CSEP 521
Applied Algorithms
Spring 2005
Course Introduction
Graph Algorithms

Outline for the Evening

- Course administration
- Algorithm Design Process
- Spanning Tree
 - Depth-First Search
 - In-class exercise
 - Breath-First Search
- Minimum Spanning Tree
- Set Disjoint Union / Find

Instructors

- Instructor
 - Richard Ladner
 - ladner@cs.washington.edu
 - 206 543-9347
- TA
 - Neva Cherniavsky
 - (nchernia@cs.washington.edu)

Resources

- CSEP 521 Course Web Page
- Papers and Sections from Books
- Recommended Algorithms Book
 - Introduction to Algorithms, 2nd Edition by Cormen, Leiserson, Rivest, and Stein
- E-mail list
 - For information from instructors
 - Check web page to sign up
- Message Board
 - For discussion

Engagement by Students

- Weekly Assignments
 - Algorithm design and evaluation
 - Algorithm animation
- In-class activities
- Project with a written report
 - Evaluate several alternative approaches to algorithmically solve a problem
 - Must include readings from literature
 - May include an implementation study
 - May be done in small teams

Final Exam and Grading

- There will be no Final Exam
- Percentages
 - Weekly Assignments 60%
 - Project 40%
Some Topics

- Graph Algorithms
- Maximum Flow
- Linear Programming
- Data Compression
- Computational Geometry
- Computational Biology

Along the Way

- Analysis of algorithms
- Data structures
- NP-completeness
- Dynamic programming
- Greedy algorithms
- Branch-and-bound algorithms
- Approximation algorithms
- Classics of algorithms

Reading

- Chapter 21 - Disjoint Union / Find
- Chapter 22 - Graph algorithms
- Chapter 23 - Minimum Spanning Tree
- Chapter 24 - Shortest Paths

Applied Algorithm Scenario

1. Real world problem
2. Abstractly model the problem
3. Find abstract algorithm
4. Adapt to original problem

Modeling

- What kind of algorithm is needed
 - Sorting or Searching
 - Graph Problem
 - Linear Programming
 - Dynamic Programming
 - Clustering
 - Algebra
- Can I find an algorithm or do I have to invent one

Broadcasting in a Network

- Network of Routers
 - Organize the routers to efficiently broadcast messages to each other
 - Duplicate and send to some neighbors.
 - Eventually all routers get the message
Spanning Tree in a Graph

- Vertex = router
- Edge = link between routers
- Spanning tree connects all the vertices
- No cycles

Undirected Graph

- \(G = (V,E) \)
 - \(V \) is a set of vertices (or nodes)
 - \(E \) is a set of unordered pairs of vertices

\[V = \{1,2,3,4,5,6,7\} \]
\[E = \{(1,2),(1,6),(1,5),(2,7),(2,3),(3,4),(4,7),(4,5),(5,6)\} \]

2 and 3 are adjacent
2 is incident to edge (2,3)

Spanning Tree Problem

- Input: An undirected graph \(G = (V,E) \). \(G \) is connected.
- Output: \(T \) contained in \(E \) such that
 - \((V,T)\) is a connected graph
 - \((V,T)\) has no cycles

Depth First Search Algorithm

- Recursive marking algorithm
- Initially every vertex is unmarked

DFS(v: vertex)
mark v;
for each j adjacent to v do
 if j is unmarked then DFS(j)
end DFS

Example of Depth First Search

DFS(1)

Example Step 2

DFS(1)
DFS(2)
Example Step 3

Example Step 4

Example Step 5

Example Step 6

Example Step 7

Example Step 8
Example Step 9

Example Step 10

Example Step 11

Example Step 12

Example Step 13

Example Step 14
Example Step 15

DFS(1)
DFS(2)

Example Step 16

DFS(1)

Spanning Tree Algorithm

ST(i; vertex)
mark i;
for each j adjacent to i do
if j is unmarked then
 Add (i,j) to T;
 ST(j);
end(ST)

Main
T := empty set;
ST(1);
end(Main)

Applied Algorithm Scenario

Real world problem
Wrong problem

Abstractly model the problem
Wrong model
Incorrect algorithm poor performance

Find abstract algorithm

Adapt to original problem

Evaluate

Evaluation Step Expanded

Algorithm Correct?

no
- New algorithm
- New model
- New problem

yes

Choose Data Structure
unsatisfactory

Performance?
satisfactory

Implement

Correctness of ST Algorithm

- There are no cycles in T
 - This is an invariant of the algorithm.
 - Each edge added to T goes from a vertex in T to a vertex not in T.
- If G is connected then eventually every vertex is marked. (Proof by contradiction)
Correctness (cont.)
• If G is connected then so is (V, T)

Data Structure Step
- Algorithm Correct?
 - yes
 - no
- Choose Data Structure
- Performance?
 - satisfactory
 - unsatisfactory
- Implement
 - New algorithm
 - New model
 - New problem
 - New data structure
 - New algorithm
 - New model

Edge List and Adjacency Lists
• List of edges
• Adjacency lists

Adjacency Matrix

Data Structure Choice
• Edge list
 – Simple but does not support depth first search
• Adjacency lists
 – Good for sparse graphs
 – Supports depth first search
• Adjacency matrix
 – Good for dense graphs
 – Supports depth first search

Spanning Tree with Adjacency Lists

ST(i:: vertex)
M[i] := 1;
v := G[i];
while not(v = null)
j := v::vertex;
if M[j] = 0 then
 Add (i,j) to T;
 ST(j);
v := v::next;
end(ST)

Main
G is array of adjacency lists;
M[i] := 0 for all i;
T is empty;
Spanning_Tree(1);
end(Main)
M is the marking array
Node of linked list
vertex next
Performance Step

- Algorithm Correct?
 - yes
 - no
- Choose Data Structure
- Performance?
 - unsatisfactory
 - satisfactory
- Implement

Performance of ST Algorithm

- n vertices and m edges
- Connected graph
- Storage complexity $O(m)$
- Time complexity $O(m)$

Other Uses of Depth First Search

- Popularized by Hopcroft and Tarjan 1973
- Connected components
- Biconnected components
- Strongly connected components in directed graphs
- Topological sorting of a acyclic directed graphs

Depth-First Search in Directed Graphs

- Discovery and Finish Times
 - Initially $D[i] = F[i] = 0$, $time = 1$

Depth-First Search (DFS):

```plaintext
DFS(i: vertex)
D[i] := time;
time++;
v := G[i];
for each vertex j adjacent to i do
  if D[j] = 0 then DFS(j)
F[i] := time;
time++;
end DFS
```

Example

- Compute the discovery and finish times
- Classify the edges

Edge Classification

- Forward Edge (i, j)
- Backward Edge
- Cross Edge
- Note – A directed graph is acyclic if and only if it has no backward edges in a DFS.
ST using Breadth First Search 1

- Uses a queue to order search

Queue = 1

Breadth First Search 2

Queue = 2, 6, 5

Breadth First Search 3

Queue = 6, 5, 7, 3

Breadth First Search 4

Queue = 5, 7, 3

Breadth First Search 5

Queue = 7, 3, 4

Breadth First Search 6

Queue = 3, 4
Breadth First Search 7

Queue = 4

Breadth First Search 8

Queue =

Spanning Tree using Breadth First Search

BFS
Initialize T to be empty;
Initialize Q to be empty;
Enqueue(1,Q) and mark 1;
while Q is not empty do
 i := Dequeue(Q);
 for each j adjacent to i do
 if j is not marked then
 add (i,j) to T;
 Enqueue(j,Q) and mark j;
 end

Depth First vs Breadth First

• Depth First
 – Stack or recursion
 – Many applications
• Breadth First
 – Queue (recursion no help)
 – Can be used to find shortest paths from the start vertex

Best Spanning Tree

• Each edge has the probability that it won’t fail
• Find the spanning tree that is least likely to fail

Example of a Spanning Tree

Probability of success = .85 x .95 x .89 x .95 x 1.0 x .84
= .5735
Minimum Spanning Tree Problem

- Input: Undirected Graph $G = (V, E)$ and a cost function C from E to the reals. $C(e)$ is the cost of edge e.
- Output: A spanning tree T with minimum total cost. That is: T that minimizes $C(T) = \sum_{e \in T} C(e)$.

Reducing Best to Minimum

Let $P(e)$ be the probability that an edge doesn’t fail. Define:

$$C(e) = -\log_{10}(P(e))$$

Minimizing $\sum_{e \in T} C(e)$

is equivalent to maximizing $\prod_{e \in T} P(e)$

because $\prod_{e \in T} P(e) = 10^{\sum_{e \in T} C(e)}$

Example of Reduction

Minimum Spanning Tree

- Boruvka 1926
- Kruskal 1956
- Prim 1957 also by Jarnik 1930
- Karger, Klein, Tarjan 1995
 - Randomized linear time algorithm
 - Probably not practical, but very interesting

MST Optimality Principle

- $G = (V, E)$ with costs C. G connected.
- Let (V, A) be a subgraph of G that is contained in a minimum spanning tree. Let U be a set such that no edge in A has one end in U and one end in $V - U$. Let $C((u, v))$ minimal and u in U and v in $V - U$. Let A' be A with (u, v) added. Then (V, A') is contained in a minimum spanning tree.

Proof of Optimality Principle
Proof of Optimality Principle

$C((u,v))$ is minimal
$C((u,v)) \leq C((x,y))$

T is a minimum spanning tree

Proof of Optimality Principle

$C(T') = C(T) + C((u,v)) - C((x,y))$
$C(T') \leq C(T)$

T' is also a minimum spanning tree

Kruskal's Greedy Algorithm

Sort the edges by increasing cost;
Initialize A to be empty;
For each edge e chosen in increasing order do
 if adding e does not form a cycle then
 add e to A

Invariant: A is always contained in some minimum spanning tree

Example of Kruskal 1

Example of Kruskal 2
Example of Kruskal 3

Example of Kruskal 4

Example of Kruskal 5

Example of Kruskal 6

Example of Kruskal 7

Example of Kruskal 7
Example of Kruskal 8,9

![Diagram of a graph with edges and weights](image1.png)

Data Structures for Kruskal

- **Sorted edge list**

 \[
 (7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5) \\
 0 \ 1 \ 1 \ 2 \ 2 \ 3 \ 3 \ 3 \ 3 \ 4
 \]

- **Disjoint Union / Find**
 - Union(a,b) - union the disjoint sets named by a and b
 - Find(a) returns the name of the set containing a

Example of DU/F 1

![Diagram with Find operations](image2.png)

Example of DU/F 2

![Diagram with Find operations](image3.png)

Example of DU/F 3

![Diagram with Union operations](image4.png)

Kruskal’s Algorithm with DU / F

Sort the edges by increasing cost; Initialize A to be empty; for each edge \((i,j)\) chosen in increasing order do

- \(u := \text{Find}(i)\);
- \(v := \text{Find}(j)\);
- if not \((u = v)\) then
 - add \((i,j)\) to \(A\);
 - Union\((u,v)\);

![Diagram with Kruskal's algorithm steps](image5.png)
Lecture 1 - Intro, Graph Algorithms

Up Tree for DU/F

Initial state
1 2 3 4 5 6 7

Intermediate state
1 3 7 2 5 4 6

DU/F Operation
- Find(i) - follow pointer to root and return the root.
- Union(i, j) - assuming i and j roots, point i to j.

Weighted Union
- Weighted Union
 - Always point the smaller tree to the root of the larger tree

Path Compression
- On a Find operation point all the nodes on the search path directly to the root.

Elegant Array Implementation

Up Tree Pseudo-Code

PC-Find(i : index)
 r := i;
 while not(up[r] = 0) do
 r := up[r]
 k := up[i];
 while not(k = r) do
 up[k] := r;
 i := k;
 k := up[k]
 return(r)
end{Find}

W-Union(i, j : index)
 // i and j are roots
 wi := weight[i];
 wj := weight[j];
 if wi < wj then
 up[i] := j;
 weight[i] := wi + wj;
 else
 up[j] := i;
 weight[j] := wi + wj;
end{W-Union}
Disjoint Union / Find Notes

- Worst case time complexity for a W-Union is O(1) and for a PC-Find is O(log n).
- Time complexity for m operations on n elements is O(m log* n) where log* n is a very slow growing function. Essentially constant time per operation!
- Using “ranked union” gives an even better bound theoretically.

Performance of W-Union / PC-Find

- The time complexity of PC-Find is O(log n).
- An up tree formed by W-Union of height h has at least 2^h nodes. Inductive Proof.

\[
\text{Weight}(T_2) > 2^h \quad (\text{ind. hyp.}) \\
\text{Weight}(T_1) \geq \text{Weight}(T_2) \\
\text{Weight}(T) \geq 2^h + 2^h = 2^{h+1}
\]

Worst Case for PC-Find

- n/2 Weighted Unions
- n/4 Weighted Unions

Example of Worst Cast (cont’)

- After \(n - 1 = n/2 + n/4 + \ldots + 1\) Weighted Unions
- If there are \(n = 2^k\) nodes then there are k pointers on the longest path to root.

Amortized Complexity

- For disjoint union / find with weighted union and path compression.
 - average time per operation is essentially a constant.
 - worst case time for a PC-Find is O(log n).
- An individual operation can be costly, but over time the average cost per operation is not.