CSEP 521 - Applied Algorithms

Dynamic Programming

Reading:
- Skiena, chapter 3
- CLRS: chapter 16 (1st ed.)
 chapter 15 (2nd ed.)

Dynamic Programming Example:
Longest Common Subsequence

- Longest common subsequence (LCS) problem:
 - Given two sequences x[1..m] and y[1..n], find the longest subsequence which occurs in both
 - Example: \(x = \{A B C B D A B \} \), \(y = \{B D C A B A \} \)
 - \(\{B C\} \) and \(\{A A\} \) are both subsequences of both
 - What is the LCS? BCAB, BCBA
 - Brute-force algorithm: For every subsequence of \(x \), check if it's a subsequence of \(y \)
 - How many subsequences of \(x \) are there?
 - What will be the running time of the brute-force alg?

LCS Algorithm

- Brute-force algorithm: \(2^m \) subsequences of \(x \) each takes \(O(n) \) to search in \(y \): \(O(n \cdot 2^m) \)
- We can do better: for now, let's only worry about the problem of finding the length of LCS
 - When finished we will see how to backtrack from this solution back to the actual LCS
- Notice LCS problem has optimal substructure
 - Subproblems: LCS of pairs of prefixes of \(x \) and \(y \)
Finding LCS Length

- Define $c[i,j]$ to be the length of the LCS of $X_i=x[1..i]$ and $Y_j=y[1..j]$
 - What is the length of LCS of x and y?
 $C[m,n]$
- Theorem:
 $$c[i,j]= \begin{cases}
 c[i-1,j-1]+1 & \text{if } x[i]=y[j], \\
 \max(c[i,j-1],c[i-1,j]) & \text{otherwise}
 \end{cases}$$
- What is this really saying?

LCS recursive solution

- When we calculate $c[i,j]$, we consider two cases:
 - **First case**: $x[i]=y[j]$: one more symbol in strings X and Y matches, so the length of LCS X_i and Y_j equals to the length of LCS of smaller strings X_{i-1} and Y_{j-1}, plus 1.
 - **Second case**: $x[i] \neq y[j]$
 - As symbols don't match, our solution is not improved, and the length of LCS(X_i, Y_j) is the same as before (i.e. maximum of LCS(X_i, Y_{j-1}) and LCS(X_{i-1}, Y_j))

Why not just take the length of LCS(X_{i-1}, Y_{j-1})?

Answer: Let $x=abc \quad y=db$

- $c[3,2]=\max(c(3,1), c(2,2))=\max(0,1)=1$
- $c[3,2] \neq c(2,1)=0$
LCS Algorithm

- First we’ll find the length of LCS. Later we’ll modify the algorithm to find LCS itself.
- Define X_i, Y_j to be the prefixes of X and Y of length i and j respectively.
- Define $c[i,j]$ to be the length of LCS of X_i and Y_j.
- The length of LCS of X and Y is $c[m,n]$.

$$c[i,j]=
\begin{cases}
 c[i-1,j-1]+1 & \text{if } x[i]=y[j], \\
 \max(c[i,j-1],c[i-1,j]) & \text{otherwise}
\end{cases}$$

LCS Example

We’ll see how LCS algorithm works on the following example:

- $X = ABCB$
- $Y = BDCAB$

What is the Longest Common Subsequence of X and Y?

$LCS(X, Y) = BCB$

LCS Length Algorithm

$LCS-Length(X, Y)$
1. $m = \text{length}(X)$ // # of symbols in X
2. $n = \text{length}(Y)$ // # of symbols in Y
3. for $i = 1$ to m $c[i,0] = 0$ // special case: Y_0
4. for $j = 1$ to n $c[0,j] = 0$ // special case: X_0
5. for $i = 1$ to m // for all X_i
6. for $j = 1$ to n // for all Y_j
7. if ($X_i == Y_j$)
8. $c[i,j] = c[i-1,j-1]+1$
9. else $c[i,j] = \max(c[i-1,j], c[i,j-1])$
10. return c
LCS Example (0)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>X</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[X = ABCB; \quad m = |X| = 4 \]

\[Y = BDCAB; \quad n = |Y| = 5 \]

Allocate array \(c[5,4] \)

LCS Example (1)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Y</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

for \(i = 1 \) to \(m \) \(c[i,0] = 0 \)

for \(j = 1 \) to \(n \) \(c[0,j] = 0 \)

LCS Example (2)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Y</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{if} \ (X_i = Y_j) \]

\[c[i,j] = c[i-1,j-1] + 1 \]

\[\text{else} \quad c[i,j] = \max(c[i-1,j], c[i,j-1]) \]

LCS Example (3)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Y</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{if} \ (X_i = Y_j) \]

\[c[i,j] = c[i-1,j-1] + 1 \]

\[\text{else} \quad c[i,j] = \max(c[i-1,j], c[i,j-1]) \]

LCS Example (4)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Y</td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{if} \ (X_i = Y_j) \]

\[c[i,j] = c[i-1,j-1] + 1 \]

\[\text{else} \quad c[i,j] = \max(c[i-1,j], c[i,j-1]) \]
LCS Example (4)

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
i & j & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
\hline
0 & Xi & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
1 & A & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline
2 & B & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
3 & C & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
4 & B & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

if (\(X_i = Y_j \))
\[
c[i,j] = c[i-1,j-1] + 1
\]
else \(c[i,j] = \max(c[i-1,j], c[i,j-1]) \)

\[
i=1 \quad j=4
\]

LCS Example (5)

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
i & j & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
\hline
0 & Xi & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
1 & A & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
2 & B & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
3 & C & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
4 & B & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

if (\(X_i = Y_j \))
\[
c[i,j] = c[i-1,j-1] + 1
\]
else \(c[i,j] = \max(c[i-1,j], c[i,j-1]) \)

\[
i=1 \quad j=5
\]

LCS Example (6)

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
i & j & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
\hline
0 & Xi & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
1 & A & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
2 & B & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
3 & C & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
4 & B & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

if (\(X_i = Y_j \))
\[
c[i,j] = c[i-1,j-1] + 1
\]
else \(c[i,j] = \max(c[i-1,j], c[i,j-1]) \)

\[
i=2 \quad j=1
\]

LCS Example (7)

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
i & j & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
\hline
0 & Xi & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
1 & A & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
2 & B & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline
3 & C & 0 & 0 & 1 & 1 & 1 & 1 \\
\hline
4 & B & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

if (\(X_i = Y_j \))
\[
c[i,j] = c[i-1,j-1] + 1
\]
else \(c[i,j] = \max(c[i-1,j], c[i,j-1]) \)

\[
i=2 \quad j=2,3,4
\]
LCS Example (8)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

if \(X_i = Y_j \)
\[c[i,j] = c[i-1,j-1] + 1 \]
else \[c[i,j] = \max(c[i-1,j], c[i,j-1]) \]

\[i=2, j=5 \]

LCS Example (9)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

if \(X_i = Y_j \)
\[c[i,j] = c[i-1,j-1] + 1 \]
else \[c[i,j] = \max(c[i-1,j], c[i,j-1]) \]

\[i=3, j=1,2 \]

LCS Example (10)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

if \(X_i = Y_j \)
\[c[i,j] = c[i-1,j-1] + 1 \]
else \[c[i,j] = \max(c[i-1,j], c[i,j-1]) \]

\[i=3, j=3 \]

LCS Example (11)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

if \(X_i = Y_j \)
\[c[i,j] = c[i-1,j-1] + 1 \]
else \[c[i,j] = \max(c[i-1,j], c[i,j-1]) \]

\[i=3, j=4,5 \]
LCS Example (12)

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>X<sub>i</sub></td>
<td>Y<sub>j</sub></td>
<td>B</td>
<td>D</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

if (X_i == Y_j)
 c[i,j] = c[i-1,j-1] + 1
else c[i,j] = max(c[i-1,j], c[i,j-1])

LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array c[m,n]
- So what is the running time?

O(mn)
since each c[i,j] is calculated in constant time, and there are mn elements in the array.
How to find actual LCS

- So far, we have just found the length of LCS, but not LCS itself.
- We want to modify this algorithm to make it output the Longest Common Subsequence of X and Y

Each \(c[i,j] \) depends on \(c[i-1,j] \) and \(c[i,j-1] \) or \(c[i-1,j-1] \)
For each \(c[i,j] \) we can say how it was acquired:

For example, here
\[
c[i,j] = c[i-1,j-1] + 1 = 2 + 1 = 3
\]

Finding LCS

<table>
<thead>
<tr>
<th>(i)</th>
<th>(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(X_i)</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
</tr>
</tbody>
</table>

Finding LCS (2)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(X_i)</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
</tr>
</tbody>
</table>

LCS (reversed order): B C B
LCS (straight order): B C B
(this string turned out to be a palindrome)
Dynamic programming—summary of LCM example:

- We were able to use DP since the solution can be recursively described in terms of solutions to subproblems (optimal substructure).
- We were able to find solutions to subproblems and to store them in memory for later use.
- More efficient than "brute-force methods", which solve the same subproblems over and over again.

Properties of a problem that can be solved with dynamic programming

- Simple Subproblems
- We should be able to break the original problem to smaller subproblems that have the same structure.
- Optimal Substructure of the problems
- The solution to the problem must be a composition of subproblem solutions.
- Subproblem Overlap
- Optimal subproblems to unrelated problems can contain subproblems in common.

The Knapsack problem

- You are about to go to a camp.
- There are many items you want to pack.
- You have one knapsack. The total weight you can carry is some fixed number W.
- Every item in your list has has some weight, \(w_i\), and some value, \(b_i\), that measures how much you really need it.
- You need to pack the knapsack in a way that maximizes the total value of the packed items.

<table>
<thead>
<tr>
<th>Item #</th>
<th>Weight</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Can we use Dynamic Programming?

- Does the solution of the problem includes solutions to subproblems?
- Can we find a recursive formula for the solution?
- Can we recursively solve subproblems, starting from the trivial case, and save their solutions in memory?
- Does it mean that at the end we’ll get the solution of the whole problem?
The Knapsack problem:

<table>
<thead>
<tr>
<th>Items</th>
<th>w_i</th>
<th>b_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Max weight: $W = 20$

The Knapsack problem: brute-force approach

Let’s first solve this problem with a straightforward algorithm
- Since there are n items, there are 2^n possible combinations of items.
- We go through all combinations and find the one with the most total value and with total weight less or equal to W
- Running time will be $O(2^n)$ - not acceptable

The Knapsack problem

- Can we do better?
- Yes, with an algorithm based on dynamic programming
- We need to carefully identify the subproblems

Let’s try this:
If items are labeled 1..n, then a subproblem would be to find an optimal solution for $S_k = \{\text{items labeled } 1, 2, .., k\}$

Defining a Subproblem

If items are labeled 1..n, then a subproblem would be to find an optimal solution for $S_k = \{\text{items labeled } 1, 2, .., k\}$
- This is a valid subproblem definition.
- The next question is: can we describe the final solution (S_n) in terms of subproblems (S_k)?
- Unfortunately, we can’t do that.
- Here is why....
Defining a Subproblem

<table>
<thead>
<tr>
<th>Item i</th>
<th>Weight W_i</th>
<th>Benefit b_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

- Max weight: $W = 20$
- Best solution for S_1 is $\{1\}$, weight=2, benefit =1
- Best solution for S_2 is $\{1,2\}$, weight=5, benefit =7
- Best solution for S_3 is $\{1,2,3\}$, weight=9, benefit =12
- Best solution for S_4 is $\{1,2,3,4\}$, weight=14, benefit =20
- Best solution for S_5 is $\{1,3,4,5\}$, weight=20, benefit =26

Best solution for S_4 is not part of the best solution for S_5!!

Defining a Subproblem (cont.)

- As we have seen, the solution for S_4 is not part of the solution for S_5
- So our definition of a subproblem is flawed and we need another one!
- Let’s add another parameter: w, which will represent the weight for each subset of items
- The subproblem then will be to compute $B[k,w]$ - the best value of a subset of S_k with total weight at most w.

Recursive Formula for subproblems

- Recursive formula for subproblems: $B[k,w] = \begin{cases} B[k-1,w] & \text{if } w_k > w \\ \max\{B[k-1,w], B[k-1,w-w_k] + b_k\} & \text{else} \end{cases}$
- It means, that the best subset of S_k that has total weight w is one of the two:
 1) the best subset of S_{k-1} that has total weight w, or
 2) the best subset of S_{k-1} that has total weight $w-w_k$ plus the item k
Knapsack Algorithm

for \(w = 0 \) to \(W \)
\[B[0,w] = 0 \]

for \(i = 0 \) to \(n \)
\[B[i,0] = 0 \]

for \(w = 0 \) to \(W \)
 if \(w_i \leq w \) // item \(i \) can be part of the // solution
 if \((b_i + B[i-1,w-w_i]) > B[i-1,w] \)
 \[B[i,w] = b_i + B[i-1,w-w_i] \]
 else
 \[B[i,w] = B[i-1,w] \]
 else
 \[B[i,w] = B[i-1,w] \] // \(w_i > w \)

Running time

for \(w = 0 \) to \(W \) \(O(W) \)
\[B[0,w] = 0 \]

for \(i = 0 \) to \(n \) Repeat \(n \) times
\[B[i,0] = 0 \]

for \(w = 0 \) to \(W \) \(O(W) \)< the rest of the code>

What is the running time of this algorithm?
\(O(n*W) \)

Remember that the brute-force algorithm takes \(O(2^n) \)

Example (1)

Let’s run our algorithm on the following data:

\(n = 4 \) (# of elements)
\(W = 5 \) (max weight)
Elements (weight, benefit):
(2,3), (3,4), (4,5), (5,6)

Example (2)

\[
\begin{array}{c|cccc}
 w & 0 & 1 & 2 & 3 & 4 \\
 \hline
 0 & 0 & & & & \\
 1 & 0 & & & & \\
 2 & 0 & & & & \\
 3 & 0 & & & & \\
 4 & 0 & & & & \\
 5 & 0 & & & & \\
\end{array}
\]

for \(w = 0 \) to \(W \)
\[B[0,w] = 0 \]
for $i = 0$ to n
$B[i,0] = 0$

if $w_i <= w$ // item i can be part of the solution
 if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
 else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$
if \(w_i \leq w \) // item \(i \) can be part of the solution
 if \(b_i + B[i-1,w-w_i] > B[i-1,w] \)
 \(B[i,w] = b_i + B[i-1,w-w_i] \)
 else
 \(B[i,w] = B[i-1,w] \)
 else \(B[i,w] = B[i-1,w] \) // \(w_i > w \)

Example (7)

<table>
<thead>
<tr>
<th></th>
<th>i=1</th>
<th>b_i=3</th>
<th>w_i=2</th>
<th>w=4</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Example (8)

<table>
<thead>
<tr>
<th></th>
<th>i=1</th>
<th>b_i=3</th>
<th>w_i=2</th>
<th>w=5</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Example (9)

<table>
<thead>
<tr>
<th></th>
<th>i=2</th>
<th>b_i=4</th>
<th>w_i=3</th>
<th>w=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Example (10)

<table>
<thead>
<tr>
<th></th>
<th>i=2</th>
<th>b_i=4</th>
<th>w_i=3</th>
<th>w=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Items:

1: (2,3)
2: (3,4)
3: (4,5)
4: (5,6)
Example (11)

<table>
<thead>
<tr>
<th>W</th>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- If \(w_i \leq w \), the item \(i \) can be part of the solution.
 - If \(b_i + B[i-1, w-w_i] > B[i-1, w] \)
 - \(B[i, w] = b_i + B[i-1, w-w_i] \)
 - Else
 - \(B[i, w] = B[i-1, w] \)
- Else \(B[i, w] = B[i-1, w] \) // \(w_i > w \)

Example (12)

<table>
<thead>
<tr>
<th>W</th>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- If \(w_i \leq w \), the item \(i \) can be part of the solution.
 - If \(b_i + B[i-1, w-w_i] > B[i-1, w] \)
 - \(B[i, w] = b_i + B[i-1, w-w_i] \)
 - Else
 - \(B[i, w] = B[i-1, w] \)
- Else \(B[i, w] = B[i-1, w] \) // \(w_i > w \)

Example (13)

<table>
<thead>
<tr>
<th>W</th>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- If \(w_i \leq w \), the item \(i \) can be part of the solution.
 - If \(b_i + B[i-1, w-w_i] > B[i-1, w] \)
 - \(B[i, w] = b_i + B[i-1, w-w_i] \)
 - Else
 - \(B[i, w] = B[i-1, w] \)
 - Else \(B[i, w] = B[i-1, w] \) // \(w_i > w \)

Example (14)

<table>
<thead>
<tr>
<th>W</th>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- If \(w_i \leq w \), the item \(i \) can be part of the solution.
 - If \(b_i + B[i-1, w-w_i] > B[i-1, w] \)
 - \(B[i, w] = b_i + B[i-1, w-w_i] \)
 - Else
 - \(B[i, w] = B[i-1, w] \)
 - Else \(B[i, w] = B[i-1, w] \) // \(w_i > w \)
Example (15)

<table>
<thead>
<tr>
<th>W</th>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

If \(w_i \leq w \) // item \(i \) can be part of the solution
If \(b_i + B[i-1,w-w_i] > B[i-1,w] \)
\[B[i,w] = b_i + B[i-1,w-w_i] \]
Else
\[B[i,w] = B[i-1,w] \] // \(w_i > w \)

Example (17)

<table>
<thead>
<tr>
<th>W</th>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

If \(w_i \leq w \) // item \(i \) can be part of the solution
If \(b_i + B[i-1,w-w_i] > B[i-1,w] \)
\[B[i,w] = b_i + B[i-1,w-w_i] \]
Else
\[B[i,w] = B[i-1,w] \] // \(w_i > w \)
Comments

- This algorithm only finds the max possible value that can be carried in the knapsack
- To know the items that make this maximum value, an addition to this algorithm is necessary
- Similar to what we did in the LCS algorithm, this can be done by keeping some more information while building the table.

All-pair Shortest Path

- Input: a directed graph $G=(V,E)$ with $V=\{1,2,...,n\}$. The length of edge e is denoted by $c(e)$, and it may be negative.
- Output: All-pair shortest path: for any two vertices v,u in V, what is the shortest path from v to u
 - we will only be interested in the length of that path.

All-pair Shortest Path

- We can solve this problem using single-source shortest path algorithms. For example, we can run Bellman-Ford $|V|$ times (one time for each possible selection of the source vertex s).
- Time complexity:
 $|V|*O(|V||E|)=O(|V|^2|E|)$
- We will see a solution using Dynamic Programming.

All-pair Shortest Path

Define

$$\delta^0(i,j) = \begin{cases}
c(e) & \text{if } i \xrightarrow{e} j, \\
\infty & \text{if there is no edge from } i \text{ to } j.
\end{cases}$$

Let $\delta^k(i,j)$ be the length of a shortest path from i to j among all paths which may pass through vertices $1,2,...,k$ but do not pass through vertices $k+1$, $k+2,...,n$.
Floyd Algorithm (1962)

1. Init $\delta^0(i, j)$ as defined earlier
2. $k \leftarrow 1$
3. For every $1 \leq i, j \leq n$ compute
 $$\delta^k(i, j) \leftarrow \min \{ \delta^{k-1}(i, j), \delta^{k-1}(i, k) + \delta^{k-1}(k, j) \}.$$
4. If $k = n$, stop. If not, increment k and go to step 3.

Floyd Algorithm

$$\delta^k(i, j) \leftarrow \min \{ \delta^{k-1}(i, j), \delta^{k-1}(i, k) + \delta^{k-1}(k, j) \}.$$

The shortest path from i to j which may pass through vertices $1, 2, ..., k$ but do not pass through vertices $k+1, k+2, ..., n$:

1. Might not pass through vertex k, or
2. Might pass through k, and then it is composed by two already-computed shortest paths.

Floyd Algorithm

- The value of $\delta^n(i, j)$ is meaningful only if there are no negative cycles in G.
- The existence of negative cycles is detected by having $\delta^k(i, i) < 0$ for some i and k.
- Each application of step 3 requires n^2 operations, and step 3 is repeated n times. Thus, the algorithm is of complexity $O(n^3)$.

Floyd Algorithm

$\delta^k(i, j) \leftarrow \min \{ \delta^{k-1}(i, j), \delta^{k-1}(i, k) + \delta^{k-1}(k, j) \}$.

The shortest path from i to j which may pass through vertices $1, 2, ..., k$ but do not pass through vertices $k+1, k+2, ..., n$:

1. Might not pass through vertex k, or
2. Might pass through k, and then it is composed by two already-computed shortest paths.
Conclusion

- Dynamic programming is a useful technique of solving certain kind of problems
- When the solution can be recursively described in terms of partial solutions, we can store these partial solutions and re-use them as necessary
- Running time (Dynamic Programming algorithm vs. naive algorithm):
 - LCS: $O(m\times n)$ vs. $O(n^2)$
 - Knapsack problem: $O(W\times n)$ vs. $O(2^n)$
- This is called 'pseudo-polynomial'