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Reading

• Chapter 26
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Outline:

• Properties of flow  

• Augmenting paths
• Max-flow min-cut theorem

• Ford-Fulkerson method
• Edmonds-Karp method

• Applications, bipartite matching and more.
• Variants: min cost max flow
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Maximum Flow

• Input: a directed graph (network) G 
– each edge (v,w) has associated capacity c(v,w)
– a specified source node s and target node t

• Optimization Problem: What is the maximum flow 
you can route from s to t while respecting the capacity 
constraint of each edge?
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• Edge condition: 0 ≤ f(v,w) ≤ c(v,w) : the flow through an edge cannot 
exceed the capacity of an edge.

• Vertex condition: for all v except s,t :  ΣΣΣΣ u f(u,v) = Σ Σ Σ Σ w f(v,w)
the total flow entering a vertex is equal to total flow exiting this vertex.

• total flow leaving s = total flow entering t.

Properties of Flow: 
f(v,w) - flow on edge (v,w)
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Notation on edges 
f(v,w)/c(v,w)
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maximum 
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Cut
• Cut - a set of edges that separates s from t.
• A cut is defined by a set of vertices, S. This set 

includes s and maybe additional vertices reachable 
from s. The sink t is not in S.

• The cut is the set of edges (u,v) such that u∈S and 
v∉S, or v∈S and u∉S. 

• out(S) – edges in the cut directed from S to V-S
• in(S) – edges in the cut directed from V-S to S

s tS V-S
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s t

Cut - example
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Value of  a Flow: 

• A flow function f is an assignment of a real 
number f(e) to each edge e such that the 
edge and vertex conditions hold for all the 
vertices/edges.

• Definition: The value of the flow is the flow net 
flow from s
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Flow

• Theorem: The net flow into t equals the net 
flow out of s.
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Capacity of a cut 

For a cut S, the capacity of S  is

Claim: For every flow function f with total flow F, and 
every cut S, F ≤ c(S).

Proof: We know that 

By the edge condition, 0 ≤ f(e) ≤ c(e), for all e∈E. Thus,
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Max-flow Min-Cut Theorem

The value of a maximum flow in a 
network is equal to the minimum 
capacity of a cut.

Proof:
max flow ≤ min cut: follows from the previous lemma. 
max flow ≥ min cut: we will see an algorithm that 

produces a flow in which some cut is saturated.
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An augmenting path with respect to a 
given flow f:

A directed path from s to t which consists of edges from G, but not 
necessarily in the original direction.

forward edge: (w,u) in same direction as G and f(w,u) < c(w,u).  
(c(w,u)-f(w,u) is called slack)  à has room for more flow.

backward edge: (u,v) in opposite direction in G (i.e., (v,u) in E) and 
f(v,u) > 0 à can ‘take back’ flow from such an edge.
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Using an augmenting path to increase flow

• Push flow forward on forward edges, deduct flow from 
backward edges. 

s t
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•The amount of flow we can push:
slacks along the forward edges on the path        
flow along the backward edges on the path

db
p = s-a-c-b-d-t

{minimum
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The Ford-Fulkerson Method

• Initialize flow on all edges to 0.

• While there is an augmenting path, improve 
the flow along this path.

To implement F&F, we need a way to detect 
augmenting paths.

We build a residual graph with respect to the current 
flow.
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Residual Graph w.r.t. flow f

• Given f, we build the residual graph: a 
network flow R=(V,E’)

• An edge (v,w)∈E’ if  either
– (v,w) is a forward edge, and then its capacity in R 

is c(v,w)-f(v,w)
– or (v,w) is a backward edge (that is, (w,v) is an 

edge with positive flow in G) , and then its capacity 
in R is f(w,v).

• An augmenting path is a regular directed path 
from s to t in R.



Lecture 3 - Maximum  Flow 16

Ford-Fulkerson Method (G,s,t)

• Initialize flow on all edges to 0.

• While there is a path p from s to t in residual 
network R
– δ = minimum capacity along p in R
– augment δ units of flow along p and update R.
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Ford-Fulkerson Method. Example (1)

Example taken from the book Graph Algorithms by 
Shimon Even

The given network, 
with initial all-0 flow.

δδδδ =4
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First augmenting path: s → c → d → a → b → t

Remark: in the first iteration R=G.
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Ford-Fulkerson Method. Example (2)

The network after 
applying the first 
augmenting path:

The residual 
network:

(complete in class)
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Ford-Fulkerson Method. Example (3)

δδδδ =3

Second augmenting path: tdcbas →→→→→
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The flow after 
applying 2nd

augmenting path: 

Ford-Fulkerson Method. Example (4)
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Ford-Fulkerson Method. Example (5)

Third augmenting path: tb as →→→
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Ford-Fulkerson Method. Example (6)
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applying 3rd
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Ford-Fulkerson Method. Example (7)

Forth augmenting path: tda s →←→
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Ford-Fulkerson Method. Example (8)

Final flow:

{s,a,b} is a 
saturated min-
cut
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There are no paths 
connecting s and t in 
the residual network
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Proof of Ford-Fulkerson Method.

Claim: The flow after each iteration is legal

Proof: The initial assignment (of f(e)=0 for all e) is clearly 
legal.

Let p be an augmenting path. Let d be the minimum 
capacity along p in R.

Vertex condition: For each v∉p, the flow that passes v 
does not change. For each  v∈p (v ≠ s,t), exactly one 
edge of p enters v and exactly one edge of p goes out 
of v. In each of these edges the flow increase by δδδδ. 
The value of the flow in and out of v remains 0.

Egde condition: preserved by the selection of δδδδ
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Proof of Ford-Fulkerson Method.

• Already saw that if an augmenting path exists, then 
the flow is not maximum (can be improved).

• Suppose f admits no augmenting path. We need to 
show that f is maximum.

• We use the min-cut max-flow theorem: we will see 
that when no augmenting path exists, some cut is 
saturated.

Theorem: A flow f is maximum if and only if it admits no 
augmenting path

s tS V-S
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Proof of Ford-Fulkerson Method.

• Let A be the vertices such that for each v∈A, 
there is an augmenting path from s to v.   

• The set A defines a cut. 

• Claim: for all edges in cut, f(v,w)=c(v,w).
• Proof: if f(v,w)< c(v,w) then w should join A.
• Therefore: The value of the flow is the 

capacity of the cut defined by A à (min cut 
theorem) f is maximum.
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Running time of Ford-Fulkerson

s t

M

M
M

M

1

Each iteration (building R and detecting an augmenting 
path) takes O(|E|)  (how?).

How many iterations are there?

The time complexity of F&F is O(|E|f*), when f* is the 
value of the maximum flow.

Could be f* when f* is 
the value of the 
maximum flow.
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Edmonds-Karp Algorithm:

• Use F&F method. Search for augmenting 
path using breadth-first search, i.e., the 
augmenting path is always a shortest path
from s to t in the residual network.

• Theorem: This way, the number of 
augmentations is O(|V||E|).

• The resulting complexity: O(|V||E|2)
– each iteration takes O(|E|)
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Greedy augmenting path Selection:

• Use F&F method. In each iteration select an 
augmenting path with the maximal δ value.

• The time complexity of this algorithm is
O(|E|log2 f*).
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Some applications of max-flow
and max-flow min-cut theorem

• Bipartite matching

• Network connectivity
• Video on demand

• Many many more…
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Matching

• Definition: a matching in a graph G is a 
subset M of E such that the degree of each 
vertex in G’=(V’,M) is 0 or 1. 

• Example: M={(a,d),(b,e)} is a matching.

S={(a,d), (c,d)} is not a matching.

b

e
d

c
a
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Bipartite Matching
• Example 1: In a party there are n1 boys and n2 girls. 
Each boy tells the DJ the girls with whom he is ready 
to dance with. Each girl tells the DJ the boys with 
whom she is ready to dance with.
- DJ’s goal: As many dancing pairs as possible.

- Note: This has nothing to do with the stable pairing problem. No
preferences. Some participants can remain lonely (even if n1=n2).

• Example 2 (production planning) : n2 identical 
servers need to serve n1 clients. Each client specifies 
the subset of servers that can serve him.
- Goal: Serve as many clients as possible.
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Bipartite Matching

Graph representation: G=(V,E).
V= V1 ∪ V2. 
In 1st problem (u,v) ∈E, if u is ready to dance with 

v and vice versa.
In 2nd problem (u,v) ∈E, if u can be served by v. 

This is a bipartite!

We are looking for the largest possible matching.
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Bipartite Matching
• Input: a bipartite graph G=(V1 ∪ V2, E)
• Goal: A matching of maximal size.

A matching A maximal
matching –
can not be 
extended.

A maximum
matching –
largest maximal.

Our goal !
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Bipartite Matching

Special cases:

•A perfect matching: |M|=|V1|=|V2|

(An ideal instance and solution for 
problem 1)

•A full matching for V1: |M|=|V1|≤|V2|

(what we need in problem 2)

�� ��

Maximum matching in a bipartite can be found using 
flow algorithms.
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Using Flow for Bipartite Matching

Input: A bipartite G=(V1 ∪ V2, E)

Output : Maximum matching M⊆E. 

Algorithm:

1. Build a network flow N=(V’,E’)

V’ = V1 ∪ V2 ∪ {s,t}

E’ = E ∪ {(s→u)| ∀u∈V1} ∪ {(v→t)| ∀v∈V2}

All e ∈ E’ have the capacity c(e)=1.

2. Find a maximum flow in N.

3. M = saturated edges in the cut defined by {s,V1}.

Vertices of E 
are directed 
from V1 to V2
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Using Flow for Bipartite Matching 
(Example)

V1 V2

V’ = V1 ∪ V2 ∪ {s,t}

E’ = E ∪ {(s→u)| ∀u∈V1}∪ {(v→t)| ∀v∈V2}

For all e ∈ E’, c(e)=1.

V1 V2

ts

N=(V’,E’)G=(V1 ∪ V2, E)
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Using Flow for Bipartite Matching (proof)

Theorem: G includes a matching of size k ⇔ N has 
flow with value k.

Proof: 
1. (�) Given a matching of size k, define the flow 
f(u,v)= 1 for all (u,v) in M, all all (s,u) and (v,t) such 
that u or v are matched. For all the other edges f=0.

• F is legal (proof in class)

• The value of f is k (consider the cut {s} ∪ V1).

2. (⇐) Similar. Based on the capacities of the edges 
(s,u), (v,t), and the fact that f is legal.
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Network Connectivity

• What is the minimum number of links in the 
network such that if that many links go down, 
it is possible for nodes s and t to become 
disconnected?

• Solution using flow:
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Video on Demand

• m storage devices (e.g., disks), The i-th disk 
is capable of supporting bi simultaneous 
streams.

• k movies, one copy of each on some of the 
disks (this assignment is given as input).

• Given set of R movie requests, (rj requests to 
movie j) how would you assign the requests 
to disks so that no disk is assigned more than 
bi requests and the maximum number of 
requests is served?
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Video on Demand

movies disks

ts

A copy of movie j on 
disk i. c(e)= �

c(e)= rj c(e)= bi
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Other network flow problems:

1. Lower bounds on flow. 
– For each (v,w):   0 ≤ lb(v,w) ≤ f(v,w) ≤ c(v,w)
– Not always possible:

s v t(2,4)(5,10)

2. Minimum flow
• Want to send minimum amount of flow from 

source to sink, while satisfying certain lower and 
upper bounds on flow on each edge.



Lecture 3 - Maximum  Flow 44

Other network flow problems:

3. Min-cost max-flow 
Input: a graph (network) G where each edge (v,w) 

has associated capacity c(v,w), and a cost
cost(v,w). 

Goal: Find a maximum flow of minimum cost.

The cost of a flow :

Σ f(v,w)>0 cost (v,w)f(v,w)

Out of all the maximum flows, which has minimal cost?
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Weighted Assignment - Min-cost max-
flow  example

Production planning : n2 servers need to serve n1 clients. Each 
client specifies for each server how much he is ready to pay in order 
to be served by this server (this is given by revenue(client, server)).
• Goal: Maximize the profit.

c(e)= 1,
cost(e)= -revenue(u,v)

c(e)= 1

cost(e)=0

ts

c(e)= 1

cost(e)=0


