Due 3/7/05

1. In this problem you will modify a basic depth-first search (DFS) algorithm to find connected components of an undirected graph. Assume we are given the adjacency list representation of an undirected graph. There is an array $M[1..n]$, with entries initially 0, that is used to indicate if a vertex has been visited. The basic recursive DFS algorithm is

\[
\text{DFS}(i: \text{vertex})
\]
\[
M[i] := 1;
\]
\[
\text{for each vertex } j \text{ adjacent to } i \text{ do}
\]
\[
\quad \text{if } M[j] = 0 \text{ then DFS}(j)
\]
\[
\text{end DFS}
\]

This DFS algorithm will only search the vertices that are reachable from the vertex where the algorithm is first called. Thus, we need to apply it to all the vertices.

\[
\text{Main}
\]
\[
\quad \text{for each vertex } i \text{ do}
\]
\[
\quad \quad \text{if } M[i] = 0 \text{ then DFS}(i)
\]
\[
\text{end Main}
\]

Modify these algorithms so that i and j are in the same connected component if and only if $M[i] = M[j]$.

2. Problem 23-4 on page 577 of CLRS.

3. One of the most famous algorithms in computer science is Dijkstra’s algorithm which finds the shortest path from a single source in a weighted directed graph. This algorithms is used to find "best" routes in the Internet. Let $G = (V, E)$ be a directed graph with weight $w(i, j) > 0$ for each $(i, j) \in E$. Let $s \in V$ be the source vertex. We will compute $d(i)$ and $p(i)$ for each vertex i where $d(i)$ is the length of the shortest past from s to i and $p(i)$ is the predecessor of i on a shortest path from s to i. Initially, $d(s) = 0$ and $d(i) = \infty$ for all other i. Initially $p(i) = 0$ for all i. Initially, let $Q = V$

\[
\text{Dijkstra}
\]
\[
\quad \text{while } Q \text{ is not empty do}
\]
\[
\quad \quad \text{choose } i \text{ from } Q \text{ with minimal } d(i);
\]
\[
\quad \quad \text{remove } i \text{ from } Q;
\]
\[
\quad \quad \text{for each } j \text{ adjacent to } i
\]
\[
\end Dijkstra
\]
if \(d(j) > d(i) + w(i,j) \) then
\[
\begin{align*}
 d(j) &:= d(i) + w(i,j); \\
p(j) &:= i
\end{align*}
\]
end{Dijkstra}

It can be shown as an invariant that if \(i \) is not in \(Q \) then the current value of \(d(i) \) is the length of the shortest path from \(s \) to \(i \) and \(p(i) \) is the predecessor on such a path.

In this problem you will show how Dijkstra’s algorithm can be adapted to solve the problem of **maximally reliable path**. In this problem we are given a weighted directed graph where the weight of the edge \((i, j)\) represents the probability that the edge \((i, j)\) will be available for any path. This probability is just a real number \(r(i, j) \) where \(0 \leq r(i, j) \leq 1 \). The value \(1 - r(i, j) \) is the probability that edge \((i, j)\) will fail. We assume that edges fail independently. Modify Dijkstra’s algorithm to solve the problem, given \(s \) and \(t \) determine the most reliable path from \(s \) to \(t \). The reliability of a path is the product of availability probabilities of the edges on the path.