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To-Do List

I Read: (Jurafsky and Martin, 2016a,b)
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Distributional Semantics Models
Aka, Vector Space Models, Word Embeddings
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Distributional Semantics Models
Aka, Vector Space Models, Word Embeddings

Applications Linguistic Study

7 / 59

Lexical Semantics
Multilingual Studies

Evolution of Language
. . .

Deep learning models:
Machine Translation
Question Answering

Syntactic Parsing
. . .



Outline

Vector Space Models

Lexical Semantic Applications

Word Embeddings

Compositionality

Current Research Problems
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Distributional Semantics Hypothesis
Harris (1954)

Words that have similar contexts are likely to have similar meaning
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Vector Space Models

I Representation of words by vectors of real numbers

I ∀w ∈ V,vw is function of the contexts in which w occurs
I Vectors are computed using a large text corpus

I No requirement for any sort of annotation in the general case
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V1.0: Count Models
Salton (1971)

I Each element vwi ∈ vw represents the co-occurrence of w with another word i
I vdog = (cat: 10, leash: 15, loyal: 27, bone: 8, piano: 0, cloud: 0, . . . )

I Vector dimension is typically very large (vocabulary size)

I Main motivation: lexical semantics
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Count Models
Example
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Variants of Count Models

I Reduce the effect of high frequency words by applying a weighting scheme
I Pointwise mutual information (PMI), TF-IDF

I Smoothing by dimensionality reduction

I Singular value decomposition (SVD), principal component analysis (PCA), matrix
factorization methods

I What is a context?

I Bag-of-words context, document context (Latent Semantic Analysis (LSA)),
dependency contexts, pattern contexts

17 / 59



Variants of Count Models

I Reduce the effect of high frequency words by applying a weighting scheme
I Pointwise mutual information (PMI), TF-IDF

I Smoothing by dimensionality reduction
I Singular value decomposition (SVD), principal component analysis (PCA), matrix

factorization methods

I What is a context?

I Bag-of-words context, document context (Latent Semantic Analysis (LSA)),
dependency contexts, pattern contexts

18 / 59



Variants of Count Models

I Reduce the effect of high frequency words by applying a weighting scheme
I Pointwise mutual information (PMI), TF-IDF

I Smoothing by dimensionality reduction
I Singular value decomposition (SVD), principal component analysis (PCA), matrix

factorization methods

I What is a context?
I Bag-of-words context, document context (Latent Semantic Analysis (LSA)),

dependency contexts, pattern contexts

19 / 59



Outline

Vector Space Models

Lexical Semantic Applications

Word Embeddings

Compositionality

Current Research Problems

20 / 59



Vector Space Models
Evaluation

I Vector space models as features
I Synonym detection

I TOEFL (Landauer and Dumais, 1997)

I Word clustering
I CLUTO (Karypis, 2002)

I Vector operations

I Semantic Similarity

I RG-65 (Rubenstein and Goodenough, 1965), wordsim353 (Finkelstein et al., 2001),
MEN (Bruni et al., 2014), SimLex999 (Hill et al., 2015)

I Word Analogies

I Mikolov et al. (2013)
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Semantic Similarity

w1 w2 human score model score

tiger cat 7.35 0.8

computer keyboard 7.62 0.54

. . . . . . . . . . . .

architecture century 3.78 0.03

book paper 7.46 0.66

king cabbage 0.23 -0.42

Table: Human scores taken from wordsim353 (Finkelstein et al., 2001)

I Model scores are cosine similarity scores between vectors

I Model’s performance is the Spearman/Pearson correlation between human
ranking and model ranking
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Word Analogy
Mikolov et al. (2013)

man

woman

king

queen

Paris

France

Rome

Italy
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V2.0: Predict Models
(Aka Word Embeddings)

I A new generation of vector space models

I Instead of representing vectors as cooccurrence counts, train a supervised machine
learning algorithm to predict p(word|context)

I Models learn a latent vector representation of each word
I These representations turn out to be quite effective vector space representations
I Word embeddings
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Word Embeddings

I Vector size is typically a few dozens to a few hundreds

I Vector elements are generally uninterpretable
I Developed to initialize feature vectors in deep learning models

I Initially language models, nowadays virtually every sequence level NLP task
I Bengio et al. (2003); Collobert and Weston (2008); Collobert et al. (2011);

word2vec (Mikolov et al., 2013); GloVe (Pennington et al., 2014)

27 / 59



Word Embeddings

I Vector size is typically a few dozens to a few hundreds

I Vector elements are generally uninterpretable
I Developed to initialize feature vectors in deep learning models

I Initially language models, nowadays virtually every sequence level NLP task
I Bengio et al. (2003); Collobert and Weston (2008); Collobert et al. (2011);

word2vec (Mikolov et al., 2013); GloVe (Pennington et al., 2014)

28 / 59



word2vec
Mikolov et al. (2013)

I A software toolkit for running various word embedding algorithms

I Continuous bag-of-words: argmax
θ

∏
w∈corpus

p(w|C(w); θ)

I Skip-gram: argmax
θ

∏
(w,c)∈corpus

p(c|w; θ)

I Negative sampling: randomly sample negative (word,context) pairs, then:

argmax
θ

∏
(w,c)∈corpus

p(c|w; θ) ·
∏
(w,c′)

(1− p(c′|w; θ))

Based on (Goldberg and Levy, 2014)
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Skip-gram with Negative Sampling (SGNS)

I Obtained significant improvements on a range of lexical semantic tasks

I Is very fast to train, even on large corpora

I Nowadays, by far the most popular word embedding approach1

1Along with GloVe (Pennington et al., 2014)
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Embeddings in ACL
Number of Papers in ACL Containing the Word “Embedding”
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Count vs. Predict

I Don’t count, Predict! (Baroni et al., 2014)

I But...
Neural embeddings are implicitly matrix factorization tools (Levy and Goldberg,
2014)

I So?...
It’s all about hyper-parameter (Levy et al., 2015)

I The bottom line:
word2vec and GloVe are very good implementations
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Compositionality

I Basic approach: average / weighted average
I vgood + vday = vgood day
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Compositionality
Recursive Neural Networks (Goller and Kuchler, 1996)

Picture taken from Socher et al. (2013)
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Compositionality
Recurrent Neural Networks (Elman, 1990)

or maybe yes ?

vor vmaybe vyes v?

h1 h2 h3 h4
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Recurrent Neural Networks

I In recent years, the most common method to represent sequence of texts is using
RNNs

I In particular, long short-term memory (LSTM, Hochreiter and Schmidhuber (1997))
and gated recurrent unit (GRU, Cho et al. (2014))

I Very recently, state-of-the-art models on tasks such as semantic role labeling and
coreference resolution stated to rely solely on deep networks with word
embeddings and LSTM layers (He et al., 2017)

I These tasks traditionally relied on syntactic information
I Many of these results come from the UW NLP group
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Word Embeddings in RNNs

I Pre-trained embeddings (fixed or tuned)

I Random initialization

I A concatenation of both types
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Alternatives to Word Embeddings

I Character embeddings
I Machine translation (Ling et al., 2015)
I Syntactic parsing (Ballesteros et al., 2015)

I Character n-grams (Neubig et al., 2013; Schütze, 2017)

I POS tag embeddings (Dyer et al., 2015)
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50 Shades of Similarity

I What is similarity?
I Synonymy: high — tall
I Co-hyponymy: dog — cat
I Association: coffee — cup
I Dissimilarity: good — bad
I Attributional similarity: banana — the sun (both are yellow)
I Morphological similarity: going — crying (same verb tense)
I Schwartz et al. (2015); Rubinstein et al. (2015); Cotterell et al. (2016)

I Definition is application dependent
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What is a context?

I Most word embeddings rely on bag-of-word contexts
I Which capture general word association

I Other options exists
I Dependency links (Padó and Lapata, 2007)
I Symmetric patterns (e.g., “X and Y”, Schwartz et al. (2015, 2016))
I Substitute vectors (Yatbaz et al., 2012)
I Morphemes (Cotterell et al., 2016)

I Different context types translate to different relations between similar vectors
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External Resources

I Guide vectors towards desired flavor of similarity
I Use dictionaries and/or thesauri

I Part of the model (Yu and Dredze, 2014; Kiela et al., 2015)
I Post-processing (Faruqui et al., 2015; Mrkšić et al., 2016)

I Multimodal embeddings
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Multimodal Embeddings

I Combination of textual representation and perceptual representation
I Most prominently visual

I Most approaches combine both types of vectors using methods such as canonical
correlation analysis (CCA, e.g., Gella et al. (2016))

I The resulting embeddings often improve performance compared to text-only
embeddings

I They are also able to capture visual attributes such as size and color, which are often
not captured by text only methods (Rubinstein et al., 2015)
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Multilingual Embeddings

I Mapping embeddings in different languages into the same space
I vdog ∼ vperro

I Useful for multi-lingual tasks, as well as low-resource scenarios

I Most approaches use bilingual dictionaries or parallel corpora

I Recent approaches use more creative knowledge sources such as geospatial
contexts (Cocos and Callison-Burch, 2017) and sentences ids in a parallel corpus
(Levy et al., 2017)
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Summary

I Distributional semantic models (aka vector space models, word embeddings)
represent words using vectors of real numbers

I These methods are able to capture lexical semantics such as similarity and
association

I They also serve as a fundamental building block in virtually all deep learning
models in NLP

I Despite decades of research, many questions remain open

53 / 59



Summary

I Distributional semantic models (aka vector space models, word embeddings)
represent words using vectors of real numbers

I These methods are able to capture lexical semantics such as similarity and
association

I They also serve as a fundamental building block in virtually all deep learning
models in NLP

I Despite decades of research, many questions remain open

54 / 59

Thank you!
Roy Schwartz homes.cs.washington.edu/~roysch/ roysch@cs.washington.edu

homes.cs.washington.edu/~roysch/
mailto:roysch@cs.washington.edu


References I

Miguel Ballesteros, Chris Dyer, and Noah A. Smith. Improved transition-based parsing by modeling characters
instead of words with lstms. In Proc. of EMNLP, 2015.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, predict! a systematic comparison of
context-counting vs. context-predicting semantic vectors. In Proc. of ACL, 2014.
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