
CSEP 521
Applied Algorithms

Spring 2005

Maximum Flow

Lecture 3 - Maximum Flow 2

Reading

• Chapter 26

Lecture 3 - Maximum Flow 3

Outline:

• Properties of flow

• Augmenting paths
• Max-flow min-cut theorem

• Ford-Fulkerson method
• Edmonds-Karp method

• Applications, bipartite matching and more.
• Variants: min cost max flow

Lecture 3 - Maximum Flow 4

Maximum Flow

• Input: a directed graph (network) G
– each edge (v,w) has associated capacity c(v,w)
– a specified source node s and target node t

• Optimization Problem: What is the maximum flow
you can route from s to t while respecting the capacity
constraint of each edge?

s t7

5

6

3

4

5

4

1 4
6

3

7

Lecture 3 - Maximum Flow 5

• Edge condition: 0 ≤ f(v,w) ≤ c(v,w) : the flow through an edge cannot
exceed the capacity of an edge.

• Vertex condition: for all v except s,t : ΣΣΣΣ u f(u,v) = Σ Σ Σ Σ w f(v,w)
the total flow entering a vertex is equal to total flow exiting this vertex.

• total flow leaving s = total flow entering t.

Properties of Flow:
f(v,w) - flow on edge (v,w)

4/5

s t3/7

5/5

4/6

2/3

3/4

2/4

1/1
3/4

2/6

3/3

7/7

Notation on edges
f(v,w)/c(v,w)

Not a
maximum
flow!

Lecture 3 - Maximum Flow 6

Cut
• Cut - a set of edges that separates s from t.
• A cut is defined by a set of vertices, S. This set

includes s and maybe additional vertices reachable
from s. The sink t is not in S.

• The cut is the set of edges (u,v) such that u∈S and
v∉S, or v∈S and u∉S.

• out(S) – edges in the cut directed from S to V-S
• in(S) – edges in the cut directed from V-S to S

s tS V-S

Lecture 3 - Maximum Flow 7

s t

Cut - example

S –
out(S) –
in(S) –

7

5

6

3

4

5

4

1 4
6

3

7

The capacity of this
cut = 18

Lecture 3 - Maximum Flow 8

Value of a Flow:

• A flow function f is an assignment of a real
number f(e) to each edge e such that the
edge and vertex conditions hold for all the
vertices/edges.

• Definition: The value of the flow is the flow net
flow from s

()
()

()
()

.efefF
sinesoute

��
∈∈

−=

Lecture 3 - Maximum Flow 9

Flow

• Theorem: The net flow into t equals the net
flow out of s.

()
()

()
()

()
()

()
()

����
∈∈∈∈

−=−=
toutetinesinesoute

efef efefF

Lecture 3 - Maximum Flow 10

Capacity of a cut

For a cut S, the capacity of S is

Claim: For every flow function f with total flow F, and
every cut S, F ≤ c(S).

Proof: We know that

By the edge condition, 0 ≤ f(e) ≤ c(e), for all e∈E. Thus,

() ().ecSc
out(S)e
�

∈

=

()
()

()
()

.efefF
SineSoute
��
∈∈

−=

()
()

().Sc0ecF
Soute

=−≤ �
∈

Lecture 3 - Maximum Flow 11

Max-flow Min-Cut Theorem

The value of a maximum flow in a
network is equal to the minimum
capacity of a cut.

Proof:
max flow ≤ min cut: follows from the previous lemma.
max flow ≥ min cut: we will see an algorithm that

produces a flow in which some cut is saturated.

Lecture 3 - Maximum Flow 12

An augmenting path with respect to a
given flow f:

A directed path from s to t which consists of edges from G, but not
necessarily in the original direction.

forward edge: (w,u) in same direction as G and f(w,u) < c(w,u).
(c(w,u)-f(w,u) is called slack) à has room for more flow.

backward edge: (u,v) in opposite direction in G (i.e., (v,u) in E) and
f(v,u) > 0 à can ‘take back’ flow from such an edge.

s t3/7

5/5

5/6

2/3

3/4

2/4

1/1 3/4
3/6

3/3

7/7

5/5

w

v

u

augmenting
path s-w-u-v-t

Lecture 3 - Maximum Flow 13

Using an augmenting path to increase flow

• Push flow forward on forward edges, deduct flow from
backward edges.

s t
4/4

0/3

2/3

2/8

0/5

2/5

a c
2/2

•The amount of flow we can push:
slacks along the forward edges on the path
flow along the backward edges on the path

db
p = s-a-c-b-d-t

{minimum

Lecture 3 - Maximum Flow 14

The Ford-Fulkerson Method

• Initialize flow on all edges to 0.

• While there is an augmenting path, improve
the flow along this path.

To implement F&F, we need a way to detect
augmenting paths.

We build a residual graph with respect to the current
flow.

Lecture 3 - Maximum Flow 15

Residual Graph w.r.t. flow f

• Given f, we build the residual graph: a
network flow R=(V,E’)

• An edge (v,w)∈E’ if either
– (v,w) is a forward edge, and then its capacity in R

is c(v,w)-f(v,w)
– or (v,w) is a backward edge (that is, (w,v) is an

edge with positive flow in G) , and then its capacity
in R is f(w,v).

• An augmenting path is a regular directed path
from s to t in R.

Lecture 3 - Maximum Flow 16

Ford-Fulkerson Method (G,s,t)

• Initialize flow on all edges to 0.

• While there is a path p from s to t in residual
network R
– δ = minimum capacity along p in R
– augment δ units of flow along p and update R.

Lecture 3 - Maximum Flow 17

Ford-Fulkerson Method. Example (1)

Example taken from the book Graph Algorithms by
Shimon Even

The given network,
with initial all-0 flow.

δδδδ =4

a

s

c

t

d

b
0,15

0,3

0,5

0,4

0,10
0,10

0,7

0,12

First augmenting path: s → c → d → a → b → t

Remark: in the first iteration R=G.

Lecture 3 - Maximum Flow 18

Ford-Fulkerson Method. Example (2)

The network after
applying the first
augmenting path:

The residual
network:

(complete in class)

a

s

c

t

d

b

a

s

c

t

d

b
0,15

0,3

4,5

4,4

4,10
0,10

4,7

4,12

Lecture 3 - Maximum Flow 19

Ford-Fulkerson Method. Example (3)

δδδδ =3

Second augmenting path: tdcbas →→→→→

a

s

c

t

d

b
0,15

0,3

4,5

4,4

4,10
0,10

4,7

4,12

Lecture 3 - Maximum Flow 20

The flow after
applying 2nd

augmenting path:

Ford-Fulkerson Method. Example (4)

a

s

c

t

d

b
3,15

3,3

4,5

4,4

7,10
3,10

4,7

7,12

The residual
network:

(complete in class)

a

s

c

t

d

b

Lecture 3 - Maximum Flow 21

Ford-Fulkerson Method. Example (5)

Third augmenting path: tb as →→→

a

s

c

t

d

b
3,15

3,3

4,5

4,4

7,10
3,10

4,7

7,12

δδδδ =3

Lecture 3 - Maximum Flow 22

Ford-Fulkerson Method. Example (6)

a

s

c

t

d

b
6,15

3,3

4,5

4,4

7,10
3,10

7,7

10,12

The flow after
applying 3rd

augmenting path:

The residual
network:

(complete in class)

a

s

c

t

d

b

Lecture 3 - Maximum Flow 23

Ford-Fulkerson Method. Example (7)

Forth augmenting path: tda s →←→

a

s

c

t

d

b
6,15

3,3

4,5

4,4

7,10
3,10

7,7

10,12

δδδδ =4

Lecture 3 - Maximum Flow 24

Ford-Fulkerson Method. Example (8)

Final flow:

{s,a,b} is a
saturated min-
cut

a

s

c

t

d

b
10,15

3,3

0,5

4,4

7,10
7,10

7,7

10,12

There are no paths
connecting s and t in
the residual network

a

s

b5
2

Lecture 3 - Maximum Flow 25

Proof of Ford-Fulkerson Method.

Claim: The flow after each iteration is legal

Proof: The initial assignment (of f(e)=0 for all e) is clearly
legal.

Let p be an augmenting path. Let d be the minimum
capacity along p in R.

Vertex condition: For each v∉p, the flow that passes v
does not change. For each v∈p (v ≠ s,t), exactly one
edge of p enters v and exactly one edge of p goes out
of v. In each of these edges the flow increase by δδδδ.
The value of the flow in and out of v remains 0.

Egde condition: preserved by the selection of δδδδ

Lecture 3 - Maximum Flow 26

Proof of Ford-Fulkerson Method.

• Already saw that if an augmenting path exists, then
the flow is not maximum (can be improved).

• Suppose f admits no augmenting path. We need to
show that f is maximum.

• We use the min-cut max-flow theorem: we will see
that when no augmenting path exists, some cut is
saturated.

Theorem: A flow f is maximum if and only if it admits no
augmenting path

s tS V-S

Lecture 3 - Maximum Flow 27

Proof of Ford-Fulkerson Method.

• Let A be the vertices such that for each v∈A,
there is an augmenting path from s to v.

• The set A defines a cut.

• Claim: for all edges in cut, f(v,w)=c(v,w).
• Proof: if f(v,w)< c(v,w) then w should join A.
• Therefore: The value of the flow is the

capacity of the cut defined by A à (min cut
theorem) f is maximum.

Lecture 3 - Maximum Flow 28

Running time of Ford-Fulkerson

s t

M

M
M

M

1

Each iteration (building R and detecting an augmenting
path) takes O(|E|) (how?).

How many iterations are there?

The time complexity of F&F is O(|E|f*), when f* is the
value of the maximum flow.

Could be f* when f* is
the value of the
maximum flow.

Lecture 3 - Maximum Flow 29

Edmonds-Karp Algorithm:

• Use F&F method. Search for augmenting
path using breadth-first search, i.e., the
augmenting path is always a shortest path
from s to t in the residual network.

• Theorem: This way, the number of
augmentations is O(|V||E|).

• The resulting complexity: O(|V||E|2)
– each iteration takes O(|E|)

Lecture 3 - Maximum Flow 30

Greedy augmenting path Selection:

• Use F&F method. In each iteration select an
augmenting path with the maximal δ value.

• The time complexity of this algorithm is
O(|E|log2 f*).

Lecture 3 - Maximum Flow 31

Some applications of max-flow
and max-flow min-cut theorem

• Bipartite matching

• Network connectivity
• Video on demand

• Many many more…

Lecture 3 - Maximum Flow 32

Matching

• Definition: a matching in a graph G is a
subset M of E such that the degree of each
vertex in G’=(V’,M) is 0 or 1.

• Example: M={(a,d),(b,e)} is a matching.

S={(a,d), (c,d)} is not a matching.

b

e
d

c
a

Lecture 3 - Maximum Flow 33

Bipartite Matching
• Example 1: In a party there are n1 boys and n2 girls.
Each boy tells the DJ the girls with whom he is ready
to dance with. Each girl tells the DJ the boys with
whom she is ready to dance with.
- DJ’s goal: As many dancing pairs as possible.

- Note: This has nothing to do with the stable pairing problem. No
preferences. Some participants can remain lonely (even if n1=n2).

• Example 2 (production planning) : n2 identical
servers need to serve n1 clients. Each client specifies
the subset of servers that can serve him.
- Goal: Serve as many clients as possible.

Lecture 3 - Maximum Flow 34

Bipartite Matching

Graph representation: G=(V,E).
V= V1 ∪ V2.
In 1st problem (u,v) ∈E, if u is ready to dance with

v and vice versa.
In 2nd problem (u,v) ∈E, if u can be served by v.

This is a bipartite!

We are looking for the largest possible matching.

Lecture 3 - Maximum Flow 35

Bipartite Matching
• Input: a bipartite graph G=(V1 ∪ V2, E)
• Goal: A matching of maximal size.

A matching A maximal
matching –
can not be
extended.

A maximum
matching –
largest maximal.

Our goal !

Lecture 3 - Maximum Flow 36

Bipartite Matching

Special cases:

•A perfect matching: |M|=|V1|=|V2|

(An ideal instance and solution for
problem 1)

•A full matching for V1: |M|=|V1|≤|V2|

(what we need in problem 2)

�� ��

Maximum matching in a bipartite can be found using
flow algorithms.

Lecture 3 - Maximum Flow 37

Using Flow for Bipartite Matching

Input: A bipartite G=(V1 ∪ V2, E)

Output : Maximum matching M⊆E.

Algorithm:

1. Build a network flow N=(V’,E’)

V’ = V1 ∪ V2 ∪ {s,t}

E’ = E ∪ {(s→u)| ∀u∈V1} ∪ {(v→t)| ∀v∈V2}

All e ∈ E’ have the capacity c(e)=1.

2. Find a maximum flow in N.

3. M = saturated edges in the cut defined by {s,V1}.

Vertices of E
are directed
from V1 to V2

Lecture 3 - Maximum Flow 38

Using Flow for Bipartite Matching
(Example)

V1 V2

V’ = V1 ∪ V2 ∪ {s,t}

E’ = E ∪ {(s→u)| ∀u∈V1}∪ {(v→t)| ∀v∈V2}

For all e ∈ E’, c(e)=1.

V1 V2

ts

N=(V’,E’)G=(V1 ∪ V2, E)

Lecture 3 - Maximum Flow 39

Using Flow for Bipartite Matching (proof)

Theorem: G includes a matching of size k ⇔ N has
flow with value k.

Proof:
1. (�) Given a matching of size k, define the flow
f(u,v)= 1 for all (u,v) in M, all all (s,u) and (v,t) such
that u or v are matched. For all the other edges f=0.

• F is legal (proof in class)

• The value of f is k (consider the cut {s} ∪ V1).

2. (⇐) Similar. Based on the capacities of the edges
(s,u), (v,t), and the fact that f is legal.

Lecture 3 - Maximum Flow 40

Network Connectivity

• What is the minimum number of links in the
network such that if that many links go down,
it is possible for nodes s and t to become
disconnected?

• Solution using flow:

Lecture 3 - Maximum Flow 41

Video on Demand

• m storage devices (e.g., disks), The i-th disk
is capable of supporting bi simultaneous
streams.

• k movies, one copy of each on some of the
disks (this assignment is given as input).

• Given set of R movie requests, (rj requests to
movie j) how would you assign the requests
to disks so that no disk is assigned more than
bi requests and the maximum number of
requests is served?

Lecture 3 - Maximum Flow 42

Video on Demand

movies disks

ts

A copy of movie j on
disk i. c(e)= �

c(e)= rj c(e)= bi

Lecture 3 - Maximum Flow 43

Other network flow problems:

1. Lower bounds on flow.
– For each (v,w): 0 ≤ lb(v,w) ≤ f(v,w) ≤ c(v,w)
– Not always possible:

s v t(2,4)(5,10)

2. Minimum flow
• Want to send minimum amount of flow from

source to sink, while satisfying certain lower and
upper bounds on flow on each edge.

Lecture 3 - Maximum Flow 44

Other network flow problems:

3. Min-cost max-flow
Input: a graph (network) G where each edge (v,w)

has associated capacity c(v,w), and a cost
cost(v,w).

Goal: Find a maximum flow of minimum cost.

The cost of a flow :

Σ f(v,w)>0 cost (v,w)f(v,w)

Out of all the maximum flows, which has minimal cost?

Lecture 3 - Maximum Flow 45

Weighted Assignment - Min-cost max-
flow example

Production planning : n2 servers need to serve n1 clients. Each
client specifies for each server how much he is ready to pay in order
to be served by this server (this is given by revenue(client, server)).
• Goal: Maximize the profit.

c(e)= 1,
cost(e)= -revenue(u,v)

c(e)= 1

cost(e)=0

ts

c(e)= 1

cost(e)=0

