Proving NP-Completeness

- A is NP-complete if
 - A is in NP
 - Some known NP-complete problem is reducible to A in polynomial time

3-CNF-Satisfiability

- Input: A Boolean formula F with at most 3 literals per clause.
- Output: Determine if F is satisfiable.

3-CNF-Satisfiability is NP-complete
- This is probably the most used NP-complete problem in reduction proofs showing other decision problems are NP-hard.

Reduction by Example

Given \(F = (x_1 \lor \neg x_2 \lor x_3 \lor \neg x_4) \land F' \)

Construct \(H = (x_1 \lor z_2) \land (\neg x_2 \lor \neg z_1 \lor z_3) \land (x_1 \lor x_2 \lor z_2) \land (\neg x_4 \lor \neg z_1) \land F' \)

\(F \) is satisfiable if and only if \(H \) is satisfiable.

\(x_1 = 0 \) satisfies the first clause of \(F \).
\(z_2 = 1, z_1 = 0, z_3 = 0 \) satisfy clauses 1, 3, and 4 of \(H \) and \(x_2 = 0 \) satisfies the clause 2 of \(H \).

3-Colorability

- Input: Graph G = (V,E) and a number k.
- Output: Determine if all vertices can be colored with 3 colors such that no two adjacent vertices have the same color.

3-CNF-Sat \(\leq_p \) 3-Color

- Given a 3-CNF formula \(F \) we have to show how to construct in polynomial time a graph \(G \) such that:
 - \(F \) is satisfiable implies \(G \) is 3-colorable
 - \(G \) is 3-colorable implies \(F \) is satisfiable
The Gadget

- This is a classic reduction that uses a "gadget".
- Assume the outer vertices are colored at most two colors. The gadget is 3-colorable if and only if the outer vertices are not all the same color.

Properties of the Gadget

- Three colorable if and only if outer vertices not all the same color.

Reduction by Example

\[F = (x \lor y \lor z) \land (\neg x \lor y \lor z) \land (\neg x \land \neg y \lor \neg z) \]

Satisfaction Example

\[F = (x \lor y \lor z) \land (\neg x \lor y \lor z) \land (\neg x \land \neg y \lor \neg z) \land z = 0 \]

\[x = 1 \]

\[y = 1 \]

\[z = 0 \]
Satisfaction Example \[F = (x \lor y \lor z) \land (\neg x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \]
\[x = 1 \quad y = 1 \quad z = 0 \]

Non-Satisfaction Example \[F = (x \lor y \lor z) \land (\neg x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \]
\[x = 0 \quad y = 0 \quad z = 0 \]

Naming the Gadget

General Construction
\[F = \bigcap_{i=1}^{k} (a_i \lor a_j \lor a_k) \quad \text{where} \quad a_i \in \{ x, \neg x_1, \ldots, x_n, \neg x_n \} \]
\[G = (V, E) \quad \text{where} \]
\[V = \{ r, g, b \} \cup \{ x, \neg x_1, \ldots, x_n, \neg x_n \} \cup \{ O, U, T, I, N, R \} \quad 1 \leq i \leq k \]
\[E = \{ \{ r, g \}, \{ g, b \}, \{ b, r \} \}
\[\cup \{ \{ x, \neg x_1 \}, \ldots, \{ x, \neg x_n \} \}
\[\cup \{ \{ x_1, \neg x_1 \}, \ldots, \{ x_n, \neg x_1 \} \}
\[\cup \{ \{ r, U \}, \{ r, T \}, \{ I, N \}, \{ N, R \} \} \quad 1 \leq i \leq k \]
\[\cup \{ \{ r, O \}, \{ r, U \}, \{ r, T \} \} \quad 1 \leq i \leq k \]
\[\cup \{ \{ r, g \}, \{ g, b \}, \{ b, r \}, 1 \leq i \leq k \} \]

Reductions

Exact Cover
- Input: A set \(U = \{ u_1, u_2, \ldots, u_n \} \) and subsets \(S_1, S_2, \ldots, S_n \subseteq U \)
- Output: Determine if there is set of pairwise disjoint set that union to \(U \), that is, a set \(X \) such that:
 \[X \subseteq \{ 1, 2, \ldots, m \} \]
 \[i, j \in X \text{ and } i \neq j \text{ implies } S_i \cap S_j = \emptyset \]
 \[\bigcup_{i=1}^{n} S_i = U \]
Example of Exact Cover

\[U = \{a, b, c, d, e, f, g, h, i\} \]
\[\{a, c, e\}, \{a, f, g\}, \{b, d\}, \{b, f, h\}, \{e, h, i\}, \{f, h, i\}, \{d, g, i\} \]

Exact Cover
\[\{a, c, e\}, \{b, f, h\}, \{d, g, i\} \]

3-Partition

- Input: A set of numbers \(A = \{a_1, a_2, \ldots, a_n\} \) and number \(B \) with the properties that \(B/4 < a_i < B/2 \) and \(\sum_{j=1}^{n} a_j = mB \).
- Output: Determine if \(A \) can be partitioned into \(S_1, S_2, \ldots, S_m \) such that for all \(i \)

\[\sum_{j \in S_i} a_j = B. \]

Note: each \(S_i \) must contain exactly 3 elements.

Example of 3-Partition

- \(A = \{26, 29, 33, 33, 33, 34, 35, 36, 41\} \)
- \(B = 100, m = 3 \)
- 3-Partition
 - 26, 33, 41
 - 29, 36, 35
 - 33, 33, 34

Bin Packing

- Input: A set of numbers \(A = \{a_1, a_2, \ldots, a_n\} \) and numbers \(B \) (capacity) and \(K \) (number of bins).
- Output: Determine if \(A \) can be partitioned into \(S_1, S_2, \ldots, S_K \) such that for all \(i \)

\[\sum_{j \in S_i} a_j \leq B. \]

Bin Packing Example

- \(A = \{2, 2, 3, 3, 3, 4, 4, 4, 5, 5\} \)
- \(B = 10, K = 4 \)
- Bin Packing
 - 3, 3, 4
 - 2, 3, 5
 - 5, 5
 - 2, 4, 4

Perfect fit!

Degree Bounded Spanning Tree

- Input: An undirected graph \(G = (V, E) \).
- Output: A number \(k \) and a spanning tree \((V, T) \) of degree \(k \). Furthermore, there is no spanning tree of degree < \(k \).
DBST Decision Problem

- Input: An undirected graph $G = (V,E)$ and number k.
- Output: Determine if G has a spanning tree of degree less than or equal to k.
- DBST is NP-complete

Hamiltonian Path Decision Problem

- Input: Undirected Graph $G = (V,E)$.
- Output: Determine if there is a path in G that visits each node exactly once.
- Hamiltonian Path is known to be NP-complete

Hamiltonian Path is Polynomial time Reducible to Spanning Tree of Degree 2

- Given a graph G, G has a Hamiltonian path if and only if G itself has a spanning tree of degree ≤ 2
- Why? a Hamiltonian path is a spanning tree of degree 2

5-Color

- Input: Undirected graph G.
- Output: Determine if the vertices of G can be colored in 5 colors with no two adjacent vertices the same color.
- 5-Color is NP-complete
Reduction of 3-Color to 5-Color

G is 3-colorable if and only if G’ is 5-colorable

Exercise – Argue NP-completeness

1. Independent Set
 - Input: Undirected graph G = (V,E) and a number k.
 - Output: Determine if there is an independent set of size k. X, contained in V, is independent if for all i,j in X there is no edge in G from i to j.

2. Equal Subset-Sum
 - Input: \{a_1, a_2, ..., a_n\} positive integers
 - Output: Determine if there is a set I such that \[\sum_{i \in I} a_i = \sum_{j \notin I} a_j \]

Coping with NP-completeness

• You have encountered a Hard Problem
• Maybe it is NP-hard
 - Books
 - Garey and Johnson
 - Websites
 - http://www.nada.kth.se/~viggo/problemlist/compendium.html
 - Research papers
 - Maybe you’ll have to do your own reduction
• Can’t determine NP-hardness, then it is probably hard in some way.
• Modify the problem to be more tractable

Boundary Between P and NP

• Satisfiability
 - 2-CNF-SAT is in P
 - 3-CNF-SAT is NP-complete
• Coloring
 - 2-COLOR is in P
 - 3-COLOR is NP-complete
• Planar Colorability
 - Planar graphs are always 4-colorable
 - 3-PLANAR-COLOR is NP-complete

Boundary Continued

• Independent Set
 - Maximum independent set is NP-hard
 - Maximal independent set is in P
• Cutting a graph
 - Maximum cut in a graph is NP-hard
 - Minimum cut in a graph is in P (equivalent to Max Flow)
• Spanning Tree
 - Minimum spanning tree is in P
 - Degree constrained spanning tree is NP-hard
 - Bounded diameter spanning tree is NP-hard

Lessons When Coping

• Lesson 1. Any problem that is in NP may be NP-complete.
• Lesson 2. Any problem in NP may be in P.
• Lesson 3. You may not be able to determine either
 - factoring is open
 - graph isomorphism is open
Solving NP-Hard Problems Exactly

- Pseudo Polynomial Time Algorithms
- Branch-and-Bound Algorithm
- Use general packages
 - SAT solvers
 - GSAT, WalkSAT
 - Integer programming solvers
 - CPLEX

Pseudo Polynomial Time Algorithm for an NP-Complete Problem

- Subset Sum
 - Input: Integers \(a_1, a_2, \ldots, a_n, b \)
 - Output: Determine if there is subset \(X \subseteq \{1, 2, \ldots, n\} \) with the property \(\sum_{i \in X} a_i = b \)
 - Algorithm:
 - Let \(A[0..b] \) be a Boolean array of size \(b + 1 \) initialized as follows: \(A[0] = 1 \) and \(A[i] = 0 \) for \(1 < i < b \).
 - After scanning the input \(a_1, a_2, \ldots, a_k \), maintaining the invariant that \(A[i] = 1 \) if and only if some subset of \(a_1, a_2, \ldots, a_k \) adds up to \(i \).
 - Time Complexity is \(O((b+1)n) \)
 - Polynomial time?
 - No
 - How about finding the subset?
 - Keep track of index that made \(A[x] = 1 \) for the first time.

Example of the Algorithm

<table>
<thead>
<tr>
<th>3, 5, 2, 7, 4, 2, b = 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 10 11</td>
</tr>
<tr>
<td>1 0 1 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>1 0 0 1 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>1 0 0 1 0 0 0 1 0 1 0 0</td>
</tr>
<tr>
<td>1 0 1 1 0 1 0 1 1 0 1 0</td>
</tr>
<tr>
<td>1 0 1 1 0 1 0 1 1 1 1 0</td>
</tr>
<tr>
<td>1 0 1 1 1 1 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>

Load Balanced Spanning Tree Cost Criteria

- Given a graph \(G = (V,E) \) and a spanning tree \(T \):
 - \(d(T) = \max \) degree of any vertex of \(T \)
 - \(c(T) = \sum \) of the squares of the degrees

\[
d(T) = 3 \\
c(T) = 4^2 + 1^2 + 2^2 = 26
\]

Advantage of \(c(T) \) is that it has finer gradations.

Deriving \(c(T) \)

- Every spanning tree on \(n \) vertices has \(n-1 \) edges. Hence, the average number of edges per vertex is \(d = 2(n-1)/n \), about 2.
- Let \(d_i \) be the degree of vertex \(i \). The variance in degree is
 \[
 \sum_{i=1}^{n} (d_i - d)^2 / n = \sum_{i=1}^{n} d_i^2 / n - d^2 / n
 \]
- Minimizing the variance is equivalent to minimizing
 \[
 \sum_{i=1}^{n} d_i^2
 \]
Examples of \(c(T) \)

\[
c(T) = 9 \times 1^2 + 1 \times 9^2 = 90 \\
c(T) = 2^11^2 + 8 \times 2^2 = 34
\]

Another Example

\[
c(T) = 3 \times 1^1 + 3 \times 4 + 1 \times 9 = 24 \\
c(T) = 2 \times 1^1 + 5 \times 4 = 22
\]

Load Balanced Spanning Tree with Minimum Variance

- Input: Undirected graph \(G = (V,E) \).
- Output: A spanning tree that minimizes the sum of the squares of the degrees of the vertices in the tree.

Branch and Bound

- Start with an initial tree \(T \) with cost \(c(T) \).
- Systematically search through all forests by recursively (branching) adding new edges to the current forest.
- Discontinue a search if the forest cannot be contained in a spanning tree of smaller cost. (This is the bounding step).
- This is better than exhaustive search, but it is still only valuable on very small problems.

Example of Branch and Bound

Bounding Condition

- Let \(c(F) \) be the cost of the current forest of \(k \) trees where tree \(T \) had minimum degree vertex \(d \) sorted smallest to largest. Let \(B \) be the best cost of any tree so far.
- The lowest possible cost of any tree containing \(F \) is

\[
m(F) = c(F) + \sum_{i=1}^{k} (d_i + 1)^2 - 2 \sum_{i=1}^{k} d_i^2 - \sum_{i=1}^{k} (d_i + 1)^2 + \sum_{i=1}^{k} d_i^2
\]

- If \(m(F) \geq B \) then do not continue searching from \(F \).
Graphic of Bounding Condition

Example of Bounding

\[d_1 < d_2 < d_3 < d_4 < d_5 \]

\[d_1 = 0,1,1,1 \]
\[c(F) = 1*0 + 8*1 + 1*16 = 24 \]
\[m(F) = 24 + 2(1*1 + 1*4) - 2(1*0 + 1*1) \]
\[= 36 \]

Branch and Bound Control

Notes on Branch and Bound

- Branch and bound is still an exponential search. To make it work well many efficiencies should be made.
 - No copy on recursive call.
 - Maintain cost of partial solution \(F \) and its sequence of minimum degrees to make computation of \(m(F,i) \) fast.
 - Use disjoint union-find for cycle checking.
 - Reduce use of expensive bounding checks when possible.
 - Add more bounding checks

Approximate Solutions

Local Search Algorithms

- Start with an initial solution that is usually easy to find, but is not necessarily good.
- Repeatedly modify the current solution to a nearby one looking for better ones.
Neighborhood of a Solution

- Cut an edge breaking tree into two trees.
- Add an edge joining the two parts together again.

Equivalent Move

- Add an edge forming a cycle.
- Delete an edge in the cycle.

Recall Cost

- $c(T) = 26$
- $c(T) = 24$
- $c(T) = \text{sum of squares of the degrees of the vertices in } T$

Solution Space

- Moves are reversible.
- $O(n^m)$ neighbors

Every Spanning Tree is Reachable from Every Other

- Let T and T' be two spanning trees. We can move T closer to T' by adding an edge from T to T and removing an edge in the cycle formed that is not in T'.

Potential of Local Search

- Since every spanning tree is reachable from any other, then starting with an arbitrary spanning tree we can possibly move to an optimal one using local search.
- Impediment: there usually are exponentially many spanning trees. The search space is exceedingly large.
- In what direction do we search?
- Do we know we are at an optimum
Greedy Local Search

- Find the best neighbor and continue.

\[T := \text{an initial tree}; \]
\[\text{best-cost} := c(T); \]
\[\text{repeat} \]
\[\text{cost} := \text{best-cost}; \]
\[\text{for each neighbor } T' \text{ of } T \text{ do} \]
\[\text{if } c(T') < \text{best-cost} \text{ then} \]
\[T := T'; \]
\[\text{best-cost} := c(T); \]
\[\text{until (best-cost = cost)} \]
\[\text{return}(T) \]

Greedy Example (1)

Greedy Example (2)

Analysis of Greedy Local Search

- Assume \(n \) vertices, \(m \) edges and \(D \) is the sum of the squares of the degrees in \(G \). \(D \leq n^2 \).
- There are at most \(D \) iterations in the algorithm.
- Each iteration consists of looking at each edge in the spanning tree and replacing it with some other edge, and checking for a cycle and computing costs. This is roughly \(O(n^2m) \) time per iteration.
- Total time is \(O(Dn^2m) = O(n^4m) \) (worst case).

Notes on Greedy Local Search

- Can be very effective for some problems. The worst case time is not that bad.
- Examining all the neighbors and choosing the best is sometimes called “steepest decent”.
- An alternative is “random decent”. Randomly choose a neighbor and move to it if its cost is smaller.
- Another alternative is “first decent”. Try the neighbors in order and move to the first improvement.

Local Minimum Problem

- Greedy local search leads to a local minimum in the solution space, not necessarily a global minimum.
Avoiding Local Minima

- Systematic probing
- Mixing in random moves
- Simulated Annealing
- Random restarts
- Genetic algorithms

Systematic Probing

- Move from the current solution by probing systematically, even if the visited solutions are not better than the current one.
- After the probe choose the solution that was found to be the best.

Systematic Probing Example

- Switch and mark
Using Randomness to Avoid Local Minima

- We maintain a trial solution.
 - Generate a random move from the trial solution.
 - If the move would beat the trial solution then accept it as the new trial solution.
 - If the move does not improve the solution then accept it with some small probability.
- This enables us to navigate the entire solution space and not get caught in a local minimum.

Mixing in Random Moves

- WalkSAT
 - Maximize the number of clauses satisfied in a CNF formula

 | Maintain the best assignment and a current assignment |
 | Repeat |
 | Randomly pick an unsatisfied clause in the current assignment; |
 | Flip a biased coin with probability of heads = p; if heads then flip a random variable in the clause; (walk step) |
 | if tails then flip all the variables in the clause to find an assignment that maximizes the number of satisfied clauses; (greedy step) |

Simulated Annealing

- Kirkpatrick (1984)
- Analogy from thermodynamics.
- The best crystals are found by annealing.
 - First heat up the material to let it bounce from state to state.
 - Slowly cool down the material to allow it to achieve its minimum energy state.

Heating and Cooling Helps (1)

- Local minimum
- Global minimum

Heating and Cooling Helps (2)

- Local minimum
- Global minimum

Heating and Cooling Helps (3)

- Local minimum
- Global minimum
Annealing Concepts

- Solution space S, x in S is a solution
- E(x) is the energy of x
- x has a neighborhood of nearby states
- T is the temperature
- Cooling schedule, in step t of the algorithm
 - Fast cooling $T = ae^{-bt}$
 - Slower cooling $T = at^{-k}$
Metropolis Algorithm

- Initialize T to be hot.
- Choose a starting state.
- Repeat
 - Generate a random move.
 - Evaluate the change in energy ΔE.
 - If $\Delta E < 0$, then accept the move.
 - Else, accept the move with probability $e^{-\Delta E/T}$.
- Update T until T is very small (frozen).

Applied to Load Balanced Spanning Tree

- A state is a spanning tree.
- T' is a neighbor of T if it can be obtained by deletion of an edge in T and insertion of an edge not in T.
- Energy of a spanning tree T is its cost, $c(T)$.
- T' is a neighbor of T, $\Delta E = c(T') - c(T) > 0$.
- Probability of moving to a higher energy state is $e^{(c(T') - c(T))/T}$.
 - Higher if either $c(T') - c(T)$ is small or T is large.
 - Lower if either $c(T') - c(T)$ is large or T is small.

Notes on Simulated Annealing

- Not a black box algorithm.
 - Requires tuning the cooling parameter.
 - Has been shown to be very effective in finding good solutions for some optimization problems.
- Known to converge to optimal solution, but time of convergence is very large. Most likely converges to local optimum.
- Very little known about effectiveness generally.