize L := 0 and R := 1;
t := .b1b2...bk000...
for i = 1 to n do

W := R - L;
find j such that L + W * C(aj) < t < L + W * (C(aj)+P(aj))
output aj;
L := L + W * C(aj);
R := L + W * P(aj);

Lecture 5 - Statistical Lossless Data Compression 75

Decoding Example and Exercise

• P(a) = 1/4, P(b) = 1/2, P(c) = 1/4

• C(a) = 0, C(b) = 1/4, C(c) = 3/4
• 00101 and n = 4

tag = .00101000... = 5/32
W L R output

0 1
1 0 1/4 a
1/4 1/16 3/16 b
1/8 5/32 6/32 c
1/32 5/32 21/128 a

Lecture 5 - Statistical Lossless Data Compression 76

Decoding Issues

• There are at least two ways for the decoder
to know when to stop decoding.
1. Transmit the length of the string
2. Transmit a unique end of string symbol

Lecture 5 - Statistical Lossless Data Compression 77

Practical Arithmetic Coding

• Scaling:
– By scaling we can keep L and R in a reasonable

range of values so that W = R - L does not
underflow.

• Context:
– Different contexts can be handled easily

• Adaptivity:
– Coding can be done adaptively, learning the

distribution of symbols dynamically

• Integer arithmetic coding avoids floating point
altogether.

Lecture 5 - Statistical Lossless Data Compression 78

Scaling

• Scaling:
– By scaling we can keep L and R in a reasonable

range of values so that W = R – L does not
underflow.

– The code can be produced progressively, not at
the end.

– Complicates decoding some.

Lecture 5 - Statistical Lossless Data Compression 79

Scaling Principle
Lower half
If [L,R) is contained in [0,.5) then

L := 2L; R := 2R
output 0, followed by C 1’s
C := 0.

Upper half
If [L,R) is contained in [.5,1) then

L := 2L –1, R := 2R - 1
output 1, followed by C 0’s
C := 0

Middle Half
If [L,R) is contained in [.25,.75) then

L := 2L –.5, R := 2R -.5
C := C + 1.

Lecture 5 - Statistical Lossless Data Compression 80

Example

• baa

a

b

0

1

1/3

2/3

L = 1/3 R = 3/3

C = 0

Lecture 5 - Statistical Lossless Data Compression 81

Example

• baa

a

b

0

1

1/3

2/3

Scale middle half

L = 1/3 R = 3/3
L = 3/9 R = 5/9

C = 0

Lecture 5 - Statistical Lossless Data Compression 82

Example

• baa

a

b

0

1

1/3

2/3

L = 3/9 R = 5/9
L = 3/18 R = 11/18

C = 1

ba

Lecture 5 - Statistical Lossless Data Compression 83

Example

• baa

a

b

0

1

1/3

2/3

L = 3/18 R = 11/18
L = 9/54 R = 17/54

C = 1

ba

baa
Scale lower half

Lecture 5 - Statistical Lossless Data Compression 84

Example

• baa 01

a

b

0

1

1/3

2/3

L = 9/54 R = 17/54
L = 18/54 R = 34/54

C = 0

ba

baa

Lecture 5 - Statistical Lossless Data Compression 85

Example

• baa 011

a

b

0

1

1/3

2/3

L = 9/54 R = 17/54
L = 18/54 R = 34/54

C = 0

ba

baa .0101…

.1000… = tag

.1010…

In end L < ½ < R, choose tag to be 1/2

Lecture 5 - Statistical Lossless Data Compression 86

Decoding with Scaling

• Use the same scaling algorithm as the
encoder
– There is no need to keep track of C because we

know the complete tag.
– Each scaling step will consume a symbol of the

tag

• Lower half: 0x → x (10 × .0x = .x in binary)
• Upper half: 1x → x (10 × .1x - 1= .x)
• Middle half: 10x → 1x or 01x → 0x

(10 × .10x - .1= .1x or 10 × .01x - .1= .0x)

Lecture 5 - Statistical Lossless Data Compression 87

Integer Implementation

• m bit integers
– Represent 0 with 000…0 (m times)
– Represent 1 with 111…1 (m times)

• Probabilities represented by frequencies
– ni is the number of times that symbol ai occurs
– Ci = n1 + n2 + … + ni-1

– N = n1 + n2 + … + nm

L' : L

1
N
CW

L :R

N
CW

L:L'

1LR:W

1i

i

=

−��
�

��

� ⋅+=

��

�
��

� ⋅+=

+−=

+

Coding the i-th symbol using
integer calculations.
Must use scaling!

Lecture 5 - Statistical Lossless Data Compression 88

Context

• Consider 1 symbol context.

• Example: 3 contexts.

prev

next

a b c
a .4 .2 .4
b .1 .8 .1
c .25 .25 .5

Lecture 5 - Statistical Lossless Data Compression 89

Example with Context and Scaling

• acc a b c
a .4 .2 .4
b .1 .8 .1
c .25 .25 .5

prev

next

a

Equally Likely model

ac

1/3

1/3

1/3

0 10 1

a model

c model

.4

.2

.4

.25

.25

.5 acc

0

1/3

0

2/3

2/5

2/3

3/10

5/6

17/30

5/6

first half middle half second half

2/3

2/15

Code = 0101

Lecture 5 - Statistical Lossless Data Compression 90

Arithmetic Coding with Context

• Maintain the probabilities for each context.

• For the first symbol use the equal probability
model

• For each successive symbol use the model
for the previous symbol.

Lecture 5 - Statistical Lossless Data Compression 91

Adaptation

• Simple solution – Equally Probable Model.
– Initially all symbols have frequency 1.
– After symbol x is coded, increment its frequency

by 1
– Use the new model for coding the next symbol

• Example in alphabet a,b,c,d

a a b a a c
a 1 2 3 3 4 5 5
b 1 1 1 2 2 2 2
c 1 1 1 1 1 1 2
d 1 1 1 1 1 1 1

After aabaac is encoded
The probability model is
a 5/10 b 2/10
c 2/10 d 1/10

Lecture 5 - Statistical Lossless Data Compression 92

Zero Frequency Problem

• How do we weight symbols that have not occurred yet.
– Equal weights? Not so good with many symbols
– Escape symbol, but what should its weight be?
– When a new symbol is encountered send the <esc>, followed

by the symbol in the equally probable model. (Both encoded
arithmetically.)

a a b a a c
a 0 1 2 2 3 4 4
b 0 0 0 1 1 1 1
c 0 0 0 0 0 0 1
d 0 0 0 0 0 0 0

<esc> 1 1 1 1 1 1 1

After aabaac is encoded
The probability model is
a 4/7 b 1/7
c 1/7 d 0
<esc> 1/7

Lecture 5 - Statistical Lossless Data Compression 93

Arithmetic vs. Huffman

• Both compress very well. For m symbol grouping.
– Huffman is within 1/m of entropy.
– Arithmetic is within 2/m of entropy.

• Symbols
– Huffman needs a reasonably large set of symbols
– Arithmetic works fine on binary symbols

• Context
– Huffman needs a tree for every context.
– Arithmetic needs a small table of frequencies for every

context.
• Adaptation

– Huffman has an elaborate adaptive algorithm
– Arithmetic has a simple adaptive mechanism.

• Bottom Line – Arithmetic is more flexible than Huffman.

Lecture 5 - Statistical Lossless Data Compression 94

Run-Length Coding

• Lots of 0’s and not too many 1’s.
– Fax of letters
– Graphics

• Simple run-length code
– Input

00000010000000001000000000010001001.....
– Symbols

6 9 10 3 2 ...
– Code the bits as a sequence of integers
– Problem: How long should the integers be?

Lecture 5 - Statistical Lossless Data Compression 95

Golomb Code of Order m
Variable Length Code for Integers

• Let n = qm + r where 0 < r < m.
– Divide m into n to get the quotient q and

remainder r.

• Code for n has two parts:
1. q is coded in unary
2. r is coded as a fixed prefix code
Example: m = 5

0 1 2

3 4

00

0

0

1

1 1

1

code for r

Lecture 5 - Statistical Lossless Data Compression 96

Example

• n = qm + r is represented by:

– where is the fixed prefix code for r

• Example (m = 5):
2 6 9 10 27

010 1001 10111 11000 11111010

r0111

q

ˆ
���
�

r̂

Lecture 5 - Statistical Lossless Data Compression 97

Alternative Explanation
Golomb Code of order 5

1 01 001

00

0

0

1

1 1

1

0001 00001

0

00000

1

0001

00101

010001

01100001

011100001

100000

input output

Variable length to variable length code.

Lecture 5 - Statistical Lossless Data Compression 98

Run Length Example: m = 5

00000010000000001000000000010001001.....
1
00000010000000001000000000010001001.....
001
00000010000000001000000000010001001.....
1
00000010000000001000000000010001001.....
0111

In this example we coded 17 bit in only 9 bits.

Lecture 5 - Statistical Lossless Data Compression 99

Choosing m

• Suppose that 0 has the probability p and 1
has probability 1-p.

• The probability of 0n1 is pn(1-p). The Golomb
code of order

is optimal.
• Example: p = 127/128.

��
�

��
�= p log

1-m
2

89(127/128) log
1-m

2
=

��
�

��
�=

Lecture 5 - Statistical Lossless Data Compression 100

Golomb Coding Exercise

• Construct the Golomb Code of order 9. Show
it as a prefix code (a binary tree).

Lecture 5 - Statistical Lossless Data Compression 101

PPM

• Prediction with Partial Matching
– Cleary and Witten (1984)

• State of the art arithmetic coder
– Arbitrary order context
– The context chosen is one that does a good

prediction given the past
– Adaptive

• Example
– Context “the” does not predict the next symbol “a”

well. Move to the context “he” which does.

Lecture 5 - Statistical Lossless Data Compression 102

Summary

• Statistical codes are very common as parts of
image, video, music, and speech coder.

• Arithmetic and Huffman are most popular.

• Special statistical codes like Golomb codes
are used in some situations.

