CSEP 521 Applied Algorithms Spring 2005

Statistical Lossless Data Compression

Outline for Tonight

- Basic Concepts in Data Compression
- Entropy
- Prefix codes
- Huffman Coding
- Arithmetic Coding
- Run Length Coding (Golomb Code)

Reading

- Huffman Coding: CLRS 385-392
- Other sources can be found:
 - <u>Data Compression: The Complete Reference, 3rd</u>
 <u>Edition</u> by David Salomon
 - Introduction to Data Compression by Khalid Sayood.

Basic Data Compression Concepts

- Lossless compression $x = \hat{x}$
 - Also called entropy coding, reversible coding.
- Lossy compression $x \neq \hat{x}$
 - Also called irreversible coding.
- Compression ratio = |x|/|y|- |x| is number of bits in x.

Why Compress

- Conserve storage space
- Reduce time for transmission
 - Faster to encode, send, then decode than to send the original
- Progressive transmission
 - Some compression techniques allow us to send the most important bits first so we can get a low resolution version of some data before getting the high fidelity version
- Reduce computation
 - Use less data to achieve an approximate answer

Braille

• System to read text by feeling raised dots on paper (or on electronic displays). Invented in 1820s by Louis Braille, a French blind man.

Lecture 5 - Statistical Lossless Data Compression

Braille Example

Clear text:

Call me Ishmael. Some years ago -- never mind how long precisely -- having \\ little or no money in my purse, and nothing particular to interest me on shore, \\ I thought I would sail about a little and see the watery part of the world. (238 characters)

Grade 2 Braille:

Lossless Compression

- Data is not lost the original is really needed.
 - text compression
 - compression of computer binary files
- Compression ratio typically no better than 4:1 for lossless compression on many kinds of files.
- Statistical Techniques
 - Huffman coding
 - Arithmetic coding
 - Golomb coding
- Dictionary techniques
 - LZW, LZ77
 - Sequitur
 - Burrows-Wheeler Method
- Standards Morse code, Braille, Unix compress, gzip, zip, bzip, GIF, JBIG, Lossless JPEG

Lossy Compression

- Data is lost, but not too much.
 - audio
 - video
 - still images, medical images, photographs
- Compression ratios of 10:1 often yield quite high fidelity results.
- Major techniques include
 - Vector Quantization
 - Wavelets
 - Block transforms
 - Standards JPEG, JEPG2000, MPEG, H.264

Why is Data Compression Possible

- Most data from nature has redundancy
 - There is more data than the actual information contained in the data.
 - Squeezing out the excess data amounts to compression.
 - However, unsqueezing is necessary to be able to figure out what the data means.
- Information theory is needed to understand the limits of compression and give clues on how to compress well.

What is Information

- Analog data
 - Also called continuous data
 - Represented by real numbers (or complex numbers)
- Digital data
 - Finite set of symbols $\{a_1, a_2, \dots, a_m\}$
 - All data represented as sequences (strings) in the symbol set.
 - Example: {a,b,c,d,r} abracadabra
 - Digital data can be an approximation to analog data

Symbols

- Roman alphabet plus punctuation
- ASCII 256 symbols
- Binary {0,1}
 - 0 and 1 are called bits
 - All digital information can be represented efficiently in binary
 - {a,b,c,d} fixed length representation

symbol	а	b	С	d
binary	00	01	10	11

- 2 bits per symbol

Information Theory

- Developed by Shannon in the 1940's and 50's
- Attempts to explain the limits of communication using probability theory.
- Example: Suppose English text is being sent
 - It is much more likely to receive an "e" than a "z".
 - In some sense "z" has more information than "e".

First-order Information

- Suppose we are given symbols $\{a_1, a_2, \dots, a_m\}$.
- P(a_i) = probability of symbol a_i occurring in the absence of any other information.

 $- P(a_1) + P(a_2) + ... + P(a_m) = 1$

inf(a_i) = log₂(1/P(a_i)) bits is the information of a_i in bits.

Lecture 5 - Statistical Lossless Data Compression

Example

- {a, b, c} with P(a) = 1/8, P(b) = 1/4, P(c) = 5/8
 - $-\inf(a) = \log_2(8) = 3$
 - $-\inf(b) = \log_2(4) = 2$
 - $-\inf(c) = \log_2(8/5) = .678$
- Receiving an "a" has more information than receiving a "b" or "c".

First Order Entropy

• The first order entropy is defined for a probability distribution over symbols {*a*₁, *a*₂, ..., *a_m*}.

$$H = \sum_{i=1}^{m} P(a_i) \log_2(\frac{1}{P(a_i)})$$

- *H* is the average number of bits required to code up a symbol, given all we know is the probability distribution of the symbols.
- *H* is the Shannon lower bound on the average number of bits to code a symbol in this "source model".
- Stronger models of entropy include context.

Entropy Examples

- {a, b, c} with a 1/8, b 1/4, c 5/8.
 H = 1/8 *3 + 1/4 *2 + 5/8* .678 = 1.3 bits/symbol
- {a, b, c} with a 1/3, b 1/3, c 1/3. (worst case)
 H = 3* (1/3)*log₂(3) = 1.6 bits/symbol
- Note that a standard code takes 2 bits per symbol

symbol	а	b	С
binary code	00	01	10

An Extreme Case

{a, b, c} with a 1, b 0, c 0
 H = ?

Entropy Curve

 Suppose we have two symbols with probabilities x and 1-x, respectively.

Lecture 5 - Statistical Lossless Data Compression

A Simple Prefix Code

- {a, b, c} with a 1/8, b 1/4, c 5/8.
- A prefix code is defined by a binary tree
- Prefix code property
 - no output is a prefix of another

ccabccbccc 1 1 00 01 1 1 01 1 1 1

repeat start at root of tree repeat if read bit = 1 then go right else go left until node is a leaf report leaf until end of the code

11000111100

<u>1</u>1000111100

<u>1</u>1000111100

С

1<u>1</u>000111100

С

1<u>1</u>000111100

CC

11<u>0</u>00111100

CC

110<u>0</u>0111100

CC

110<u>0</u>0111100

сса

1100<u>0</u>111100

сса

11000<u>1</u>11100

сса

11000<u>1</u>11100

ccab

11000111100

ccabccca

How Good is the Code

bit rate = $(1/8)^2 + (1/4)^2 + (5/8)^1 = 11/8 = 1.375$ bps Entropy = 1.3 bps Standard code = 2 bps

(bps = bits per symbol)

Design a Prefix Code 1

- abracadabra
- Design a prefix code for the 5 symbols
 {a,b,r,c,d} which compresses this string the
 most.

Design a Prefix Code 2

- Suppose we have n symbols each with probability 1/n. Design a prefix code with minimum average bit rate.
- Consider n = 2,3,4,5,6 first.

Huffman Coding

- Huffman (1951)
- Uses frequencies of symbols in a string to build a variable rate prefix code.
 - Each symbol is mapped to a binary string.
 - More frequent symbols have shorter codes.
 - No code is a prefix of another.
- Example:

Lecture 5 - Statistical Lossless Data Compression
Variable Rate Code Example

- Example: a 0, b 100, c 101, d 11
- Coding:
 - aabddcaa = 16 bits
 - 0 0 100 11 11 101 0 0= 14 bits
- Prefix code ensures unique decodability.

Cost of a Huffman Tree

- Let p₁, p₂, ..., p_m be the probabilities for the symbols a₁, a₂, ..., a_m, respectively.
- Define the cost of the Huffman tree T to be

$$C(T) = \sum_{i=1}^{m} p_i r_i$$

where r_i is the length of the path from the root to a_i .

C(T) is the expected length of the code of a symbol coded by the tree T. C(T) is the average bit rate (ABR) of the code.

Example of Cost

• Example: a 1/2, b 1/8, c 1/8, d 1/4

$$C(T) = 1 \times 1/2 + 3 \times 1/8 + 3 \times 1/8 + 2 \times 1/4 = 1.75$$

a b c d

Huffman Tree

- Input: Probabilities p₁, p₂, ..., p_m for symbols a₁, a₂, ..., a_m, respectively.
- Output: A tree that minimizes the average number of bits (bit rate) to code a symbol. That is, minimizes

$$HC(T) = \sum_{i=1}^{m} p_i r_i$$
 bit rate

where r_i is the length of the path from the root to a_i . This is the Huffman tree or Huffman code

Optimality Principle 1

- In a Huffman tree a lowest probability symbol has maximum distance from the root.
 - If not exchanging a lowest probability symbol with one at maximum distance will lower the cost.

C(T') = C(T) + hp - hq + kq - kp = C(T) - (h-k)(q-p) < C(T)

Optimality Principle 2

- The second lowest probability is a sibling of the the smallest in some Huffman tree.
 - If not, we can move it there not raising the cost.

 $C(T') = C(T) + hq - hr + kr - kq = C(T) - (h-k)(r-q) \le C(T)$

Optimality Principle 3

- Assuming we have a Huffman tree T whose two lowest probability symbols are siblings at maximum depth, they can be replaced by a new symbol whose probability is the sum of their probabilities.
 - The resulting tree is optimal for the new symbol set.

Optimality Principle 3 (cont')

• If T' were not optimal then we could find a lower cost tree T''. This will lead to a lower cost tree T''' for the original alphabet.

C(T'') = C(T') + p + q < C(T') + p + q = C(T) which is a contradiction

Recursive Huffman Tree Algorithm

- 1. If there is just one symbol, a tree with one node is optimal. Otherwise
- 2. Find the two lowest probability symbols with probabilities p and q respectively.
- 3. Replace these with a new symbol with probability p + q.
- 4. Solve the problem recursively for new symbols.
- 5. Replace the leaf with the new symbol with an internal node with two children with the old symbols.

Iterative Huffman Tree Algorithm

```
form a node for each symbol a<sub>i</sub> with weight p<sub>i</sub>;
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do
  min1 := delete-min;
  min2 := delete-min;
  create a new node n;
  n.weight := min1.weight + min2.weight;
  n.left := min1;
  n.right := min2;
  insert(n)
return the last node in the priority queue.
```

Example of Huffman Tree Algorithm (1)

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

Example of Huffman Tree Algorithm (2)

Example of Huffman Tree Algorithm (3)

Example of Huffman Tree Algorithm (4)

Lecture 5 - Statistical Lossless Data Compression

Huffman Code

Optimal Huffman Code vs. Entropy

P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

Entropy

 $H = -(.4 \times \log_2(.4) + .1 \times \log_2(.1) + .3 \times \log_2(.3) + .1 \times \log_2(.1) + .1 \times \log_2(.1))$ = 2.05 bits per symbol

Huffman Code

In Class Exercise

- P(a) = 1/2, P(b) = 1/4, P(c) = 1/8, P(d) = 1/16, P(e) = 1/16
- Compute the Huffman tree and its bit rate.
- Compute the Entropy
- Compare
- Hint: For the tree change probabilities to be integers: a:8, b:4, c:2, d:1, e:1. Normalize at the end.

Quality of the Huffman Code

- The Huffman code is within one bit of the entropy lower bound. $H \le HC \le H+1$
- Huffman code does not work well with a two symbol alphabet.
 - Example: P(0) = 1/100, P(1) = 99/100

- HC = 1 bits/symbol

- $H = -((1/100)*\log_2(1/100) + (99/100)\log_2(99/100))$ = .08 bits/symbol
- If probabilities are powers of two then HC = H.

Extending the Alphabet

- Assuming independence P(ab) = P(a)P(b), so we can lump symbols together.
- Example: P(0) = 1/100, P(1) = 99/100
 - -P(00) = 1/10000, P(01) = P(10) = 99/10000,P(11) = 9801/10000.

HC = 1.03 bits/symbol (2 bit symbol) = .515 bits/bit

Still not that close to H = .08 bits/bit

Quality of Extended Alphabet

• Suppose we extend the alphabet to symbols of length k then

$H \leq HC \leq H + 1/k$

- Pros and Cons of Extending the alphabet
 - + Better compression
 - 2^k symbols
 - padding needed to make the length of the input divisible by k

Context Modeling

- Data does not usually come from a 1st order statistical source.
 - English text: "u" almost always follows "q"
 - Images: a pixel next to a blue pixel is likely to be blue
- Practical coding: Divide the data by contexts and code the data in each context as its own 1st order source.

Huffman Codes with Context

- Suppose we add a one symbol context. That is in compressing a string $x_1x_2...x_n$ we want to take into account x_{k-1} when encoding x_k .
 - New model, so entropy based on just independent probabilities of the symbols doesn't hold. The new entropy model (2nd order entropy) has for each symbol a probability for each other symbol following it.

– Example: {a,b,c}

	next				
		а	b	С	
prev	а	.4	.2	.4	
	b	.1	.9	0	
	С	.1	.1	.8	

Lecture 5 - Statistical Lossless Data Compression

Complexity of Huffman Code Design

- Time to design Huffman Code is O(n log n) where n is the number of symbols.
 - Each step consists of a constant number of priority queue operations (2 deletemin's and 1 insert)

Approaches to Huffman Codes

- 1. Frequencies computed for each input
 - Must transmit the Huffman code or frequencies as well as the compressed input
 - Requires two passes
- 2. Fixed Huffman tree designed from training data
 - Do not have to transmit the Huffman tree because it is known to the decoder.
 - H.263 video coder
- 3. Adaptive Huffman code
 - One pass
 - Huffman tree changes as frequencies change

Arithmetic Coding

- Basic idea in arithmetic coding:
 - represent each string x of length n by a unique interval [L,R) in [0,1).
 - The width R-L of the interval [L,R) represents the probability of x occurring.
 - The interval [L,R) can itself be represented by any number, called a tag, within the half open interval.
 - The k significant bits of the tag $.t_1t_2t_3...$ is the code of x. That is, $..t_1t_2t_3...t_k000...$ is in the interval [L,R).
 - It turns out that $k \approx \log_2(1/(R-L))$.

Example of Arithmetic Coding (1)

Some Tags are Better than Others

Example of Codes

Code Generation from Tag

- If binary tag is $.t_1t_2t_3... = (L+R)/2$ in [L,R) then we want to choose k to form the code $t_1t_2...t_k$.
- Short code:
 - choose k to be as small as possible so that $L \leq .t_1t_2...t_k000... < R$.
- Guaranteed code:
 - choose $k = \lceil \log_2 (1/(R-L)) \rceil + 1$
 - $-L \leq .t_1t_2...t_kb_1b_2b_3... < R$ for any bits $b_1b_2b_3...$
 - for fixed length strings provides a good prefix code.
 - example: [.000000000..., .000010010...), tag = .000001001... Short code: 0 Guaranteed code: 000001

Guaranteed Code Example

Arithmetic Coding Algorithm

- $P(a_1), P(a_2), ..., P(a_m)$
- $C(a_i) = P(a_1) + P(a_2) + ... + P(a_{i-1})$
- Encode $x_1 x_2 \dots x_n$

Initialize L := 0 and R:= 1; for i = 1 to n do W := R - L;L := L + W * C(x_i); R := L + W * P(x_i); t := (L+R)/2; choose code for the tag

Arithmetic Coding Example

- P(a) = 1/4, P(b) = 1/2, P(c) = 1/4
- C(a) = 0, C(b) = 1/4, C(c) = 3/4

• abca

	symbol	W	L	R
			0	1
W := R - L;	а	1	0	1/4
	b	1/4	1/16	3/16
L := L + VV C(X),	С	1/8	5/32	6/32
R := L + VV P(X)	а	1/32	5/32	21/128

tag = (5/32 + 21/128)/2 = 41/256 = .001010010...L = .001010000... R = .001010100... code = 00101 prefix code = 00101001

Arithmetic Coding Exercise

•
$$C(a) = 0, C(b) = 1/4, C(c) = 3/4$$

• bbbb

$$symbol \quad W \quad L \quad R \\ 0 \quad 1$$

$$W := R - L; \qquad b \quad 1 \\ b \\ L := L + W C(x); \qquad b \\ R := L + W P(x) \qquad b$$

$$tag = L = \\ L = \\ R = \\ code = \\ prefix \ code =$$

Decoding (1)

- Assume the length is known to be 3.
- 0001 which converts to the tag .0001000...

Decoding (2)

- Assume the length is known to be 3.
- 0001 which converts to the tag .0001000...

Decoding (3)

- Assume the length is known to be 3.
- 0001 which converts to the tag .0001000...

Arithmetic Decoding Algorithm

- $P(a_1), P(a_2), ..., P(a_m)$
- $C(a_i) = P(a_1) + P(a_2) + ... + P(a_{i-1})$
- Decode $b_1b_2...b_k$, number of symbols is n.

```
\begin{array}{l} \mbox{Initialize } L := 0 \mbox{ and } R := 1; \\ t := .b_1 b_2 ... b_k 000... \\ \mbox{for } i = 1 \mbox{ to } n \mbox{ do} \\ W := R - L; \\ \mbox{find } j \mbox{ such that } L + W \mbox{ } C(a_j) \le t < L + W \mbox{ } (C(a_j) + P(a_j)) \\ \mbox{ output } a_j; \\ L := L + W \mbox{ } C(a_j); \\ R := L + W \mbox{ } P(a_j); \end{array}
```

Decoding Example and Exercise

- P(a) = 1/4, P(b) = 1/2, P(c) = 1/4
- C(a) = 0, C(b) = 1/4, C(c) = 3/4
- 00101 and n = 4

tag =	.00101	000 = 5/32	
W	L	R	output
	0	1	
1	0	1/4	а
1/4	1/16	3/16	b
1/8	5/32	6/32	С
1/32	5/32	21/128	а

Decoding Issues

- There are at least two ways for the decoder to know when to stop decoding.
 - 1. Transmit the length of the string
 - 2. Transmit a unique end of string symbol

Practical Arithmetic Coding

- Scaling:
 - By scaling we can keep L and R in a reasonable range of values so that W = R - L does not underflow.
- Context:
 - Different contexts can be handled easily
- Adaptivity:
 - Coding can be done adaptively, learning the distribution of symbols dynamically
- Integer arithmetic coding avoids floating point altogether.

Scaling

- Scaling:
 - By scaling we can keep L and R in a reasonable range of values so that W = R – L does not underflow.
 - The code can be produced progressively, not at the end.
 - Complicates decoding some.

Scaling Principle

ba<u>a</u>

Decoding with Scaling

- Use the same scaling algorithm as the encoder
 - There is no need to keep track of C because we know the complete tag.
 - Each scaling step will consume a symbol of the tag
 - Lower half: $0x \rightarrow x$ ($10 \times .0x = .x$ in binary)
 - Upper half: $1x \rightarrow x$ ($10 \times .1x 1 = .x$)
 - Middle half: $10x \rightarrow 1x \text{ or } 01x \rightarrow 0x$ ($10 \times .10x - .1 = .1x \text{ or } 10 \times .01x - .1 = .0x$)

Integer Implementation

- m bit integers
 - Represent 0 with 000...0 (m times)
 - Represent 1 with 111...1 (m times)

W := R - I + 1

L := L'

- Probabilities represented by frequencies
 - n_i is the number of times that symbol a_i occurs

$$- C_i = n_1 + n_2 + \dots + n_{i-1}$$

$$- N = n_1 + n_2 + \dots + n_m$$

$$L' := L + \left\lfloor \frac{W \cdot C_{i}}{N} \right\rfloor$$
$$R := L + \left\lfloor \frac{W \cdot C_{i+1}}{N} \right\rfloor - C_{i+1}$$

Coding the i-th symbol using integer calculations. Must use scaling!

Lecture 5 - Statistical Lossless Data Compression

Context

- Consider 1 symbol context.
- Example: 3 contexts.

Example with Context and Scaling

Arithmetic Coding with Context

- Maintain the probabilities for each context.
- For the first symbol use the equal probability model
- For each successive symbol use the model for the previous symbol.

Adaptation

- Simple solution Equally Probable Model.
 - Initially all symbols have frequency 1.
 - After symbol x is coded, increment its frequency by 1
 - Use the new model for coding the next symbol
- Example in alphabet a,b,c,d

		а	а	b	а	а	С	After aphaac is encoded
а	1	2	3	3	4	5	5	The probability model is
b	1	1	1	2	2	2	2	25/10 h $2/10$
С	1	1	1	1	1	1	2	$a \frac{3}{10} \frac{52}{10} \frac{1}{10}$
d	1	1	1	1	1	1	1	C 2/10 U 1/10

Zero Frequency Problem

- How do we weight symbols that have not occurred yet.
 - Equal weights? Not so good with many symbols
 - Escape symbol, but what should its weight be?
 - When a new symbol is encountered send the <esc>, followed by the symbol in the equally probable model. (Both encoded arithmetically.)

aabaac After aabaac is encoded 0 1 2 2 3 4 4 a The probability model is 0 0 0 1 1 1 1 h a 4/7 b 1/7 0 0 0 0 0 0 1 С c 1/7 d 0 0 0 0 0 0 0 d 0 <esc> 1/7 < esc > 11 1

Arithmetic vs. Huffman

- Both compress very well. For m symbol grouping.
 - Huffman is within 1/m of entropy.
 - Arithmetic is within 2/m of entropy.
- Symbols
 - Huffman needs a reasonably large set of symbols
 - Arithmetic works fine on binary symbols
- Context
 - Huffman needs a tree for every context.
 - Arithmetic needs a small table of frequencies for every context.
- Adaptation
 - Huffman has an elaborate adaptive algorithm
 - Arithmetic has a simple adaptive mechanism.
- Bottom Line Arithmetic is more flexible than Huffman.

Run-Length Coding

- Lots of 0's and not too many 1's.
 - Fax of letters
 - Graphics
- Simple run-length code

 - Symbols6 9 10 3 2 ...
 - Code the bits as a sequence of integers
 - Problem: How long should the integers be?

Golomb Code of Order m Variable Length Code for Integers

• Let n = qm + r where $0 \le r < m$.

- Divide m into n to get the quotient q and remainder r.
- Code for n has two parts:
 - 1. q is coded in unary
 - 2. r is coded as a fixed prefix code

Example: m = 5 0 1 0 1 1 2 3 4code for r

Lecture 5 - Statistical Lossless Data Compression

- n = qm + r is represented by: $11 \cdots 10\hat{r}$
 - where \hat{r} is the fixed prefix code for r
- Example (m = 5):

26910270101001101111100011111010

Alternative Explanation Golomb Code of order 5

input	output
00000	1
00001	0111
0001	0110
001	010
01	001
1	000

Variable length to variable length code.

Run Length Example: m = 5

In this example we coded 17 bit in only 9 bits.

Choosing m

- Suppose that 0 has the probability p and 1 has probability 1-p.
- The probability of 0ⁿ1 is pⁿ(1-p). The Golomb code of order

optimal.
$$m = \int \frac{1}{\log_2 p}$$

• Example: p = 127/128.

is

$$m = \left[\frac{-1}{\log_2} (127/128)\right] = 89$$

Golomb Coding Exercise

• Construct the Golomb Code of order 9. Show it as a prefix code (a binary tree).

PPM

- Prediction with Partial Matching
 - Cleary and Witten (1984)
- State of the art arithmetic coder
 - Arbitrary order context
 - The context chosen is one that does a good prediction given the past
 - Adaptive
- Example
 - Context "the" does not predict the next symbol "a" well. Move to the context "he" which does.

Summary

- Statistical codes are very common as parts of image, video, music, and speech coder.
- Arithmetic and Huffman are most popular.
- Special statistical codes like Golomb codes are used in some situations.