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To-Do List

I Online quiz: due Sunday

I Jurafsky and Martin (2016); (Jurafsky and Martin, 2008, ch. 18), Steedman
(1996)

I A4 due May 14 (Sunday)
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Semantics vs. Syntax

Syntactic theories and representations focus on the question of which strings in V† are
in the language.

Semantics is about understanding what a string in V† means.

Sidestepping a lengthy and philosophical discussion of what “meaning” is, we’ll
consider two meaning representations:

I Predicate-argument structures, also known as event frames

I Truth conditions represented in first-order logic
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Motivating Example: Who did What to Who(m)?

I Warren bought the stock.

I They sold the stock to Warren.

I The stock was bought by Warren.

I The purchase of the stock by Warren surprised no one.

I Warren’s stock purchase surprised no one.
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Motivating Example: Who did What to Who(m)?

I Warren bought the stock.

I They sold the stock to Warren.

I The stock was bought by Warren.

I The purchase of the stock by Warren surprised no one.

I Warren’s stock purchase surprised no one.

In this buying/purchasing event/situation, Warren played the role of the buyer, and
there was some stock that played the role of the thing purchased.
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Motivating Example: Who did What to Who(m)?

I Warren bought the stock.

I They sold the stock to Warren.

I The stock was bought by Warren.

I The purchase of the stock by Warren surprised no one.

I Warren’s stock purchase surprised no one.

In this buying/purchasing event/situation, Warren played the role of the buyer, and
there was some stock that played the role of the thing purchased.

Also, there was presumably a seller, only mentioned in one example.

In some examples, a separate “event” involving surprise did not occur.

10 / 113



Semantic Roles: Breaking

I Jesse broke the window.

I The window broke.

I Jesse is always breaking things.

I The broken window testified to Jesse’s malfeasance.
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Semantic Roles: Breaking

I Jesse broke the window.

I The window broke. ?

I Jesse is always breaking things.

I The broken window testified to Jesse’s malfeasance.

A breaking event has a Breaker and a Breakee.
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Semantic Roles: Eating

I Eat!

I We ate dinner.

I We already ate.

I The pies were eaten up quickly.

I Our gluttony was complete.
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Semantic Roles: Eating

I Eat! (you, listener) ?

I We ate dinner.

I We already ate. ?

I The pies were eaten up quickly. ?

I Our gluttony was complete. ?

An eating event has an Eater and Food, neither of which needs to be mentioned
explicitly.
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Abstraction?

Breaker
?
= Eater
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Abstraction?

Breaker
?
= Eater

Both are actors that have some causal responsibility for changes in the world around
them.
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Abstraction?

Breaker
?
= Eater

Both are actors that have some causal responsibility for changes in the world around
them.

Breakee
?
= Food

Both are greatly affected by the event, which “happened to” them.
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Thematic Roles
(Jurafsky and Martin, 2016, with modifications)

Agent The waiter spilled the soup.

Experiencer John has a headache.

Force The wind blows debris from the mall into our yards.

Theme Jesse broke the window

Result The city built a regulation-size baseball diamond .

Content Mona asked, “ You met Mary Ann at a supermarket? ”

Instrument He poached catfish, stunning them with a shocking device .

Beneficiary Ann Callahan makes hotel reservations for her boss .

Source I flew in from Boston .

Goal I drove to Portland .
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Verb Alternation Examples: Breaking and Giving

Breaking:

I Agent/subject; Theme/object; Instrument/PPwith

I Instrument/subject; Theme/object

I Theme/subject

Giving:

I Agent/subject; Goal/object; Theme/second-object

I Agent/subject; Theme/object; Goal/PPto

Levin (1993) codified English verbs into classes that share patterns (e.g., verbs of
throwing: throw/kick/pass).
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Remarks

I Fillmore (1968), among others, argued for semantic roles in linguistics.

I By now, it should be clear that the expressiveness of NL (at least English) makes
semantic analysis rather distinct from syntax.

I General challenges to analyzing semantic roles:
I What are the predicates/events/frames/situations?
I What are the roles/participants for each one?
I What algorithms can accurately identify and label all of them?
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Semantic Role Labeling

Input: a sentence x

Output:
I A collection of predicates, each consisting of:

I a label, sometimes called the frame
I a span
I a set of arguments, each consisting of:

I a label, usually called the role
I a span

In principle, spans might have gaps, though in most conventions they usually do not.
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The Importance of Lexicons

Like syntax, any annotated dataset is the product of extensive development of
conventions.

Many conventions are specific to particular words, and this information is codified in
structured objects called lexicons.

You should think of every semantically annotated dataset as both the data and the
lexicon.

We consider two examples.
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PropBank
(Palmer et al., 2005)

I Frames are verb senses (later extended, though)

I Lexicon maps verb-sense-specific roles onto a small set of abstract roles (e.g.,
Arg0, Arg1, etc.)

I Annotated on top of the Penn Treebank, so that arguments are always
constituents.
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fall.01 (move downward)

I arg1: logical subject, patient, thing falling

I arg2: extent, amount fallen

I arg3: starting point

I arg4: ending point

I argM-loc: medium

I Sales fell to $251.2 million from $278.8 million.

I The average junk bond fell by 4.2%.

I The meteor fell through the atmosphere, crashing into Palo Alto.

27 / 113



fall.01 (move downward)

I arg1: logical subject, patient, thing falling

I arg2: extent, amount fallen

I arg3: starting point

I arg4: ending point

I argM-loc: medium

I Sales fell to $251.2 million from $278.8 million.

I The average junk bond fell by 4.2%.

I The meteor fell through the atmosphere, crashing into Palo Alto.

28 / 113



fall.01 (move downward)

I arg1: logical subject, patient, thing falling

I arg2: extent, amount fallen

I arg3: starting point

I arg4: ending point

I argM-loc: medium

I Sales fell to $251.2 million from $278.8 million.

I The average junk bond fell by 4.2%.

I The meteor fell through the atmosphere, crashing into Palo Alto.

29 / 113



fall.01 (move downward)

I arg1: logical subject, patient, thing falling

I arg2: extent, amount fallen

I arg3: starting point

I arg4: ending point

I argM-loc: medium

I Sales fell to $251.2 million from $278.8 million.

I The average junk bond fell by 4.2%.

I The meteor fell through the atmosphere, crashing into Palo Alto.

30 / 113



fall.01 (move downward)

I arg1: logical subject, patient, thing falling

I arg2: extent, amount fallen

I arg3: starting point

I arg4: ending point

I argM-loc: medium

I Sales fell to $251.2 million from $278.8 million.

I The average junk bond fell by 4.2%.

I The meteor fell through the atmosphere, crashing into Palo Alto.

31 / 113



fall.01 (move downward)

I arg1: logical subject, patient, thing falling

I arg2: extent, amount fallen

I arg3: starting point

I arg4: ending point

I argM-loc: medium

I Sales fell to $251.2 million from $278.8 million.

I The average junk bond fell by 4.2%.

I The meteor fell through the atmosphere, crashing into Palo Alto.

32 / 113



fall.08 (fall back, rely on in emergency)

I arg0: thing falling back

I arg1: thing fallen back on

I World Bank president Paul Wolfowitz has fallen back on his last resort.
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fall.10 (fall for a trick; be fooled by)

I arg1: the fool

I arg2: the trick

I Many people keep falling for the idea that lowering taxes on the rich benefits
everyone.
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FrameNet
(Baker et al., 1998)

I Frames can be any content word (verb, noun, adjective, adverb)

I About 1,000 frames, each with its own roles

I Both frames and roles are hierarchically organized

I Annotated without syntax, so that arguments can be anything

https://framenet.icsi.berkeley.edu
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change position on a scale

I Item: entity that has a position on the scale

I Attribute: scalar property that the Item possesses

I Difference: distance by which an Item changes its position

I Final state: Item’s state after the change

I Final value: position on the scale where Item ends up

I Initial state: Item’s state before the change

I Initial value: position on the scale from which the Item moves

I Value range: portion of the scale along which values of Attribute fluctuate

I Duration: length of time over which the change occurs

I Speed: rate of change of the value

I Group: the group in which an Item changes the value of an Attribute

40 / 113



FrameNet Example

Attacks on civilians decreased over the last four months
change position on a scale

Item

Duration

The Attribute is left unfilled but is understood from context (i.e., “frequency”).
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change position on a scale

Verbs: advance, climb, decline, decrease, diminish, dip, double, drop, dwindle, edge,
explode, fall, fluctuate, gain, grow, increase, jump, move, mushroom, plummet, reach,
rise, rocket, shift, skyrocket, slide, soar, swell, swing, triple, tumble

Nouns: decline, decrease, escalation, explosion, fall, fluctuation, gain, growth, hike,
increase, rise, shift, tumble

Adverb: increasingly
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change position on a scale

event

birth scenario . . . change position on a scale

change of temperature proliferating in number

. . . waking up

(birth scenario also inherits from sexual reproduction scenario.)
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Semantic Role Labeling Tasks

The paper that started it all: Gildea and Jurafsky (2002) used FrameNet lexicon
(which includes prototypes, not really a corpus).

I When FrameNet started releasing corpora, the task was reformulated. Example
open-source system: SEMAFOR (Das et al., 2014).
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Semantic Role Labeling Tasks

The paper that started it all: Gildea and Jurafsky (2002) used FrameNet lexicon
(which includes prototypes, not really a corpus).

I When FrameNet started releasing corpora, the task was reformulated. Example
open-source system: SEMAFOR (Das et al., 2014).

The PropBank corpus is used directly for training/testing.

Conference on Computational Natural Language Learning (CoNLL) shared task in
2004, 2005, 2008, 2009, all PropBank-based.

I In 2008 and 2009, the task was cast as a kind of dependency parsing.

I In 2009, seven languages were included in the task.
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Methods

Boils down to labeling spans (with frames and roles).

It’s mostly about features.
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Example: Path Features

S

NP-SBJ

DT

The

NNP

San

NNP

Francisco

NNP

Examiner

VP

VBD

issued

NP

DT

a

JJ

special

NN

edition

PP-TMP

IN

around

NN

noon

NP-TMP

NN

yesterday
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Example: Path Features

S

NP-SBJ

DT

The

NNP

San

NNP

Francisco

NNP

Examiner

VP

VBD

issued

NP

DT

a

JJ

special

NN

edition

PP-TMP

IN

around

NN

noon

NP-TMP

NN

yesterday

Path from
NP-SBJ

The San Francisco Examiner

to issued: NP↑S↓VP↓VBD
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Example: Path Features

S

NP-SBJ

DT

The

NNP

San

NNP

Francisco

NNP

Examiner

VP

VBD

issued

NP

DT

a

JJ

special

NN

edition

PP-TMP

IN

around

NN

noon

NP-TMP

NN

yesterday

Path from
NP

a special edition

to issued: NP↑VP↓VBD

50 / 113



Methods: Beyond Features

The span-labeling decisions interact a lot!

I Presence of a frame increases the expectation of certain roles

I Roles for the same predicate shouldn’t overlap

I Some roles are mutually exclusive or require each other (e.g., “resemble”)
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The span-labeling decisions interact a lot!

I Presence of a frame increases the expectation of certain roles

I Roles for the same predicate shouldn’t overlap

I Some roles are mutually exclusive or require each other (e.g., “resemble”)

Ensuring well-formed outputs:

I Using syntax as a scaffold allows efficient prediction; you’re essentially labeling the
parse tree (Toutanova et al., 2008).

I Others have formulated the problem as constrained, discrete optimization
(Punyakanok et al., 2008).

I Also greedy methods (Björkelund et al., 2010) and joint methods for syntactic
and semantic dependencies (Henderson et al., 2013).
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Methods: Beyond Features
The span-labeling decisions interact a lot!

I Presence of a frame increases the expectation of certain roles

I Roles for the same predicate shouldn’t overlap

I Some roles are mutually exclusive or require each other (e.g., “resemble”)

Ensuring well-formed outputs:

I Using syntax as a scaffold allows efficient prediction; you’re essentially labeling the
parse tree (Toutanova et al., 2008).

I Others have formulated the problem as constrained, discrete optimization
(Punyakanok et al., 2008).

I Also greedy methods (Björkelund et al., 2010) and joint methods for syntactic
and semantic dependencies (Henderson et al., 2013).

Current work:

I Some recent attempts to merge FrameNet and PropBank have shown promise
(FitzGerald et al., 2015; Kshirsagar et al., 2015)
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Related Problems in “Relational” Semantics

I Coreference resolution: which mentions (within or across texts) refer to the
same entity or event?

I Entity linking: ground such mentions in a structured knowledge base (e.g.,
Wikipedia)

I Relation extraction: characterize the relation among specific mentions

Information extraction: transform text into a structured knowledge representation

I Classical IE starts with a predefined schema

I “Open” IE includes the automatic construction of the schema; see
http://ai.cs.washington.edu/projects/open-information-extraction
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General Remarks

Criticisms of semantic role labeling:

I Semantic roles are just “syntax++” since they don’t allow much in the way of
reasoning (e.g., question answering).

I Lexicon building is slow and requires expensive expertise. Can we do this for every
(sub)language?
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General Remarks

Criticisms of semantic role labeling:

I Semantic roles are just “syntax++” since they don’t allow much in the way of
reasoning (e.g., question answering).

I Lexicon building is slow and requires expensive expertise. Can we do this for every
(sub)language?

We’ve now had a taste of two branches of semantics:

I Lexical semantics (e.g., supersense tagging)

I Relational semantics (e.g., semantic role labeling)

Next up, a third:

I Compositional semantics
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Bridging the Gap between Language and the World

In order to link NL to a knowledge base, we might want to design a formal way to
represent meaning.
Desiderata for a meaning representation language:

I represent the state of the world, i.e., a knowledge base

I query the knowledge base (e.g., verify that a statement is true, or answer a
question)

I handle ambiguity, vagueness, and non-canonical forms
I “I wanna eat someplace that’s close to UW”
I “something not too spicy”

I support inference and reasoning
I “can Karen eat at Schultzy’s?”
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Bridging the Gap between Language and the World
In order to link NL to a knowledge base, we might want to design a formal way to
represent meaning.
Desiderata for a meaning representation language:

I represent the state of the world, i.e., a knowledge base

I query the knowledge base (e.g., verify that a statement is true, or answer a
question)

I handle ambiguity, vagueness, and non-canonical forms
I “I wanna eat someplace that’s close to UW”
I “something not too spicy”

I support inference and reasoning
I “can Karen eat at Schultzy’s?”

Eventually (but not today):

I deal with non-literal meanings

I expressiveness across a wide range of subject matter
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A (Tiny) World Model

I Domain: Adrian, Brook, Chris, Donald, Schultzy’s Sausage, Din Tai Fung,
Banana Leaf, American, Chinese, Thai

I Property: Din Tai Fung has a long wait, Schultzy’s is noisy; Alice, Bob, and
Charles are human

I Relations: Schultzy’s serves American, Din Tai Fung serves Chinese, and Banana
Leaf serves Thai

Simple questions are easy:

I Is Schultzy’s noisy?

I Does Din Tai Fung serve Thai?
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A (Tiny) World Model

I Domain: Adrian, Brook, Chris, Donald, Schultzy’s Sausage, Din Tai Fung,
Banana Leaf, American, Chinese, Thai
a, b, c, d, ss, dtf , bl , am, ch, th

I Property: Din Tai Fung has a long wait, Schultzy’s is noisy; Alice, Bob, and
Charles are human
Longwait = {dtf },Noisy = {ss},Human = {a, b, c}

I Relations: Schultzy’s serves American, Din Tai Fung serves Chinese, and Banana
Leaf serves Thai
Serves = {(ss, am), (dtf , ch), (bl , th)},Likes = {(a, ss), (a, dtf ), . . .}

Simple questions are easy:

I Is Schultzy’s noisy?

I Does Din Tai Fung serve Thai?
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A Quick Tour of First-Order Logic

I Term: a constant (ss) or a variable
I Formula: defined inductively . . .

I If R is an n-ary relation and t1, . . . , tn are terms, then R(t1, . . . , tn) is a formula.
I If φ is a formula, then its negation, ¬φ, is a formula.
I If φ and ψ are formulas, then binary logical connectives can be used to create

formulas:
I φ ∧ ψ
I φ ∨ ψ
I φ⇒ ψ
I φ⊕ ψ

I If φ is a formula and v is a variable, then quantifiers can be used to create formulas:
I Universal quantifier: ∀v, φ
I Existential quantifier: ∃v, φ

Note: Leaving out functions, because we don’t need them in a single lecture on FOL
for NL.
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Translating Between FOL and NL

1. Schultzy’s is not loud

2. Some human likes Chinese

3. If a person likes Thai, then they aren’t friends with Donald

4. ∀x,Restaurant(x) ⇒ (Longwait(x) ∨ ¬Likes(a, x))
5. ∀x, ∃y,¬Likes(x, y)
6. ∃y,∀x,¬Likes(x, y)
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Translating Between FOL and NL

1. Schultzy’s is not loud ¬Noisy(ss)
2. Some human likes Chinese ∃x,Human(x ) ∧ Likes(x, ch)

3. If a person likes Thai, then they aren’t friends with Donald
∀x,Human(x ) ∧ Likes(x, th) ⇒ ¬Friends(x, d)

4. ∀x,Restaurant(x) ⇒ (Longwait(x) ∨ ¬Likes(a, x))
Every restaurant has a long wait or is disliked by Adrian.

5. ∀x,∃y,¬Likes(x, y)
Everybody has something they don’t like.

6. ∃y,∀x,¬Likes(x, y)
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3. If a person likes Thai, then they aren’t friends with Donald
∀x,Human(x ) ∧ Likes(x, th) ⇒ ¬Friends(x, d)

4. ∀x,Restaurant(x) ⇒ (Longwait(x) ∨ ¬Likes(a, x))
Every restaurant has a long wait or is disliked by Adrian.

5. ∀x,∃y,¬Likes(x, y)
Everybody has something they don’t like.

6. ∃y,∀x,¬Likes(x, y)
There exists something that nobody likes.
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Logical Semantics
(Montague, 1970)

The denotation of a NL sentence is the set of conditions that must hold in the (model)
world for the sentence to be true.

Every restaurant has a long wait or Adrian doesn’t like it.

is true if and only if

∀x,Restaurant(x) ⇒ (Longwait(x) ∨ ¬Likes(a, x))

is true.

This is sometimes called the logical form of the NL sentence.
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The Principle of Compositionality

The meaning of a NL phrase is determined by the meanings of its sub-phrases.
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The Principle of Compositionality

The meaning of a NL phrase is determined by the meanings of its sub-phrases.

I.e., semantics is derived from syntax.
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The Principle of Compositionality

The meaning of a NL phrase is determined by the meanings of its sub-phrases.

I.e., semantics is derived from syntax.

We need a way to express semantics of phrases, and compose them together!
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λ-Calculus

(Much more powerful than what we’ll see today; ask your PL professor!)

Informally, two extensions:
I λ-abstraction is another way to “scope” variables.

I If φ is a FOL formula and v is a variable, then λv.φ is a λ-term, meaning: an
unnamed function from values (of v) to formulas (usually involving v)

I application of such functions: if we have λv.φ and ψ, then [λv.φ](ψ) is a
formula.

I It can be reduced by substituting ψ in for every instance of v in φ.
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λ-Calculus

(Much more powerful than what we’ll see today; ask your PL professor!)

Informally, two extensions:
I λ-abstraction is another way to “scope” variables.

I If φ is a FOL formula and v is a variable, then λv.φ is a λ-term, meaning: an
unnamed function from values (of v) to formulas (usually involving v)

I application of such functions: if we have λv.φ and ψ, then [λv.φ](ψ) is a
formula.

I It can be reduced by substituting ψ in for every instance of v in φ.

Example:
λx.Likes(x, dtf ) maps things to statements that they like Din Tai Fung
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λ-Calculus

(Much more powerful than what we’ll see today; ask your PL professor!)

Informally, two extensions:
I λ-abstraction is another way to “scope” variables.

I If φ is a FOL formula and v is a variable, then λv.φ is a λ-term, meaning: an
unnamed function from values (of v) to formulas (usually involving v)

I application of such functions: if we have λv.φ and ψ, then [λv.φ](ψ) is a
formula.

I It can be reduced by substituting ψ in for every instance of v in φ.

Example:
[λx.Likes(x, dtf )](c) reduces to Likes(c, dtf )
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λ-Calculus

(Much more powerful than what we’ll see today; ask your PL professor!)

Informally, two extensions:
I λ-abstraction is another way to “scope” variables.

I If φ is a FOL formula and v is a variable, then λv.φ is a λ-term, meaning: an
unnamed function from values (of v) to formulas (usually involving v)

I application of such functions: if we have λv.φ and ψ, then [λv.φ](ψ) is a
formula.

I It can be reduced by substituting ψ in for every instance of v in φ.

Example:
λx.λy.Friends(x, y) maps things x to maps of things y to statements that x and y are
friends
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λ-Calculus

(Much more powerful than what we’ll see today; ask your PL professor!)

Informally, two extensions:
I λ-abstraction is another way to “scope” variables.

I If φ is a FOL formula and v is a variable, then λv.φ is a λ-term, meaning: an
unnamed function from values (of v) to formulas (usually involving v)

I application of such functions: if we have λv.φ and ψ, then [λv.φ](ψ) is a
formula.

I It can be reduced by substituting ψ in for every instance of v in φ.

Example:
[λx.λy.Friends(x, y)](b) reduces to λy.Friends(b, y)
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λ-Calculus

(Much more powerful than what we’ll see today; ask your PL professor!)

Informally, two extensions:
I λ-abstraction is another way to “scope” variables.

I If φ is a FOL formula and v is a variable, then λv.φ is a λ-term, meaning: an
unnamed function from values (of v) to formulas (usually involving v)

I application of such functions: if we have λv.φ and ψ, then [λv.φ](ψ) is a
formula.

I It can be reduced by substituting ψ in for every instance of v in φ.

Example:
[[λx.λy.Friends(x, y)](b)](a) reduces to [λy.Friends(b, y)](a), which reduces to
Friends(b, a)
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Semantic Attachments to CFG

I NNP → Adrian {a}
I VBZ → likes {λf.λy.∀xf(x) ⇒ Likes(y, x)}
I JJ → expensive {λx.Expensive(x)}
I NNS → restaurants {λx.Restaurant(x)}
I NP → NNP {NNP.sem}
I NP → JJ NNS {λx.JJ.sem(x) ∧ NNS.sem(x)}
I VP → VBZ NP {VBZ.sem(NP.sem)}
I S → NP VP {VP.sem(NP.sem)}
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Example

S

NP

NNP

Adrian

VP

VBZ

likes

NP

JJ

expensive

NNS

restaurants
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Example

S : VP.sem(NP.sem)

NP : NNP.sem

NNP : a

Adrian

VP : VBZ.sem(NP.sem)

VBZ : . . .

likes

NP : λv.JJ.sem(v) ∧ NNS.sem(v)

JJ : λz.Expensive(z)

expensive

NNS : λw.Restaurant(w)

restaurants
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Example

S : VP.sem(NP.sem)

NP : NNP.sem

NNP : a

Adrian

VP : VBZ.sem(NP.sem)

VBZ : . . .

likes

NP : λv.Expensive(v) ∧ Restaurant(v)

JJ : λz.Expensive(z)

expensive

NNS : λw.Restaurant(w)

restaurants

λv.

λz.Expensive(z)︸ ︷︷ ︸
JJ.sem

 (v) ∧

λw.Restaurant(w)︸ ︷︷ ︸
NNS.sem

 (v)

88 / 113



Example

...

VP : VBZ.sem(NP.sem)

VBZ : λf.λy.∀xf(x) ⇒ Likes(y, x)

likes

NP : λv.Expensive(v) ∧ Restaurant(v)

expensive restaurants
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Example

...

VP : λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)

VBZ : λf.λy.∀xf(x) ⇒ Likes(y, x)

likes

NP : λv.Expensive(v) ∧ Restaurant(v)

expensive restaurantsλf.λy.∀xf(x) ⇒ Likes(y, x)︸ ︷︷ ︸
VBZ.sem

λv.Expensive(v) ∧ Restaurant(v)︸ ︷︷ ︸
NP.sem


λy.∀x [λv.Expensive(v) ∧ Restaurant(v)] (x) ⇒ Likes(y, x)

λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)
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Example

S : VP.sem(NP.sem)

NP : NNP.sem

NNP : a

Adrian

VP : λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)

likes expensive restaurants
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Example

S : VP.sem(NP.sem)

NP : a

NNP : a

Adrian

VP : λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)

likes expensive restaurants
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Example

S : ∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(a, x)

NP : a

NNP : a

Adrian

VP : λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)

likes expensive restaurants

λy.∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(y, x)︸ ︷︷ ︸
VP.sem

 a︸︷︷︸
NP.sem


∀x,Expensive(x) ∧ Restaurant(x) ⇒ Likes(a, x)

93 / 113



Graph-Based Representations
Abstract Meaning Representation (Banarescu et al., 2013)

want-01

boy

visit-01

city

name

“New” “York” “City”

ARG0

ARG1

ARG0
ARG1

name

op1 op2 op3

“The boy wants to visit New York City.”
Designed for (1) annotation-ability and (2) eventual use in machine translation.
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Combinatory Categorial Grammar
(Steedman, 2000)

CCG is a grammatical formalism that is well-suited for tying together syntax and
semantics.

Formally, it is more powerful than CFG—it can represent some of the context-sensitive
languages (which we do not have time to define formally).
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CCG Types

Instead of the “N” of CFGs, CCGs can have an infinitely large set of structured
categories (called types).

I Primitive types: typically S, NP, N, and maybe more
I Complex types, built with “slashes,” for example:

I S/NP is “an S, except that it lacks an NP to the right”
I S\NP is “an S, except that it lacks an NP to its left”
I (S\NP)/NP is “an S, except that it lacks an NP to its right, and its left”

You can think of complex types as functions, e.g., S/NP maps NPs to Ss.
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CCG Combinators

Instead of the production rules of CFGs, CCGs have a very small set of generic
combinators that tell us how we can put types together.

Convention writes the rule differently from CFG: X Y ⇒ Z means that X and Y
combine to form a Z (the “parent” in the tree).
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Application Combinator

Forward (X/Y Y ⇒ X) and backward (Y X\Y ⇒ X)
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Application Combinator

Forward (X/Y Y ⇒ X) and backward (Y X\Y ⇒ X)

NP

NP/N

the

N

dog
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Application Combinator

Forward (X/Y Y ⇒ X) and backward (Y X\Y ⇒ X)

NP

NP/N

the

N

N/N

yellow

N

dog
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Application Combinator

Forward (X/Y Y ⇒ X) and backward (Y X\Y ⇒ X)

S

NP

NP/N

the

N

dog

S\NP

(S\NP)/NP

bit

NP

John
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Conjunction Combinator

X and X ⇒ X

NP

NP

cats

and NP

dogs
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Conjunction Combinator

X and X ⇒ X

S

NP

John

S\NP

S\NP

(S\NP)/NP

ate

NP

anchovies

and S\NP

(S\NP)/NP

drank

NP

beer
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Conjunction Combinator

X and X ⇒ X

S

NP

NP/N

the

N

dog

S\NP

(S\NP)/NP

(S\NP)/NP

bit

and (S\NP)/NP

infected

NP

John
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Composition Combinator

Forward (X/Y Y/Z ⇒ X/Z) and backward (Y \Z X\Y ⇒ X\Z)

S

NP

I

S\NP

(S\NP)/NP

(S\NP)/(S\NP)

would

(S\NP)/NP

prefer

NP

olives
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Composition Combinator

Forward (X/Y Y/Z ⇒ X/Z) and backward (Y \Z X\Y ⇒ X\Z)

S

NP

I

S\NP

(S\NP)/(S\NP)

would

S \NP

(S\NP)/NP

prefer

NP

olives
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Type-Raising Combinator
Forward (X ⇒ Y/(Y \X)) and backward (X ⇒ Y \(Y/X))

S

S/NP

S/NP

S/(S\NP)

NP

I

(S\NP)/NP

love

and S/NP

S/(S\NP)

NP

Karen

(S\NP)/NP

hates

NP

chocolate
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Back to Semantics

Each combinator also tells us what to do with the semantic attachments.

I Forward application: X/Y : f Y : g ⇒ X : f(g)

I Forward composition: X/Y : f Y/Z : g ⇒ X/Z : λx.f(g(x))

I Forward type-raising: X : g ⇒ Y/(Y \X) : λf.f(g)
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CCG Lexicon

Most of the work is done in the lexicon!

Syntactic and semantic information is much more formal here.

I Slash categories define where all the syntactic arguments are expected to be

I λ-expressions define how the expected arguments get “used” to build up a FOL
expression

Extensive discussion: Carpenter (1997)

109 / 113



Some Topics We Don’t Have Time For

I Tasks, evaluations, annotated datasets (e.g., CCGbank, Hockenmaier and
Steedman, 2007)

I Learning for semantic parsing (Zettlemoyer and Collins, 2005) and CCG parsing
(Clark and Curran, 2004a)

I Using CCG to represent other kinds of semantics (e.g., predicate-argument
structures; Lewis and Steedman, 2014)

I Integrating continuous representations in semantic parsing (Lewis and Steedman,
2013; Krishnamurthy and Mitchell, 2013)

I Supertagging (Clark and Curran, 2004b) and making semantic parsing efficient
(Lewis and Steedman, 2014)

I Grounding meaning in visual (or other perceptual) experience
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