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To-Do List

I Online quiz: due Sunday

I A5 due May 28 (Sunday)

I Watch for final exam instrutions around May 29 (Monday)
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Neural Machine Translation

Original idea proposed by Forcada and Ñeco (1997); resurgence in interest starting
around 2013.

Strong starting point for current work: Bahdanau et al. (2014). (My exposition is
borrowed with gratitude from a lecture by Chris Dyer.)

This approach eliminates (hard) alignment and phrases.

Take care: here, the terminology “encoder” and “decoder” are used differently than in
the noisy-channel pattern.
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High-Level Model

p(E = e | f) = p(E = e | encode(f))

=
∏̀
j=1

p(ej | e0, . . . , ej−1, encode(f))

The encoding of the source sentence is a deterministic function of the words in that
sentence.
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Building Block: Recurrent Neural Network
Review from lecture 2!

I Each input element is understood to be an element of a sequence: 〈x1,x2, . . . ,x`〉
I At each timestep t:

I The tth input element xt is processed alongside the previous state st−1 to calculate
the new state (st).

I The tth output is a function of the state st.
I The same functions are applied at each iteration:

st = grecurrent(xt, st−1)

yt = goutput(st)
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Neural MT Source-Sentence Encoder

Ich möchte  ein  Bier
lookups

forward RNN

backward RNN [  ]
source sentence encoding

0

0

F is a d×m matrix encoding the source sentence f (length m).
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Decoder: Contextual Language Model

Two inputs, the previous word and the source sentence context.

st = grecurrent(eet−1 , Fat︸︷︷︸
“context”

, st−1)

yt = goutput(st)

p(Et = v | e1, . . . , et−1,f) = [yt]v

(The forms of the two component gs are suppressed; just remember that they (i) have
parameters and (ii) are differentiable with respect to those parameters.)

The neural language model we discussed earlier (Mikolov et al., 2010) didn’t have the
context as an input to grecurrent.
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Neural MT Decoder

[  ]
0
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Neural MT Decoder

[               ][  ]
0

a1⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

a1⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ]
a1 a2⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ]
a1 a2⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ]
a1 a2 a3⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ]
a1 a2 a3⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ] [               ]
a1 a2 a3 a4⊤ ⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ] [               ]
a1 a2 a3 a4⊤ ⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ] [               ] [               ]
a1 a2 a3 a4 a5⊤ ⊤ ⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ] [               ] [               ]
a1 a2 a3 a4 a5⊤ ⊤ ⊤ ⊤ ⊤
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Neural MT Decoder

[               ][  ]
0

I’d    like     a    beer    STOP  

[               ] [               ] [               ] [               ]
a1 a2 a3 a4 a5⊤ ⊤ ⊤ ⊤ ⊤

[               ]
[               ]
[               ]
[               ]
[               ]
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Computing “Attention”

Let Vst−1 be the “expected” input embedding for timestep t.
(Parameters: V.)

Attention is at = softmax
(
F>Vst−1

)
.

Context is Fat, i.e., a weighted sum of the source words’ in-context representations.
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Learning and Decoding

log p(e | encode(f)) =
m∑
i=1

log p(ei | e0:i−1, encode(f))

is differentiable with respect to all parameters of the neural network, allowing
“end-to-end” training.

Trick: train on shorter sentences first, then add in longer ones.

Decoding typically uses beam search.
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Remarks

We covered two approaches to machine translation:

I Phrase-based statistical MT following Koehn et al. (2003), including probabilistic
noisy-channel models for alignment (a key preprocessing step; Brown et al., 1993),
and

I Neural MT with attention, following Bahdanau et al. (2014).

Note two key differences:

I Noisy channel p(e)× p(f | e) vs. “direct” model p(e | f)
I Alignment as a discrete random variable vs. attention as a deterministic,

differentiable function

At the moment, neural MT is winning when you have enough data; if not,
phrase-based MT dominates.

When monolingual target-language data is plentiful, we’d like to use it! Recent neural
models try (Sennrich et al., 2016; Xia et al., 2016; Yu et al., 2017).
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Summarization
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Automatic Text Summarization

Mani (2001) provides a survey from before statistical methods came to dominate; more
recent survey by Das and Martins (2008).

Parallel history to machine translation:

I Noisy channel view (Knight and Marcu, 2002)

I Automatic evaluation (Lin, 2004)

Differences:

I Natural data sources are less obvious

I Human information needs are less obvious

We’ll briefly consider two subtasks: compression and selection
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Sentence Compression as Structured Prediction
(McDonald, 2006)

Input: a sentence

Output: the same sentence, with some words deleted

McDonald’s approach:
I Define a scoring function for compressed sentences that factors locally in the

output.
I He factored into bigrams but considered input parse tree features.

I Decoding is dynamic programming (not unlike Viterbi).

I Learn feature weights from a corpus of compressed sentences, using structured
perceptron or similar.
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Sentence Selection

Input: one or more documents and a “budget”

Output: a within-budget subset of sentences (or passages) from the input

Challenge: diminishing returns as more sentences are added to the summary.

Classical greedy method: “maximum marginal relevance” (Carbonell and Goldstein,
1998)

Casting the problem as submodular optimization: Lin and Bilmes (2009)

Joint selection and compression: Martins and Smith (2009)
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Finale
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Mental Health for Exam Preparation (and Beyond)

Most lectures included discussion of:

I Representations or tasks (input/output)

I Evaluation criteria

I Models (often with variations)

I Learning/estimation algorithms

I NLP algorithms

I Practical advice

For each task, keep these elements separate in your mind, and reuse them where
possible.
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