CSEP 521- Applied Algorithms

NP-hardness

Reading:
• Skiena, chapter 6
• CLRS, chapter 36 (1st Ed.)
chapter 34 (2nd Ed.)

NP-Completeness Theory

I.
Solve it in poly-time
I can’t
You’re fired

II.
Solve it in poly-time
No one knows to do it. It is NP-hard!

Polynomial-Time Algorithms

• Some problems are intractable: as they grow large, we are unable to solve them in reasonable time.
• Invented by Cook in 1971.
• What constitutes reasonable time? Standard working definition: polynomial time
 - On an input of size n the worst-case running time is $O(n^k)$ for some constant k
 - Polynomial time: $O(n^2)$, $O(n^3)$, $O(1)$, $O(n \log n)$
 - Not in polynomial time: $O(2^n)$, $O(n^n)$, $O(n!)$
Polynomial-Time Algorithms

- Are some problems solvable in polynomial time?
 - Of course: most of the algorithms we've studied so far provide polynomial-time solution to some problems.
 - We define P to be the class of problems solvable in polynomial time.
- Are all problems solvable in polynomial time?
 - No: Turing's "Halting Problem" is not solvable by any computer, no matter how much time is given.
 - Such problems are clearly intractable, not in P.

The Unsolvable Halting Problem

- For a given program P and input x, does P halt on x?
- Suggested solution: Let's run P on x and check.
- But what if P doesn't halt after 2 minutes? 10 days? A year?
 Turing: The halting problem cannot be solved!
 Proof: In bonus slides.

So some problems cannot be solved at all

NP-Complete Problems

- The NP-Complete problems are an interesting class of solvable problems whose status is unknown
 - No polynomial-time algorithm has been discovered for an NP-Complete problem.
 - No above-polynomial lower bound has been proved for any NP-Complete problem, either.
- We call this the P = NP question
 - The biggest open problem in CS.
An NP-Complete Problem: Hamiltonian Cycles

- An example of an NP-Complete problem:
 - A *Hamiltonian cycle* of an undirected graph is a simple cycle that contains every vertex.
 - The Hamiltonian-cycle problem: given a graph G, does it have a Hamiltonian cycle?
 - A naive algorithm for solving the Hamiltonian-cycle problem: check all paths.
 - Running time? Exponential in size of G.

![Diagram of Hamiltonian cycles](image)

P and NP

- As mentioned, P is the set of problems that can be solved in polynomial time.
- NP (*non-deterministic polynomial time*) is the set of problems that can be solved in polynomial time by a *non-deterministic computer*.

Non-determinism

- Think of a non-deterministic computer as a computer that magically "guesses" a solution, then has to verify that it is correct.
 - If a solution exists, the computer always guesses it.
 - One way to imagine it: a parallel computer that can freely spawn an infinite number of processes.
 - Have one processor work on each possible solution.
 - All processors attempt to verify that their solution works.
 - A processor that finds it has a working solution announce it.
 - So: $NP =$ problems *verifiable* in polynomial time.

P and NP

- Summary so far:
 - $P =$ problems that can be solved in polynomial time
 - $NP =$ problems for which a solution can be verified in polynomial time
 - Unknown whether $P = NP$ (most suspect not)
- Hamiltonian-cycle problem is in NP:
 - Cannot solve in polynomial time.
 - Easy to verify solution in polynomial time.
NP-Complete Problems

- We will see that NP-Complete problems are the “hardest” problems in NP:
 - If any one NP-Complete problem can be solved in polynomial time...
 - ...then every NP-Complete problem can be solved in polynomial time...
 - ...and in fact every problem in NP can be solved in polynomial time (which would show P = NP)
 - Thus: solve hamiltonian-cycle in $O(n^{100})$ time, you’ve proved that P = NP. Retire rich & famous.

Why Prove NP-completeness?

- Though nobody has proven that $P \neq \text{NP}$, if you prove a problem is NP-Complete, most people accept that it is probably intractable.
- Therefore it can be important to prove that a problem is NP-Complete
 - Don’t need to come up with an efficient algorithm.
 - Can instead work on approximation algorithms.

Reduction

- The crux of NP-Completeness is reducibility
 - Informally, a problem P can be reduced to another problem Q if any instance of P can be “easily rephrased” as an instance of Q, the solution to which provides a solution to the instance of P
 - What do you suppose “easily“ means?
 - This rephrasing is called transformation
 - Intuitively: If P reduces to Q, P is “no harder to solve” than Q.
Reducibility - An example

- P: Given a set of Booleans \(\{x_i \in \{ \text{TRUE, FALSE} \} \) \), is at least one \(\text{TRUE} \)?
- Q: Given a set of integers, is their sum positive?
- Transformation: given \((x_1, x_2, \ldots, x_n) \) booleans, let \((y_1, y_2, \ldots, y_n) \) be a set of integers where \(y_i = 1 \) if \(x_i = \text{TRUE} \), and \(y_i = 0 \) if \(x_i = \text{FALSE} \).
- P is no harder than Q: if we can solve Q we can run the transformation to get a solution to P.

Using Reductions

- If P is \emph{polynomial-time reducible} to Q, we denote this \(P \preceq_p Q \).
- Definition of NP-complete:
 - P is NP-complete if \(P \in \text{NP} \) and P is NP-hard.
- Definition of NP-Hard:
 - P is NP-hard if all problems R of NP are reducible to P. Formally: \(R \preceq_p P, \forall R \in \text{NP} \).
- If \(P \preceq_p Q \) and P is NP-hard, Q is also NP-hard.

Using Reductions

- Given one NP-Complete problem, we can prove that many interesting problems NP-Complete. This includes:
 - Graph coloring
 - Hamiltonian path/cycle
 - Knapsack problem
 - Traveling salesman
 - Job scheduling
 - Many, many, many more (see the compendium)

Optimization v.s. Decision

To simplify things, we will worry only about \emph{decision problems} with a yes/no answer
- Many problems are \emph{optimization problems}, but we can often re-cast them as decision problems

Example: Graph coloring.
- Optimization problem: what is the minimal number of colors needed to color \(G \)?
- Reporting problem: Can \(G \) be colored using \(k \) colors? If so, report a legal \(k \)-coloring.
- Decision problem: Can \(G \) be colored using \(k \) colors?
Subset Sum

- Input: Integers $a_1, a_2, ..., a_n, b$
- Output: Determine if there is subset $X \subseteq \{1, 2, ..., n\}$ with the property $\sum_{i \in X} a_i = b$
- Non-deterministic algorithm: Guess the subset X and check the sum adds up to b.

Decision Problems are Polynomial Time Equivalent to their Reporting Problems

- Example: Subset sum
 - Decision Problem: Determine if a subset sum exists.
 - Reporting Problem: Determine if a subset sum exists and report one if it does.
- Using decision to report
 - Let subset-sum(A, b) returns true if some subset of A adds up to b. Otherwise it returns false.

Reporting Reduces to Decision

Assume that subset-sum ($\{a_1, ..., a_n\}, b$) is true
X := the empty set;
for i = 1 to n do
 if subset-sum($\{a_1, ..., a_n\}, b - a_i$) then
 add i to X;
 b := b - a_i;

Example: $\{3, 5, 2, 7, 4, 2\}; b = 11$
$\{5, 2, 7, 4, 2\}; b = 11 - 3 ? True, X = \{3\}, b = 8$
$\{2, 7, 4, 2\}, b = 8 - 5 ? False$
$\{7, 4, 2\}, b = 8 - 2 ? True, X = \{3, 2\}, b = 6$
$\{4, 2\}, b = 6 - 7 ? False$
$\{2\}, b = 6 - 4 ? True, X = \{3, 2, 4\}, b = 2$
$b = 4 - 2 ? True, X = \{3, 2, 4, 2\}$

Optimization Reduces to Decision

Example: Graph coloring
- k=1, repeat:
 - Is G k-colorable?
 - If yes, k is the answer to the optimization problem.
 - If no, k := k+1.
- Can do even better with binary search.
- In both cases, the number of iterations is polynomial (G is clearly n-colorable)
Proving NP-Completeness

- How do we prove a problem P is NP-Complete?
 - Pick a known NP-Complete problem Q
 - Reduce Q to P (show $Q \leq_p P$, use P to solve Q)
 - Describe a transformation that maps instances of Q to instances of P, s.t. “yes” for P = “yes” for Q
 - Prove the transformation works
 - Prove it runs in polynomial time
 - And yeah, prove $P \in \text{NP}$
- We need at least one problem for which NP-hardness is known. Once we have one, we can start reducing it to many problems.

The SAT Problem

- The first problems to be proved NP-Complete was satisfiability (SAT):
 - Given a Boolean expression on n variables, can we assign values such that the expression is TRUE?
 - Ex: $(x_1 \land x_2) \lor (x_2 \lor x_3)$
 - Cook’s Theorem: The satisfiability problem is NP-Complete
 - Note: Argue from first principles, not reduction (any computation can be described using SAT expressions)
 - Proof: not here

Conjunctive Normal Form

- Even if the form of the Boolean expression is simplified, the problem may be NP-Complete
 - Literal: an occurrence of a Boolean or its negation
 - A Boolean formula is in conjunctive normal form, or CNF, if it is an AND of clauses, each of which is an OR of literals
 - Ex: $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3 \lor x_4) \land (\neg x_5)$
 - 3-CNF: each clause has exactly 3 distinct literals
 - Ex: $(x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor x_4) \land (\neg x_5 \lor x_3 \lor x_4)$
 - Note: true if at least one literal in each clause is true

The 3-CNF Problem

- Theorem: Satisfiability of Boolean formulas in 3-CNF form (the 3-CNF Problem) is NP-Complete
 - Proof: not here
- The reason we care about the 3-CNF problem is that it is relatively easy to reduce to others.
 - Thus, knowing that 3-CNF is NP-Complete we can prove many seemingly unrelated problems are NP-Complete.
The k-clique Problem

- A clique in a graph G is a subset of vertices fully connected to each other, i.e. a complete subgraph of G.
- The clique problem: how large is the maximum-size clique in a graph?
- Can we turn this into a decision problem?
- A: Yes, we call this the k-clique problem
- Is the k-clique problem within NP?
 Yes: Nondeterministic algorithm: guess k vertices then check that there is an edge between each pair of them.

4-clique:

\[
\begin{array}{c}
\text{3-CNF } \rightarrow \text{ Clique} \\
\end{array}
\]

- The reduction:
 - Let $F = C_1 \land C_2 \land \ldots \land C_k$ be a 3-CNF formula with k clauses, each of which has 3 distinct literals.
 - For each clause, put three vertices in the graph, one for each literal.
 - Put an edge between two vertices if they are in different triples and their literals are consistent, meaning not each other’s negation.

\[
F = (x \lor y \lor z) \land (\neg x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z)
\]

Construction by Example

An edge means ‘these two literals do not contradict each other’.

3-CNF \rightarrow Clique

- How can we prove that k-clique is NP-hard?
- We need to show that if we can solve k-clique then we can solve a problem which is known to be NP-hard.
- We will do it for 3-CNF:
- Given a 3-CNF formula, we will transform it to an instance of k-clique (a graph and a number k), for which a k-clique exists iff the 3-CNF formula is satisfiable.
Construction by Example

\[F = (x \lor y \lor z) \land (\neg x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \]
\[x = 1, \ y = 0, \ z = 1 \]

Any clique of size \(k \) must include exactly one literal from each clause.

General Construction

\[F = \bigcap_{i=1}^{k} \bigcup_{j=1}^{3} a_{ij} \] where \(a_{ij} \in \{ x_1, \neg x_1, \ldots, x_n, \neg x_n \} \)
\[G = (V, E) \] where
\[V = \{ a_{ij} : 1 \leq i \leq k, 1 \leq j \leq 3 \} \]
\[E = \{ (a_{ij}, a_{i'j'}) : i \neq i' \text{ and } a_{ij} \neq \neg a_{i'j'} \} \]

\(k \) is the number of clauses

The Reduction Argument

- We need to show
 - \(F \) satisfiable implies \(G \) has a clique of size \(k \).
 - Given a satisfying assignment for \(F \), for each clause pick a literal that is satisfied. Those literals in the graph \(G \) form a \(k \)-clique.
 - \(G \) has a clique of size \(k \) implies \(F \) is satisfiable.
 - Given a \(k \)-clique in \(G \), assign TRUE to each literal in the clique. This yields a satisfying assignment to \(F \) (why?).

Clique to Assignment

\[F = (x \lor y \lor z) \land (\neg x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \]

\[x \]
\[y \]
\[z \]
\[-x \]
\[-y \]
\[-z \]

\[y = 0, \ z = 1 \]
Assignment to Clique (2-CNF)

\[F = (x \lor y) \land (\neg x \lor y) \land (\neg x \lor \neg y) \land (x \lor \neg y) \]

\[G \]

\[x \quad y \quad \neg x \quad \neg y \]

\[G \text{ has no 4-clique} \rightarrow \text{no assignment exists.} \]

What is the max-clique size?

How does this value related to the formula?

The Vertex Cover Problem

- A vertex cover for a graph \(G \) is a set of vertices incident to every edge in \(G \)
- The vertex cover problem: what is the minimum size vertex cover in \(G \)?
- Restated as a decision problem: does a vertex cover of size \(k \) exist in \(G \)?
- Theorem: vertex cover is NP-Complete

Clique \(\rightarrow \) Vertex Cover

- First, show vertex cover in NP (How?)
- Next, reduce \(k \)-clique to vertex cover:
 - The complement \(G_c \) of a graph \(G \) contains exactly those edges not in \(G \)
 - Compute \(G_c \) in polynomial time
 - Claim: \(G \) has a clique of size \(k \) iff \(G_c \) has a vertex cover of size \(|V| - k \)

A vertex cover of size 5

A vertex cover of size 4
Clique → Vertex Cover

Claim: If G has a clique of size k, then G_C has a vertex cover of size $|V| - k$
- Let V' be the k-clique
- Then $V - V'$ is a vertex cover in G_C
 - Let (u,v) be any edge in G_C
 - Then u and v cannot both be in V' (why?)
 - Thus at least one of u or v is in $V - V'$ (why?), so the edge (u,v) is covered by $V - V'$
 - Since true for any edge in G_C, $V - V'$ is a VC.

The Traveling Salesman Problem:

- A well-known optimization problem:
 - Optimization variant: a salesman must travel to n cities, visiting each city exactly once and finishing where he begins. How to minimize travel time?
 - Model as complete graph with cost $c(i,j)$ to go from city i to city j
- How would we turn this into a decision problem?
 - Answer: ask if there exists a path with cost $< k$

Clique → Vertex Cover

Claim: If G_C has a vertex cover $V' \subseteq V$, with $|V'| = |V| - k$, then G has a clique of size k
- For all $u,v \in V$, if $(u,v) \in G_C$ then $u \in V'$ or $v \in V'$ or both (Why?)
- In other words: if $u \notin V'$ and $v \notin V'$, then $(u,v) \in E$
- Therefore, all vertices in $V - V'$ are connected by an edge, thus $V - V'$ is a clique
- Since $|V| - |V'| = k$, the size of the clique is k
Hamiltonian Cycle \Rightarrow TSP

- The hamiltonian-cycle problem: given a graph G, is there a simple cycle that contains every vertex?
- To transform ham. cycle problem on graph $G = (V,E)$ to TSP, create graph $G' = (V,E')$:
 - G' is a complete graph
 - Edges in E' also in E have cost 0
 - All other edges in E' have cost 1
- TSP: is there a TS cycle on G' with cost 0?
 - If G has a ham. cycle, G' has a TS cycle with cost 0
 - If G' has TS cycle with cost 0, every edge of that cycle has cost 0 and is thus in G. Thus, G has a ham. cycle.

Other NP-Complete Problems

- **Partition**: Given a set of integers, whose total sum is $2S$, can we partition them into two sets, each adds up to S?
- **Subset-sum**: Given a set of integers, does there exist a subset that adds up to some target T?
- **Graph coloring**: can a given graph be colored with k colors such that no adjacent vertices are the same color?

Independent Set

- Input: A graph $G=(V,E)$, k
- Problem: Is there a subset S of V of size at least k such that no pair of vertices in S has an edge between them.
- Maximum independent set problem: find a maximum size independent set of vertices.

Steiner Tree

- Input: A graph $G=(V,E)$, a subset T of the vertices V, and a bound B
- Problem: Is there a tree connecting all the vertices of T of total weight at most B?
- Application: Network design and wiring layout.
- The case $T=V$ is polynomially solvable (this is the MST problem).
Exact Cover

- Input: A set $U = \{u_1, u_2, ..., u_n\}$ and subsets $S_1, S_2, ..., S_m \subseteq U$
- Output: Determine if there is a set of disjoint sets that union to U, that is, a set X such that:
 - $X \subseteq \{1, 2, ..., m\}$
 - $i, j \in X$ and $i \neq j$ implies $S_i \cap S_j = \emptyset$
 - $\bigcup_{i \in X} S_i = U$

Example of Exact Cover

$U = \{a, b, c, d, e, f, g, h, i\}$

$\{a, c, e\}, \{a, f, g\}, \{b, d\}, \{b, f, h\}, \{e, h, i\}, \{f, h, i\}, \{d, g, i\}$

Exact Cover:

$\{a, c, e\}, \{b, f, h\}, \{d, g, i\}$

3-Partition

- Input: A set of numbers $A = \{a_1, a_2, ..., a_{3m}\}$ and a number B such that $B/4 < a_i < B/2$ and $\sum_{i=1}^{3m} a_i = mB$.
- Output: Determine if A can be partitioned into $S_1, S_2, ..., S_m$ such that for all i
 - $\sum_{j \in S_i} a_j = B$.

Note: each S_i must contains exactly 3 elements.

Example of 3-Partition

- $A = \{26, 29, 33, 33, 33, 34, 35, 36, 41\}$
- $B = 100$, $m = 3$
- 3-Partition:
 - 26, 33, 41
 - 29, 36, 35
 - 33, 33, 34
Bin Packing

- Input: A set of numbers $A = \{a_1, a_2, \ldots, a_m\}$ and numbers B (capacity) and K (number of bins).
- Output: Determine if A can be partitioned into S_1, S_2, \ldots, S_K such that for all i
 $$\sum_{j \in S_i} a_j \leq B.$$

Bin Packing Example

- $A = \{2, 2, 3, 3, 4, 4, 5, 5, 5\}$
- $B = 10$, $K = 4$
- Bin Packing:
 - 3, 3, 4
 - 2, 3, 5
 - 5, 5
 - 2, 4, 4

Perfect fit!

Comments on NP-completeness proofs

- Hardest part -- choosing a good problem from which to do reduction
- Must do reduction from arbitrary instance
- Common error -- backwards reduction.
 Remember that you are using your problem as a black box for solving known NPC problem
- Freedom in reduction: if problem includes parameter, can set it in a convenient way
- Size of problem can change as long as it doesn’t increase by more than polynomial

Comments cont.

- When a problem is generalization of known NP-complete problem, a reduction is usually easy.
- Example: Set Cover
 - Given U, set of elements, and collection S_1, S_2, \ldots, S_n of subsets of U, and an integer k
 - Determine if there is a subset W of U of size at most k that intersects every set S_i
- Reduction from Vertex Cover
 - U set of vertices
 - S_i is the i^{th} edge
The Unsolvable Halting Problem

- For a given program P and input x, does P halt on x?

Turing: The halting problem cannot be solved!

Proof: Assume that there is an algorithm \text{Halt}(a, i) that decides if the algorithm encoded by the string a will halt when given as input the string i,

The Halting Problem

Consider the following program

\text{Funny} (s) // s is a string decoding a program.
 if (\text{Halt}(s, s) = "no") return ("yes")
 else {some infinite loop}

Note: \text{Funny}(s) halts \iff \text{Halt}(s, s)=\text{no}.

Let T be the string decoding the program \text{Funny}.
What is the output of \text{Halt}(T, T)?
If the output is 'No' then \text{Halt} (T,T)= Yes
If the output is 'Yes' then \text{Halt} (T,T)= No