CSEP 521
Applied Algorithms
Spring 2005
Course Introduction
Graph Algorithms
Outline for the Evening

• Course administration
• Algorithm Design Process
• Spanning Tree
 – Depth-First Search
 – In-class exercise
 – Breath-First Search
• Minimum Spanning Tree
• Set Disjoint Union / Find
Instructors

• Instructor
 – Richard Ladner
 – ladner@cs.washington.edu
 – 206 543-9347

• TA
 – Neva Cherniavsky
 – (nchernia@cs.washington.edu)
Resources

• CSEP 521 Course Web Page

• Papers and Sections from Books

• Recommended Algorithms Book
 – Introduction to Algorithms, 2nd Edition by Cormen, Leiserson, Rivest, and Stein

• E-mail list
 – For information from instructors
 – Check web page to sign up

• Message Board
 – For discussion
Engagement by Students

• Weekly Assignments
 – Algorithm design and evaluation
 – Algorithm animation

• In-class activities

• Project with a written report
 – Evaluate several alternative approaches to algorithmically solve a problem
 – Must include readings from literature
 – May include an implementation study
 – May be done in small teams
Final Exam and Grading

• There will be no Final Exam
• Percentages
 – Weekly Assignments 60%
 – Project 40%
Some Topics

• Graph Algorithms
• Maximum Flow
• Linear Programming
• Data Compression
• Computational Geometry
• Computational Biology
Along the Way

- Analysis of algorithms
- Data structures
- NP-completeness
- Dynamic programming
- Greedy algorithms
- Branch-and-bound algorithms
- Approximation algorithms
- Classics of algorithms
Reading

• Chapter 21 - Disjoint Union / Find
• Chapter 22 - Graph algorithms
• Chapter 23 - Minimum Spanning Tree
• Chapter 24 - Shortest Paths
Applied Algorithm Scenario

1. Real world problem
2. Abstractly model the problem
3. Find abstract algorithm
4. Adapt to original problem
Modeling

• What kind of algorithm is needed
 – Sorting or Searching
 – Graph Problem
 – Linear Programming
 – Dynamic Programming
 – Clustering
 – Algebra

• Can I find an algorithm or do I have to invent one
Broadcasting in a Network

• Network of Routers
 – Organize the routers to efficiently broadcast messages to each other

Incoming message

• Duplicate and send to some neighbors.
• Eventually all routers get the message
Spanning Tree in a Graph

Vertex = router
Edge = link between routers

Spanning tree
- Connects all the vertices
- No cycles
Undirected Graph

• $G = (V, E)$
 – V is a set of vertices (or nodes)
 – E is a set of unordered pairs of vertices

$V = \{1, 2, 3, 4, 5, 6, 7\}$
$E = \{\{1, 2\}, \{1, 6\}, \{1, 5\}, \{2, 7\}, \{2, 3\}, \{3, 4\}, \{4, 7\}, \{4, 5\}, \{5, 6\}\}$

2 and 3 are adjacent
2 is incident to edge $\{2, 3\}$
Spanning Tree Problem

• Input: An undirected graph $G = (V,E)$. G is connected.

• Output: T contained in E such that
 – (V,T) is a connected graph
 – (V,T) has no cycles
Depth First Search Algorithm

- Recursive marking algorithm
- Initially every vertex is unmarked

\[
\text{DFS}(i: \text{vertex}) \\
\quad \text{mark } i; \\
\quad \text{for each } j \text{ adjacent to } i \text{ do} \\
\quad \quad \text{if } j \text{ is unmarked then } \text{DFS}(j) \\
\text{end}\{\text{DFS}\}
\]
Example of Depth First Search

DFS(1)
Example Step 2

DFS(1)
DFS(2)
Example Step 3

DFS(1)
DFS(2)
DFS(7)
Example Step 4

DFS(1)
DFS(2)
DFS(7)
DFS(5)
Example Step 5

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)
Example Step 6

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)
DFS(3)
Example Step 7

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)
DFS(3)
Example Step 8

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)
Example Step 9

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(4)
Example Step 10

DFS(1)
DFS(2)
DFS(7)
DFS(5)
Example Step 11

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(6)
Example Step 12

DFS(1)
DFS(2)
DFS(7)
DFS(5)
DFS(6)
Example Step 13

DFS(1)
DFS(2)
DFS(7)
DFS(5)
Example Step 14

DFS(1)
DFS(2)
DFS(7)
Example Step 15

DFS(1)
DFS(2)
Example Step 16

DFS(1)
Spanning Tree Algorithm

\[
\text{ST}(i: \text{ vertex}) \\
\quad \text{mark } i; \\
\quad \text{for each } j \text{ adjacent to } i \text{ do} \\
\quad \quad \text{if } j \text{ is unmarked then} \\
\quad \quad \quad \text{Add } \{i,j\} \text{ to } T; \\
\quad \quad \quad \text{ST}(j); \\
\quad \text{end}\{\text{ST}\}
\]

\[
\text{Main} \\
T := \text{empty set}; \\
\text{ST}(1); \\
\text{end}\{\text{Main}\}
\]
Applied Algorithm Scenario

1. Real world problem
2. Abstractly model the problem
3. Find abstract algorithm
4. Adapt to original problem

Evaluation:
- Wrong problem
- Wrong model
- Incorrect algorithm (poor performance)
Evaluation Step Expanded

Algorithm Correct?
 yes
 no
 - New algorithm
 - New model
 - New problem

Choose Data Structure

Performance?
 satisfactory

Implement
 unsatisfactory
 - New data structure
 - New algorithm
 - New model
Correctness of ST Algorithm

• There are no cycles in T
 – This is an invariant of the algorithm.
 – Each edge added to T goes from a vertex in T to a vertex not in T.

• If G is connected then eventually every vertex is marked. (Proof by contradiction)
Correctness (cont.)

• If G is connected then so is (V,T)
Data Structure Step

1. Algorithm Correct?
 - yes: Choose Data Structure
 - no:
 - New algorithm
 - New model
 - New problem

2. Choose Data Structure

3. Performance?
 - satisfactory: Implement
 - unsatisfactory:
 - New data structure
 - New algorithm
 - New model

Lecture 1 - Intro, Graph Algorithms
Edge List and Adjacency Lists

- **List of edges**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

- **Adjacency lists**

```
1: 2 - 5 - 6
2: 3 - 1 - 7
3: 2 - 4
4: 3 - 7 - 5
5: 6 - 1 - 7 - 4
6: 1 - 5
7: 4 - 5 - 2
```
Adjacency Matrix

![Adjacency Matrix Diagram]
Data Structure Choice

• Edge list
 – Simple but does not support depth first search

• Adjacency lists
 – Good for sparse graphs
 – Supports depth first search

• Adjacency matrix
 – Good for dense graphs
 – Supports depth first search
Spanning Tree with Adjacency Lists

ST(i: vertex)
 M[i] := 1;
 v := G[i];
 while not(v = null)
 j := v.vertex;
 if M[j] = 0 then
 Add {i,j} to T;
 ST(j);
 v := v.next;
 end{ST}

Main
 G is array of adjacency lists;
 M[i] := 0 for all i;
 T is empty;
 Spanning_Tree(1);
end{Main}

M is the marking array
Node of linked list

vertex next
Performance Step

- Algorithm Correct?
 - yes
 - Choose Data Structure
 - Performance?
 - satisfactory
 - Implement
 - unsatisfactory
 - New data structure
 - New algorithm
 - New model
 - no
 - New algorithm
 - New model
 - New problem
Performance of ST Algorithm

• n vertices and m edges
• Connected graph
• Storage complexity $O(m)$
• Time complexity $O(m)$
Other Uses of Depth First Search

- Popularized by Hopcroft and Tarjan 1973
- Connected components
- Biconnected components
- Strongly connected components in directed graphs
- Topological sorting of an acyclic directed graph
Depth-First Search in Directed Graphs

• Discovery and Finish Times
• Initially $D[i] = F[i] = 0$, time = 1

```
DFS(i: vertex)
    D[i] := time;
    time++;
    v := G[i];
    for each vertex j adjacent to i do
        if D[j] = 0 then DFS(j)
    F[i] := time;
    time++;
end{DFS}
```
Example

- Compute the discovery and finish times
- Classify the edges

Lecture 1 - Intro, Graph Algorithms
Edge Classification

- **Forward Edge** \((i,j)\)
- **Backward Edge**
- **Cross Edge**
- **Note** – A directed graph is acyclic if and only if it has no backward edges in a DFS.
ST using Breadth First Search 1

• Uses a queue to order search

Queue = 1
Breadth First Search 2

Queue = 2, 6, 5
Breadth First Search 3

Queue = 6, 5, 7, 3
Breadth First Search 4

Queue = 5, 7, 3
Breadth First Search 5

Queue = 7, 3, 4
Breadth First Search 6

Queue = 3, 4
Breadth First Search 7

Queue = 4
Breadth First Search 8

Queue =
Spanning Tree using Breadth First Search

BFS
Initialize T to be empty;
Initialize Q to be empty;
Enqueue(1,Q) and mark 1;
while Q is not empty do
 i := Dequeue(Q);
 for each j adjacent to i do
 if j is not marked then
 add {i,j} to T;
 Enqueue(j,Q) and mark j;
 end{BFS}
Depth First vs Breadth First

• Depth First
 – Stack or recursion
 – Many applications

• Breadth First
 – Queue (recursion no help)
 – Can be used to find shortest paths from the start vertex
Best Spanning Tree

• Each edge has the probability that it won’t fail
• Find the spanning tree that is least likely to fail
Example of a Spanning Tree

Probability of success = .85 x .95 x .89 x .95 x 1.0 x .84
= .5735
Minimum Spanning Tree Problem

• Input: Undirected Graph $G = (V,E)$ and a cost function C from E to the reals. $C(e)$ is the cost of edge e.

• Output: A spanning tree T with minimum total cost. That is: T that minimizes

$$C(T) = \sum_{e \in T} C(e)$$
Reducing Best to Minimum

Let $P(e)$ be the probability that an edge doesn’t fail. Define:

$$C(e) = -\log_{10}(P(e))$$

Minimizing $\sum_{e \in T} C(e)$

is equivalent to maximizing $\prod_{e \in T} P(e)$

because $\prod_{e \in T} P(e) = 10^{-\sum_{e \in T} C(e)}$
Example of Reduction

Best Spanning Tree Problem

Minimum Spanning Tree Problem
Minimum Spanning Tree

• Boruvka 1926
• Kruskal 1956
• Prim 1957 also by Jarnik 1930
• Karger, Klein, Tarjan 1995
 – Randomized linear time algorithm
 – Probably not practical, but very interesting
MST Optimality Principle

• $G = (V,E)$ with costs C. G connected.
• Let (V,A) be a subgraph of G that is contained in a minimum spanning tree. Let U be a set such that no edge in A has one end in U and one end in $V-U$. Let $C(\{u,v\})$ minimal and u in U and v in $V-U$. Let A' be A with $\{u,v\}$ added. Then (V,A') is contained in a minimum spanning tree.
Proof of Optimality Principle

$C(\{u,v\})$ is minimal
Proof of Optimality Principle

\[C(\{u,v\}) \text{ is minimal} \]
\[C(\{u,v\}) \leq C(\{x,y\}) \]
Proof of Optimality Principle

Let T' be a minimum spanning tree. Then

$$C(T') = C(T) + C\{u,v\} - C\{x,y\}$$

and

$$C(T') \leq C(T)$$

T' is also a minimum spanning tree.

Lecture 1 - Intro, Graph Algorithms
Kruskal’s Greedy Algorithm

Sort the edges by increasing cost;
Initialize A to be empty;
For each edge e chosen in increasing order do
 if adding e does not form a cycle then
 add e to A

Invariant: A is always contained in some minimum spanning tree
Example of Kruskal 1

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4
Example of Kruskal 2

\[
\begin{align*}
\{7,4\} & \{2,1\} \{7,5\} \{5,6\} \{5,4\} \{1,6\} \{2,7\} \{2,3\} \{3,4\} \{1,5\} \\
0 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 3 & 4
\end{align*}
\]
Example of Kruskal 2

\{7,4\} \{2,1\} \{7,5\} \{5,6\} \{5,4\} \{1,6\} \{2,7\} \{2,3\} \{3,4\} \{1,5\}

0 1 1 2 2 3 3 3 3 4
Example of Kruskal 3
Example of Kruskal 4

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4
Example of Kruskal 5

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4
Example of Kruskal 6

\[
\text{\{7,4\} \{2,1\} \{7,5\} \{5,6\} \{5,4\} \{1,6\} \{2,7\} \{2,3\} \{3,4\} \{1,5\}}
\]

0\ 1\ 1\ 2\ 2\ 3\ 3\ 3\ 3\ 4
Example of Kruskal 7

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

Lecture 1 - Intro, Graph Algorithms
Example of Kruskal 7

\begin{itemize}
\item \{7,4\} \{2,1\} \{7,5\} \{5,6\} \{5,4\} \{1,6\} \{2,7\} \{2,3\} \{3,4\} \{1,5\}
\item 0 1 1 2 2 3 3 3 3 4
\end{itemize}
Example of Kruskal 8,9
Data Structures for Kruskal

- Sorted edge list

 \[
 \{7,4\} \{2,1\} \{7,5\} \{5,6\} \{5,4\} \{1,6\} \{2,7\} \{2,3\} \{3,4\} \{1,5\}
 \]

 0 1 1 2 2 3 3 3 3 4

- Disjoint Union / Find

 - Union(a,b) - union the disjoint sets named by a and b
 - Find(a) returns the name of the set containing a
Example of DU/F 1

\begin{itemize}
 \item \text{Find(5) = 7}
 \item \text{Find(4) = 7}
\end{itemize}

\begin{center}
\begin{tabular}{c c c c c c c c c c}
 0 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 3 & 4
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{c c c c c c c c c c}
 \{7,4\} & \{2,1\} & \{7,5\} & \{5,6\} & \{5,4\} & \{1,6\} & \{2,7\} & \{2,3\} & \{3,4\} & \{1,5\}
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{c c c c c c c c c c}
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 2 & 3 & 4
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{c c c c c c c c c c}
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 2 & 3 & 4
\end{tabular}
\end{center}
Example of DU/F 2

Find(1) = 1
Find(6) = 7

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 3 4
Example of DU/F 3

Union(1,7)

\{7,4\} \{2,1\} \{7,5\} \{5,6\} \{5,4\} \{1,6\} \{2,7\} \{2,3\} \{3,4\} \{1,5\}

0 1 1 2 2 3 3 3 3 4
Kruskal’s Algorithm with DU / F

Sort the edges by increasing cost;
Initialize A to be empty;
for each edge \{i,j\} chosen in increasing order do
 u := Find(i);
 v := Find(j);
 if not(u = v) then
 add \{i,j\} to A;
 Union(u,v);
Up Tree for DU/F

Initial state

1 2 3 4 5 6 7

Intermediate state

1 2
 3
 5
 6
 4

7
DU/F Operation

- **Find(i)** - follow pointer to root and return the root.
- **Union(i,j)** - assuming i and j roots, point i to j.
Weighted Union

- Always point the smaller tree to the root of the larger tree
Path Compression

• On a Find operation point all the nodes on the search path directly to the root.
Elegant Array Implementation

1 2 3 4 5 6 7

up

weight

0 1 0 7 7 5 0

2 1 4
Up Tree Pseudo-Code

PC-Find(i : index)
 \[
 r := i; \\
 \text{while not\((up[r] = 0) \) do} \\
 r := up[r] \\
 k := up[i]; \\
 \text{while not\((k = r) \) do} \\
 up[i] := r; \\
 i := k; \\
 k := up[k] \\
\]
return\(r \)
end\{Find\}

W-Union(i,j : index)
 \[
 // i and j are roots \\
 wi := weight[i]; \\
 wj := weight[j]; \\
 \text{if} \ wi < wj \ \text{then} \\
 up[i] := j; \\
 weight[j] := wi + wj; \\
 \text{else} \\
 up[j] := i; \\
 weight[i] := wi +wj; \\
\]
end\{W-Union\}
Disjoint Union / Find Notes

• Worst case time complexity for a W-Union is \(O(1) \) and for a PC-Find is \(O(\log n) \).

• Time complexity for \(m \) operations on \(n \) elements is \(O(m \log^* n) \) where \(\log^* n \) is a very slow growing function. Essentially constant time per operation!

• Using “ranked union” gives an even better bound theoretically.
Performance of W-Union / PC-Find

• The time complexity of PC-Find is $O(\log n)$.
• An up tree formed by W-Union of height h has at least 2^h nodes. Inductive Proof.

\[
\text{Weight}(T_2) \geq 2^h \text{ (ind. hyp.)}
\]
\[
\text{Weight}(T_1) \geq \text{Weight}(T_2) \geq 2^h
\]
\[
\text{Weight}(T) \geq 2^h + 2^h = 2^{h+1}
\]
Worst Case for PC-Find

\[\frac{n}{2} \text{ Weighted Unions} \]

\[\frac{n}{4} \text{ Weighted Unions} \]
Example of Worst Cast (cont’)

After \(n - 1 = \frac{n}{2} + \frac{n}{4} + \ldots + 1 \) Weighted Unions

If there are \(n = 2^k \) nodes then there are \(k \) pointers on the longest path to root.
Amortized Complexity

• For disjoint union / find with weighted union and path compression.
 – average time per operation is essentially a constant.
 – worst case time for a PC-Find is $O(\log n)$.

• An individual operation can be costly, but over time the average cost per operation is not.