
CSEP 521
Applied Algorithms

Spring 2005
Course Introduction
Graph Algorithms

Lecture 1 - Intro, Graph Algorithms 2

Outline for the Evening

• Course administration
• Algorithm Design Process
• Spanning Tree

– Depth-First Search

– In-class exercise
– Breath-First Search

• Minimum Spanning Tree
• Set Disjoint Union / Find

Lecture 1 - Intro, Graph Algorithms 3

Instructors

• Instructor
– Richard Ladner

– ladner@cs.washington.edu
– 206 543-9347

• TA
– Neva Cherniavsky

– (nchernia@cs.washington.edu)

Lecture 1 - Intro, Graph Algorithms 4

Resources

• CSEP 521 Course Web Page
– http://www.cs.washington.edu/csep521

• Papers and Sections from Books
• Recommended Algorithms Book

– Introduction to Algorithms, 2nd Edition by Cormen,
Leiserson, Rivest, and Stein

• E-mail list
– For information from instructors
– Check web page to sign up

• Message Board
– For discussion

Lecture 1 - Intro, Graph Algorithms 5

Engagement by Students

• Weekly Assignments
– Algorithm design and evaluation
– Algorithm animation

• In-class activities
• Project with a written report

– Evaluate several alternative approaches to
algorithmically solve a problem

– Must include readings from literature
– May include an implementation study
– May be done in small teams

Lecture 1 - Intro, Graph Algorithms 6

Final Exam and Grading

• There will be no Final Exam
• Percentages

– Weekly Assignments 60%
– Project 40%

Lecture 1 - Intro, Graph Algorithms 7

Some Topics

• Graph Algorithms
• Maximum Flow
• Linear Programming
• Data Compression
• Computational Geometry
• Computational Biology

Lecture 1 - Intro, Graph Algorithms 8

Along the Way

• Analysis of algorithms
• Data structures
• NP-completeness
• Dynamic programming
• Greedy algorithms
• Branch-and-bound algorithms
• Approximation algorithms
• Classics of algorithms

Lecture 1 - Intro, Graph Algorithms 9

Reading

• Chapter 21 - Disjoint Union / Find
• Chapter 22 - Graph algorithms
• Chapter 23 - Minimum Spanning Tree
• Chapter 24 - Shortest Paths

Lecture 1 - Intro, Graph Algorithms 10

Applied Algorithm Scenario

Real world problem

Abstractly model the problem

Find abstract algorithm

Adapt to original problem

Lecture 1 - Intro, Graph Algorithms 11

Modeling
• What kind of algorithm is needed

– Sorting or Searching

– Graph Problem
– Linear Programming

– Dynamic Programming
– Clustering

– Algebra

• Can I find an algorithm or do I have to
invent one

Lecture 1 - Intro, Graph Algorithms 12

Broadcasting in a Network

• Network of Routers
– Organize the routers to efficiently

broadcast messages to each other

Incoming message
• Duplicate and send
to some neighbors.
• Eventually all routers
get the message

Lecture 1 - Intro, Graph Algorithms 13

Spanning Tree in a Graph

Vertex = router
Edge = link between routers

Spanning tree
- Connects all the vertices
- No cycles

Lecture 1 - Intro, Graph Algorithms 14

Undirected Graph

• G = (V,E)
– V is a set of vertices (or nodes)

– E is a set of unordered pairs of vertices

1
2

3

4

5
6

7

V = {1,2,3,4,5,6,7}
E = {{1,2},{1,6},{1,5},{2,7},{2,3},

{3,4},{4,7},{4,5},{5,6}}

2 and 3 are adjacent
2 is incident to edge {2,3}

Lecture 1 - Intro, Graph Algorithms 15

Spanning Tree Problem

• Input: An undirected graph G = (V,E). G
is connected.

• Output: T contained in E such that
– (V,T) is a connected graph
– (V,T) has no cycles

Lecture 1 - Intro, Graph Algorithms 16

Depth First Search Algorithm

• Recursive marking algorithm
• Initially every vertex is unmarked

DFS(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then DFS(j)
end{DFS}

Lecture 1 - Intro, Graph Algorithms 17

Example of Depth First Search

1
2

3

4

5

6

7

DFS(1)

Lecture 1 - Intro, Graph Algorithms 18

Example Step 2

1
2

3

4

5

6

7

DFS(1)
DFS(2)

Lecture 1 - Intro, Graph Algorithms 19

Example Step 3

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

Lecture 1 - Intro, Graph Algorithms 20

Example Step 4

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)

Lecture 1 - Intro, Graph Algorithms 21

Example Step 5

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)

Lecture 1 - Intro, Graph Algorithms 22

Example Step 6

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)
DFS(3)

Lecture 1 - Intro, Graph Algorithms 23

Example Step 7

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)
DFS(3)

Lecture 1 - Intro, Graph Algorithms 24

Example Step 8

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)

Lecture 1 - Intro, Graph Algorithms 25

Example Step 9

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)

Lecture 1 - Intro, Graph Algorithms 26

Example Step 10

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)

Lecture 1 - Intro, Graph Algorithms 27

Example Step 11

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(6)

Lecture 1 - Intro, Graph Algorithms 28

Example Step 12

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(6)

Lecture 1 - Intro, Graph Algorithms 29

Example Step 13

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)
DFS(5)

Lecture 1 - Intro, Graph Algorithms 30

Example Step 14

1
2

3

4

5

6

7

DFS(1)
DFS(2)
DFS(7)

Lecture 1 - Intro, Graph Algorithms 31

Example Step 15

1
2

3

4

5

6

7

DFS(1)
DFS(2)

Lecture 1 - Intro, Graph Algorithms 32

Example Step 16

1
2

3

4

5

6

7

DFS(1)

Lecture 1 - Intro, Graph Algorithms 33

Spanning Tree Algorithm

ST(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then
Add {i,j} to T;
ST(j);

end{ST}

Main
T := empty set;
ST(1);
end{Main}

Lecture 1 - Intro, Graph Algorithms 34

Applied Algorithm Scenario

Real world problem

Abstractly model the problem

Find abstract algorithm

Adapt to original problem

Evaluate

Wrong problem

Wrong model

Incorrect algorithm
poor performance

Lecture 1 - Intro, Graph Algorithms 35

Evaluation Step Expanded

Algorithm Correct?

Choose Data Structure

Performance?

Implement

yes

satisfactory

no

unsatisfactory

- New algorithm
- New model
- New problem

- New data structure
- New algorithm
- New model

Lecture 1 - Intro, Graph Algorithms 36

Correctness of ST Algorithm

• There are no cycles in T
– This is an invariant of the algorithm.
– Each edge added to T goes from a vertex in T to a

vertex not in T.

• If G is connected then eventually every vertex
is marked. (Proof by contradiction)

1 unmarked

Lecture 1 - Intro, Graph Algorithms 37

Correctness (cont.)

• If G is connected then so is (V,T)

i

j

1

Lecture 1 - Intro, Graph Algorithms 38

Data Structure Step

Algorithm Correct?

Choose Data Structure

Performance?

Implement

yes

satisfactory

no

unsatisfactory

- New algorithm
- New model
- New problem

- New data structure
- New algorithm
- New model

Lecture 1 - Intro, Graph Algorithms 39

Edge List and Adjacency Lists

• List of edges

• Adjacency lists
1
2
3
4
5
6
7

2 5 6

1
2

5
1

1
6

2
7

2
3

3
4

7
4

5
6

5
7

3 1 7
2 4
3 7 5
6 1 7 4
1 5
4 5 2

5
4 1

2

3

4

5
6

7

Lecture 1 - Intro, Graph Algorithms 40

Adjacency Matrix

0
1
0
0
1
1
0

1
2
3
4
5
6
7

1
0
1
0
0
0
1

0
1
0
1
0
0
0

0
0
1
0
1
0
1

1
0
0
1
0
1
1

1
0
0
0
1
0
0

0
1
0
1
1
0
0

1 2 3 4 5 6 7 1
2

3

4

5
6

7

Lecture 1 - Intro, Graph Algorithms 41

Data Structure Choice
• Edge list

– Simple but does not support depth first
search

• Adjacency lists
– Good for sparse graphs

– Supports depth first search

• Adjacency matrix
– Good for dense graphs
– Supports depth first search

Lecture 1 - Intro, Graph Algorithms 42

Spanning Tree with Adjacency
Lists

ST(i: vertex)
M[i] := 1;
v := G[i];
while not(v = null)

j := v.vertex;
if M[j] = 0 then

Add {i,j} to T;
ST(j);

v := v.next;
end{ST}

Main
G is array of adjacency lists;
M[i] := 0 for all i;
T is empty;
Spanning_Tree(1);

end{Main}

nextvertex

M is the marking array
Node of linked list

Lecture 1 - Intro, Graph Algorithms 43

Performance Step

Algorithm Correct?

Choose Data Structure

Performance?

Implement

yes

satisfactory

no

unsatisfactory

- New algorithm
- New model
- New problem

- New data structure
- New algorithm
- New model

Lecture 1 - Intro, Graph Algorithms 44

Performance of ST Algorithm

• n vertices and m edges
• Connected graph
• Storage complexity O(m)
• Time complexity O(m)

Lecture 1 - Intro, Graph Algorithms 45

Other Uses of Depth First Search

• Popularized by Hopcroft and Tarjan
1973

• Connected components
• Biconnected components
• Strongly connected components in

directed graphs
• topological sorting of a acyclic directed

graphs

Lecture 1 - Intro, Graph Algorithms 46

Depth-First Search in Directed
Graphs

• Discovery and Finish Times
• Initially D[i] = F[i] = 0, time = 1

DFS(i: vertex)
D[i] := time;
time++;
v := G[i];
for each vertex j adjacent to i do

if D[j] = 0 then DFS(j)
F[i] := time;
time++;

end{DFS}

Lecture 1 - Intro, Graph Algorithms 47

Example

• Compute the discovery and finish times
• Classify the edges

a

e

g
d

f

b
c a

b
c
d
e
f
g

b
c d

f
d
a e
d e

g

d

Lecture 1 - Intro, Graph Algorithms 48

Edge Classification

• Forward Edge (i,j)
– D[i] < D[j] < F[j] < F[i]

• Backward Edge
– D[j] < D[i] < F[i] < F[j]

• Cross Edge
– D[j] < F[j] < D[i] < F[i]

• Note – A directed graph is acyclic if and
only if it has no backward edges in a
DFS.

Lecture 1 - Intro, Graph Algorithms 49

ST using Breadth First Search 1

• Uses a queue to order search

Queue = 1

1
2

3

4

5

6

7

Lecture 1 - Intro, Graph Algorithms 50

Breadth First Search 2

1
2

3

4

5

6

7

Queue = 2,6,5

Lecture 1 - Intro, Graph Algorithms 51

Breadth First Search 3

1
2

3

4

5

6

7

Queue = 6,5,7,3

Lecture 1 - Intro, Graph Algorithms 52

Breadth First Search 4

1
2

3

4

5

6

7

Queue = 5,7,3

Lecture 1 - Intro, Graph Algorithms 53

Breadth First Search 5

1
2

3

4

5

6

7

Queue = 7,3,4

Lecture 1 - Intro, Graph Algorithms 54

Breadth First Search 6

1
2

3

4

5

6

7

Queue = 3,4

Lecture 1 - Intro, Graph Algorithms 55

Breadth First Search 7

1
2

3

4

5

6

7

Queue = 4

Lecture 1 - Intro, Graph Algorithms 56

Breadth First Search 8

1
2

3

4

5

6

7

Queue =

Lecture 1 - Intro, Graph Algorithms 57

Spanning Tree using Breadth
First Search

BFS
Initialize T to be empty;
Initialize Q to be empty;
Enqueue(1,Q) and mark 1;
while Q is not empty do

i := Dequeue(Q);
for each j adjacent to i do

if j is not marked then
add {i,j} to T;
Enqueue(j,Q) and mark j;

end{BFS}

Lecture 1 - Intro, Graph Algorithms 58

Depth First vs Breadth First

• Depth First
– Stack or recursion

– Many applications

• Breadth First
– Queue (recursion no help)
– Can be used to find shortest paths from the

start vertex

Lecture 1 - Intro, Graph Algorithms 59

Best Spanning Tree

1
2

3

4

5
6

7

• Each edge has the probability that it
won’t fail

• Find the spanning tree that is least likely
to fail

.80 .75
.95

.50
.95 1.0

.85

.84

.80

.89

Lecture 1 - Intro, Graph Algorithms 60

Example of a Spanning Tree

1
2

3

4

5
6

7

.80 .75
.95

.50
.95 1.0

.85

.84

.80

.89

Probability of success = .85 x .95 x .89 x .95 x 1.0 x .84
= .5735

Lecture 1 - Intro, Graph Algorithms 61

Minimum Spanning Tree Problem

• Input: Undirected Graph G = (V,E) and
a cost function C from E to the reals.
C(e) is the cost of edge e.

• Output: A spanning tree T with minimum
total cost. That is: T that minimizes

�
∈

=
Te

eCTC)()(

Lecture 1 - Intro, Graph Algorithms 62

Reducing Best to Minimum

Let P(e) be the probability that an edge doesn’t fail.
Define:

))((log)(10 ePeC −=

Minimizing �
∈Te

eC)(

is equivalent to maximizing ∏
∈Te

eP)(

because
�

= ∈

−

∈
∏ Te

eC

Te

eP
)(

10)(

Lecture 1 - Intro, Graph Algorithms 63

Example of Reduction

1
2

3

4

5
6

7

.80 .75
.95

.50
.95 1.0

.85

.84

.80

.89

1
2

3

4

5
6

7

.097 .125
.022

.301
.022 .000

.071

.076

.097

.051

Best Spanning Tree Problem Minimum Spanning Tree Problem

Lecture 1 - Intro, Graph Algorithms 64

Minimum Spanning Tree

• Boruvka 1926
• Kruskal 1956
• Prim 1957 also by Jarnik 1930
• Karger, Klein, Tarjan 1995

– Randomized linear time algorithm

– Probably not practical, but very interesting

Lecture 1 - Intro, Graph Algorithms 65

MST Optimality Principle

• G = (V,E) with costs C. G connected.
• Let (V,A) be a subgraph of G that is

contained in a minimum spanning tree.
Let U be a set such that no edge in A
has one end in U and one end in V-U.
Let C({u,v}) minimal and u in U and v in
V-U. Let A’ be A with {u,v} added.
Then (V,A’) is contained in a minimum
spanning tree.

Lecture 1 - Intro, Graph Algorithms 66

Proof of Optimality Principle

U

V-U
u

v

C({u,v}) is minimal

A

Lecture 1 - Intro, Graph Algorithms 67

Proof of Optimality Principle

U

V-U
u

v

C({u,v}} is minimal
C({u,v}) < C({x,y})

x

y

T

A

Lecture 1 - Intro, Graph Algorithms 68

Proof of Optimality Principle

U

V-U
u

vx

y

T’

T’ is also a minimum
spanning tree

C(T’) = C(T) + C({u,v}) - C({x,y})
C(T’) < C(T)

A’

Lecture 1 - Intro, Graph Algorithms 69

Kruskal’s Greedy Algorithm

Sort the edges by increasing cost;
Initialize A to be empty;
For each edge e chosen in increasing order do

if adding e does not form a cycle then
add e to A

Invariant: A is always contained in some
minimum spanning tree

Lecture 1 - Intro, Graph Algorithms 70

Example of Kruskal 1

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

1 3

Lecture 1 - Intro, Graph Algorithms 71

Example of Kruskal 2

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

1 3

Lecture 1 - Intro, Graph Algorithms 72

Example of Kruskal 2

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

1 3

Lecture 1 - Intro, Graph Algorithms 73

Example of Kruskal 3

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

1 3

Lecture 1 - Intro, Graph Algorithms 74

Example of Kruskal 4

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

1 3

Lecture 1 - Intro, Graph Algorithms 75

Example of Kruskal 5

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

1 3

Lecture 1 - Intro, Graph Algorithms 76

Example of Kruskal 6

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

1 3

Lecture 1 - Intro, Graph Algorithms 77

Example of Kruskal 7

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

1 3

Lecture 1 - Intro, Graph Algorithms 78

Example of Kruskal 7

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

1 3

Lecture 1 - Intro, Graph Algorithms 79

Example of Kruskal 8,9

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

1 3

Lecture 1 - Intro, Graph Algorithms 80

Data Structures for Kruskal

• Sorted edge list

• Disjoint Union / Find
– Union(a,b) - union the disjoint sets named

by a and b
– Find(a) returns the name of the set

containing a

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

Lecture 1 - Intro, Graph Algorithms 81

Example of DU/F 1

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

1 3

7

1

3
Find(5) = 7
Find(4) = 7

Lecture 1 - Intro, Graph Algorithms 82

Example of DU/F 2

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

1 3

7

1

3

Find(1) = 1
Find(6) = 7

Lecture 1 - Intro, Graph Algorithms 83

Example of DU/F 3

1

6

5

4

7

2

33

3
4 0

2 2

1

3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

1 3

7

3

Union(1,7)

Lecture 1 - Intro, Graph Algorithms 84

Kruskal’s Algorithm with DU / F

Sort the edges by increasing cost;
Initialize A to be empty;
for each edge {i,j} chosen in increasing order do

u := Find(i);
v := Find(j);
if not(u = v) then

add {i,j} to A;
Union(u,v);

Lecture 1 - Intro, Graph Algorithms 85

Up Tree for DU/F

1 2 3 4 5 6 7Initial state

1

2

3

45

6

7Intermediate
state

Lecture 1 - Intro, Graph Algorithms 86

DU/F Operation

• Find(i) - follow pointer to root and return
the root.

• Union(i,j) - assuming i and j roots, point i
to j.

1

2

3

45

6

7

Union(1,7)

Lecture 1 - Intro, Graph Algorithms 87

Weighted Union

• Weighted Union
– Always point the smaller tree to the root of

the larger tree

1

2

3

45

6

7

W-Union(1,7)

2 41

Lecture 1 - Intro, Graph Algorithms 88

Path Compression

• On a Find operation point all the nodes
on the search path directly to the root.

1

2

3

45

6

7 1

2 3 456

7

Find(3)

Lecture 1 - Intro, Graph Algorithms 89

Elegant Array Implementation

1

2

3

45

6

7
2 41

0
2

1 0
1

7 7 5 0
4

1 2 3 4 5 6 7
up

weight

Lecture 1 - Intro, Graph Algorithms 90

Up Tree Pseudo-Code

PC-Find(i : index)
r := i;
while not(up[r] = 0) do

r := up[r]
k := up[i];
while not(k = r) do

up[i] := r;
i := k;
k := up[k]

return(r)
end{Find}

W-Union(i,j : index)
// i and j are roots
wi := weight[i];
wj := weight[j];
if wi < wj then

up[i] := j;
weight[j] := wi + wj;

else
up[j] :=i;
weight[i] := wi +wj;

end{W-Union}

Lecture 1 - Intro, Graph Algorithms 91

Disjoint Union / Find Notes

• Worst case time complexity for a W-Union
is O(1) and for a PC-Find is O(log n).

• Time complexity for m operations on n
elements is O(m log* n) where log* n is a
very slow growing function. Essentially
constant time per operation!

• Using “ranked union” gives an even better
bound theoretically.

Lecture 1 - Intro, Graph Algorithms 92

Performance of W-Union / PC-
Find

• The time complexity of PC-Find is O(log n).
• An up tree formed by W-Union of height h

has at least 2h nodes. Inductive Proof.

h+1 h

Weight(T2) > 2h (ind. hyp.)
Weight(T1) > Weight(T2)

> 2h

Weight(T) > 2h +2h =2h+1

T1
T2

T

Lecture 1 - Intro, Graph Algorithms 93

Worst Case for PC-Find

n/2 Weighted Unions

n/4 Weighted Unions

Lecture 1 - Intro, Graph Algorithms 94

Example of Worst Cast (cont’)

After n -1 = n/2 + n/4 + …+ 1 Weighted Unions

Find
If there are n = 2k nodes then there
are k pointers on the longest path to root.

Lecture 1 - Intro, Graph Algorithms 95

Amortized Complexity

• For disjoint union / find with weighted
union and path compression.
– average time per operation is essentially a

constant.

– worst case time for a PC-Find is O(log n).

• An individual operation can be costly,
but over time the average cost per
operation is not.

