
Natural Language Processing (CSEP 517):
Sequence Models

Noah Smith
c© 2017

University of Washington
nasmith@cs.washington.edu

April 17, 2017

1 / 98

To-Do List

I Online quiz: due Sunday

I Read: Collins (2011), which has somewhat different notation; Jurafsky and Martin
(2016a,b,c)

I A2 due April 23 (Sunday)

2 / 98

Linguistic Analysis: Overview

Every linguistic analyzer is comprised of:

1. Theoretical motivation from linguistics and/or the text domain

2. An algorithm that maps V† to some output space Y.

3. An implementation of the algorithm
I Once upon a time: rule systems and crafted rules
I Most common now: supervised learning from annotated data
I Frontier: less supervision (semi-, un-, reinforcement, distant, . . .)

3 / 98

Sequence Labeling

After text classification (V† → L), the next simplest type of output is a sequence
labeling.

〈x1, x2, . . . , x`〉 7→ 〈y1, y2, . . . , y`〉
x 7→ y

Every word gets a label in L.
Example problems:

I part-of-speech tagging (Church, 1988)

I spelling correction (Kernighan et al., 1990)

I word alignment (Vogel et al., 1996)

I named-entity recognition (Bikel et al., 1999)

I compression (Conroy and O’Leary, 2001)

4 / 98

The Simplest Sequence Labeler: “Local” Classifier

Define features of a labeled word in context: φ(x, i, y).

Train a classifier, e.g.,

ŷi = argmax
y∈L

s(x, i, y)

linear
= argmax

y∈L
w · φ(x, i, y)

Decide the label for each word independently.

5 / 98

The Simplest Sequence Labeler: “Local” Classifier

Define features of a labeled word in context: φ(x, i, y).

Train a classifier, e.g.,

ŷi = argmax
y∈L

s(x, i, y)

linear
= argmax

y∈L
w · φ(x, i, y)

Decide the label for each word independently.

Sometimes this works!

6 / 98

The Simplest Sequence Labeler: “Local” Classifier

Define features of a labeled word in context: φ(x, i, y).

Train a classifier, e.g.,

ŷi = argmax
y∈L

s(x, i, y)

linear
= argmax

y∈L
w · φ(x, i, y)

Decide the label for each word independently.

Sometimes this works!

We can do better when there are predictable relationships between Yi and Yi+1.

7 / 98

Generative Sequence Labeling: Hidden Markov Models

p(x,y) =

`+1∏
i=1

p(xi | yi) · p(yi | yi−1)

For each state/label y ∈ L:

I p(Xi | Yi = y) is the “emission” distribution for y

I p(Yi | Yi−1 = y) is called the “transition” distribution for y

Assume Y0 is always a start state and Y`+1 is always a stop state; x`+1 is always the
stop symbol.

8 / 98

Graphical Representation of Hidden Markov Models

x1 x2 x3 x4

y1 y2 y3 y4y0 y5

x5

Note: handling of beginning and end of sequence is a bit different than before. Last x
is known since p(8 |8) = 1.

9 / 98

Structured vs. Not

Each of these has an advantage over the other:

I The HMM lets the different labels “interact.”

I The local classifier makes all of x available for every decision.

10 / 98

Prediction with HMMs

The classical HMM tells us to choose:

argmax
y∈L`+1

`+1∏
i=1

p(xi, | yi) · p(yi | yi−1)

How to optimize over |L|` choices without explicit enumeration?

11 / 98

Prediction with HMMs

The classical HMM tells us to choose:

argmax
y∈L`+1

`+1∏
i=1

p(xi, | yi) · p(yi | yi−1)

How to optimize over |L|` choices without explicit enumeration?

Key: exploit the conditional independence assumptions:

Yi⊥Y 1:i−2 | Yi−1
Yi⊥Y i+2:` | Yi+1

12 / 98

Part-of-Speech Tagging Example

I suspect the present forecast is pessimistic .

noun • • • • • •
adj. • • • •
adv. •
verb • • • •
num. •
det. •
punc. •

With this very simple tag set, 78 = 5.7 million labelings.
(Even restricting to the possibilities above, 288 labelings.)

13 / 98

Two Obvious Solutions

Brute force: Enumerate all solutions, score them, pick the best.

Greedy: Pick each ŷi according to:

ŷi = argmax
y∈L

p(y | ŷi−1) · p(xi | y)

What’s wrong with these?

14 / 98

Two Obvious Solutions

Brute force: Enumerate all solutions, score them, pick the best.

Greedy: Pick each ŷi according to:

ŷi = argmax
y∈L

p(y | ŷi−1) · p(xi | y)

What’s wrong with these?

Consider:
“the old dog the footsteps of the young” (credit: Julia Hirschberg)
“the horse raced past the barn fell”

15 / 98

Conditional Independence

We can get an exact solution in polynomial time!

Yi⊥Y 1:i−2 | Yi−1
Yi⊥Y i+2:` | Yi+1

Given the adjacent labels to Yi, others do not matter.

Let’s start at the last position, ` . . .

16 / 98

High-Level View of Viterbi

I The decision about Y` is a function of y`−1, x`, and nothing else!

p(Y` = y | x,y1:(`−1)) = p

Y` = y

∣∣∣∣∣∣
X` = x`,
Y`−1 = y`−1,
Y`+1 = 8


=
p(Y` = y,X` = x`, Y`−1 = y`−1, Y`+1 = 8)

p(X` = x`, Y`−1 = y`−1, Y`+1 = 8)

∝ p(8 | y) · p(x` | y) · p(y | y`−1)

I If, for each value of y`−1, we knew the best y1:(`−1), then picking y` would be
easy.

I Idea: for each position i, calculate the score of the best label prefix y1:i ending in
each possible value for Yi.

I With a little bookkeeping, we can then trace backwards and recover the best label
sequence.

17 / 98

High-Level View of Viterbi

I The decision about Y` is a function of y`−1, x`, and nothing else!

p(Y` = y | x,y1:(`−1)) = p

Y` = y

∣∣∣∣∣∣
X` = x`,
Y`−1 = y`−1,
Y`+1 = 8


=
p(Y` = y,X` = x`, Y`−1 = y`−1, Y`+1 = 8)

p(X` = x`, Y`−1 = y`−1, Y`+1 = 8)

∝ p(8 | y) · p(x` | y) · p(y | y`−1)

I If, for each value of y`−1, we knew the best y1:(`−1), then picking y` would be
easy.

I Idea: for each position i, calculate the score of the best label prefix y1:i ending in
each possible value for Yi.

I With a little bookkeeping, we can then trace backwards and recover the best label
sequence.

18 / 98

High-Level View of Viterbi

I The decision about Y` is a function of y`−1, x`, and nothing else!

p(Y` = y | x,y1:(`−1)) = p

Y` = y

∣∣∣∣∣∣
X` = x`,
Y`−1 = y`−1,
Y`+1 = 8


=
p(Y` = y,X` = x`, Y`−1 = y`−1, Y`+1 = 8)

p(X` = x`, Y`−1 = y`−1, Y`+1 = 8)

∝ p(8 | y) · p(x` | y) · p(y | y`−1)

I If, for each value of y`−1, we knew the best y1:(`−1), then picking y` would be
easy.

I Idea: for each position i, calculate the score of the best label prefix y1:i ending in
each possible value for Yi.

I With a little bookkeeping, we can then trace backwards and recover the best label
sequence.

19 / 98

High-Level View of Viterbi

I The decision about Y` is a function of y`−1, x`, and nothing else!

p(Y` = y | x,y1:(`−1)) = p

Y` = y

∣∣∣∣∣∣
X` = x`,
Y`−1 = y`−1,
Y`+1 = 8


=
p(Y` = y,X` = x`, Y`−1 = y`−1, Y`+1 = 8)

p(X` = x`, Y`−1 = y`−1, Y`+1 = 8)

∝ p(8 | y) · p(x` | y) · p(y | y`−1)

I If, for each value of y`−1, we knew the best y1:(`−1), then picking y` would be
easy.

I Idea: for each position i, calculate the score of the best label prefix y1:i ending in
each possible value for Yi.

I With a little bookkeeping, we can then trace backwards and recover the best label
sequence.

20 / 98

Chart Data Structure

x1 x2 . . . x`
y

y′

...

ylast

21 / 98

Recurrence

First, think about the score of the best sequence.

Let si(y) be the score of the best label sequence for x1:i that ends in y. It is defined
recursively:

s`(y) = p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · s`−1(y′)

22 / 98

Recurrence

First, think about the score of the best sequence.

Let si(y) be the score of the best label sequence for x1:i that ends in y. It is defined
recursively:

s`(y) = p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · s`−1(y′)

s`−1(y) = p(x`−1 | y) ·max
y′∈L

p(y | y′) · s`−2(y′)

23 / 98

Recurrence

First, think about the score of the best sequence.

Let si(y) be the score of the best label sequence for x1:i that ends in y. It is defined
recursively:

s`(y) = p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · s`−1(y′)

s`−1(y) = p(x`−1 | y) ·max
y′∈L

p(y | y′) · s`−2(y′)

s`−2(y) = p(x`−2 | y) ·max
y′∈L

p(y | y′) · s`−3(y′)

24 / 98

Recurrence

First, think about the score of the best sequence.

Let si(y) be the score of the best label sequence for x1:i that ends in y. It is defined
recursively:

s`(y) = p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · s`−1(y′)

s`−1(y) = p(x`−1 | y) ·max
y′∈L

p(y | y′) · s`−2(y′)

s`−2(y) = p(x`−2 | y) ·max
y′∈L

p(y | y′) · s`−3(y′)

...

si(y) = p(xi | y) ·max
y′∈L

p(y | y′) · si−1(y′)

25 / 98

Recurrence
First, think about the score of the best sequence.
Let si(y) be the score of the best label sequence for x1:i that ends in y. It is defined
recursively:

s`(y) = p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · s`−1(y′)

s`−1(y) = p(x`−1 | y) ·max
y′∈L

p(y | y′) · s`−2(y′)

s`−2(y) = p(x`−2 | y) ·max
y′∈L

p(y | y′) · s`−3(y′)

...

si(y) = p(xi | y) ·max
y′∈L

p(y | y′) · si−1(y′)

...

s1(y) = p(x1 | y) · p(y | y0)

26 / 98

Viterbi Procedure (Part I: Prefix Scores)

x1 x2 . . . x`
y

y′

...

ylast

27 / 98

Viterbi Procedure (Part I: Prefix Scores)

x1 x2 . . . x`
y s1(y)

y′ s1(y
′)

...

ylast s1(y
last)

s1(y) = p(x1 | y) · p(y | y0)

28 / 98

Viterbi Procedure (Part I: Prefix Scores)

x1 x2 . . . x`
y s1(y) s2(y)

y′ s1(y
′) s2(y

′)
...

ylast s1(y
last) s2(y

last)

si(y) = p(xi | y) ·max
y′∈L

p(y | y′) · si−1(y′)

29 / 98

Viterbi Procedure (Part I: Prefix Scores)

x1 x2 . . . x`
y s1(y) s2(y) s`(y)

y′ s1(y
′) s2(y

′) s`(y
′)

...

ylast s1(y
last) s2(y

last) s`(y
last)

s`(y) = p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · s`−1(y′)

30 / 98

Claim: max
y∈L

s`(y) = max
y∈L`+1

p(x,y)

31 / 98

Claim: max
y∈L

s`(y) = max
y∈L`+1

p(x,y)

max
y∈L

s`(y) = max
y∈L

p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · s`−1(y′)

32 / 98

Claim: max
y∈L

s`(y) = max
y∈L`+1

p(x,y)

max
y∈L

s`(y) = max
y∈L

p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · s`−1(y′)

= max
y∈L

p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · p(x`−1 | y′) ·max
y′′∈L

p(y′ | y′′) · s`−2(y′′)

33 / 98

Claim: max
y∈L

s`(y) = max
y∈L`+1

p(x,y)

max
y∈L

s`(y) = max
y∈L

p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · s`−1(y′)

= max
y∈L

p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · p(x`−1 | y′) ·max
y′′∈L

p(y′ | y′′) · s`−2(y′′)

= max
y∈L

p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′)·

p(x`−1 | y′) ·max
y′′∈L

p(y′ | y′′) · p(x`−2 | y′′) · max
y′′′∈L

p(y′′ | y′′′) · s`−3(y′′′)

34 / 98

Claim: max
y∈L

s`(y) = max
y∈L`+1

p(x,y)

max
y∈L

s`(y) = max
y∈L

p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · s`−1(y′)

= max
y∈L

p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · p(x`−1 | y′) ·max
y′′∈L

p(y′ | y′′) · s`−2(y′′)

= max
y∈L

p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′)·

p(x`−1 | y′) ·max
y′′∈L

p(y′ | y′′) · p(x`−2 | y′′) · max
y′′′∈L

p(y′′ | y′′′) · s`−3(y′′′)

= max
y∈L`+1

p(8 | y`) · p(x` | y`) · p(y` | y`−1) · p(x`−1 | y`−1) · p(y`−1 | y`−2)·

p(x`−2 | y`−2) · · · p(x1 | y1) · p(y1 | y0)

35 / 98

Claim: max
y∈L

s`(y) = max
y∈L`+1

p(x,y)

max
y∈L

s`(y) = max
y∈L

p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · s`−1(y′)

= max
y∈L

p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · p(x`−1 | y′) ·max
y′′∈L

p(y′ | y′′) · s`−2(y′′)

= max
y∈L

p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′)·

p(x`−1 | y′) ·max
y′′∈L

p(y′ | y′′) · p(x`−2 | y′′) · max
y′′′∈L

p(y′′ | y′′′) · s`−3(y′′′)

= max
y∈L`+1

p(8 | y`) · p(x` | y`) · p(y` | y`−1) · p(x`−1 | y`−1) · p(y`−1 | y`−2)·

p(x`−2 | y`−2) · · · p(x1 | y1) · p(y1 | y0)

= max
y∈L`+1

`+1∏
i=1

p(xi | yi) · p(yi | yi−1)
36 / 98

High-Level View of Viterbi

I The decision about Y` is a function of y`−1, x`, and nothing else!

p(Y` = y | x,y1:(`−1)) = p

Y` = y

∣∣∣∣∣∣
X` = x`,
Y`−1 = y`−1,
Y`+1 = 8


=
p(Y` = y,X` = x`, Y`−1 = y`−1, Y`+1 = 8)

p(X` = x`, Y`−1 = y`−1, Y`+1 = 8)

∝ p(8 | y) · p(x` | y) · p(y | y`−1)

I If, for each value of y`−1, we knew the best y1:(`−1), then picking y` would be
easy.

I Idea: for each position i, calculate the score of the best label prefix y1:i ending in
each possible value for Yi.

I With a little bookkeeping, we can then trace backwards and recover the best label
sequence.

37 / 98

Viterbi Procedure (Part I: Prefix Scores and Backpointers)

x1 x2 . . . x`
y

y′

...

ylast

38 / 98

Viterbi Procedure (Part I: Prefix Scores and Backpointers)

x1 x2 . . . x`
y s1(y)

b1(y)

y′ s1(y
′)

b1(y
′)

...

ylast s1(y
last)

b1(y
last)

s1(y) = p(x1 | y) · p(y | y0)
b1(y) = y0

39 / 98

Viterbi Procedure (Part I: Prefix Scores and Backpointers)

x1 x2 . . . x`
y s1(y) s2(y)

b1(y) b2(y)

y′ s1(y
′) s2(y

′)
b1(y

′) b2(y
′)

...

ylast s1(y
last) s2(y

last)
b1(y

last) b2(y
last)

si(y) = p(xi | y) ·max
y′∈L

p(y | y′) · si−1(y′)

bi(y) = argmax
y′∈L

p(y | y′) · si−1(y′)

40 / 98

Viterbi Procedure (Part I: Prefix Scores and Backpointers)

x1 x2 . . . x`
y s1(y) s2(y) s`(y)

b1(y) b2(y) b`(y)

y′ s1(y
′) s2(y

′) s`(y
′)

b1(y
′) b2(y

′) b`(y
′)

...

ylast s1(y
last) s2(y

last) s`(y
last)

b1(y
last) b2(y

last) b`(y
last)

s`(y) = p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · s`−1(y′)

b`(y) = argmax
y′∈L

p(y | y′) · s`−1(y′)

41 / 98

Full Viterbi Procedure

Input: x, p(Xi | Yi), p(Yi+1 | Yi)

Output: ŷ

1. For i ∈ 〈1, . . . , `〉:
I Solve for si(∗) and bi(∗).

I Special base case for i = 1 to handle start state y0 (no max)
I General recurrence for i ∈ 〈2, . . . , `− 1〉
I Special case for i = ` to handle stopping probability

2. ŷ` ← argmax
y∈L

s`(y)

3. For i ∈ 〈`, . . . , 1〉:
I ŷi−1 ← b(yi)

42 / 98

Viterbi Asymptotics

Space: O(|L|`)

Runtime: O(|L|2`)

x1 x2 . . . x`
y

y′

...

ylast

43 / 98

Generalizing Viterbi

I Instead of HMM parameters, we can “featurize” or “neuralize.”

I Viterbi instantiates an general algorithm called max-product variable
elimination, for inference along a chain of variables with pairwise “links.”
HMMs are the simplest example of a structured predictor: a collection of
classifiers whose decisions depend on each other.

I Viterbi solves a special case of the “best path” problem.

I Higher-order dependencies among Y are also possible.

44 / 98

Generalizing Viterbi
I Instead of HMM parameters, we can “featurize” or “neuralize.”

Define features of adjacent labeled words in context: φ(x, i, y, y′)
“Structured” classifer/predictor:

ŷ = argmax
y∈L`+1

`+1∑
i=1

w · φ(x, i, yi, yi−1)

HMM
= argmax

y∈L`+1

`+1∑
i=1

log p(xi | yi) + log p(yi | yi−1)

I Viterbi instantiates an general algorithm called max-product variable
elimination, for inference along a chain of variables with pairwise “links.”
HMMs are the simplest example of a structured predictor: a collection of
classifiers whose decisions depend on each other.

I Viterbi solves a special case of the “best path” problem.
I Higher-order dependencies among Y are also possible.

45 / 98

Generalizing Viterbi

I Instead of HMM parameters, we can “featurize” or “neuralize.”

I Viterbi instantiates an general algorithm called max-product variable
elimination, for inference along a chain of variables with pairwise “links.”
HMMs are the simplest example of a structured predictor: a collection of
classifiers whose decisions depend on each other.

I Viterbi solves a special case of the “best path” problem.

I Higher-order dependencies among Y are also possible.

46 / 98

Generalizing Viterbi
I Instead of HMM parameters, we can “featurize” or “neuralize.”
I Viterbi instantiates an general algorithm called max-product variable

elimination, for inference along a chain of variables with pairwise “links.”
HMMs are the simplest example of a structured predictor: a collection of
classifiers whose decisions depend on each other.

I Viterbi solves a special case of the “best path” problem.

Y1 = N

Y1 = V

Y2 = N

Y2 = V

Y2 = A

Y3 = N

Y3 = V

Y3 = A

Y4 = N

Y4 = V

Y4 = A

initial Y5 =

Y1 = A

Y0 = N

Y0 = V

Y0 = A

I Higher-order dependencies among Y are also possible.

47 / 98

Generalizing Viterbi

I Instead of HMM parameters, we can “featurize” or “neuralize.”

I Viterbi instantiates an general algorithm called max-product variable
elimination, for inference along a chain of variables with pairwise “links.”
HMMs are the simplest example of a structured predictor: a collection of
classifiers whose decisions depend on each other.

I Viterbi solves a special case of the “best path” problem.

I Higher-order dependencies among Y are also possible.

si(y, y
′) = max

y′′∈L
p(xi | y) · p(y | y′, y′′) · si−1(y′, y′′)

48 / 98

Applications of Sequence Models

I part-of-speech tagging (Church, 1988)

I supersense tagging (Ciaramita and Altun, 2006)

I named-entity recognition (Bikel et al., 1999)

I multiword expressions (Schneider and Smith, 2015)

I base noun phrase chunking (Sha and Pereira, 2003)

49 / 98

Parts of Speech
http://mentalfloss.com/article/65608/master-particulars-grammar-pop-culture-primer

50 / 98

http://mentalfloss.com/article/65608/master-particulars-grammar-pop-culture-primer

Parts of Speech

I “Open classes”: Nouns, verbs, adjectives, adverbs, numbers
I “Closed classes”:

I Modal verbs
I Prepositions (on, to)
I Particles (off, up)
I Determiners (the, some)
I Pronouns (she, they)
I Conjunctions (and, or)

51 / 98

Parts of Speech in English: Decisions
Granularity decisions regarding:

I verb tenses, participles

I plural/singular for verbs, nouns

I proper nouns

I comparative, superlative adjectives and adverbs

Some linguistic reasoning required:

I Existential there

I Infinitive marker to

I wh words (pronouns, adverbs, determiners, possessive whose)

Interactions with tokenization:

I Punctuation

I Compounds (Mark’ll, someone’s, gonna)

Penn Treebank: 45 tags, ∼40 pages of guidelines (Marcus et al., 1993)
52 / 98

Parts of Speech in English: Decisions
Granularity decisions regarding:
I verb tenses, participles
I plural/singular for verbs, nouns
I proper nouns
I comparative, superlative adjectives and adverbs

Some linguistic reasoning required:
I Existential there
I Infinitive marker to
I wh words (pronouns, adverbs, determiners, possessive whose)

Interactions with tokenization:
I Punctuation
I Compounds (Mark’ll, someone’s, gonna)
I Social media: hashtag, at-mention, discourse marker (RT), URL, emoticon,

abbreviations, interjections, acronyms

Penn Treebank: 45 tags, ∼40 pages of guidelines (Marcus et al., 1993)
TweetNLP: 20 tags, 7 pages of guidelines (Gimpel et al., 2011)

53 / 98

Example: Part-of-Speech Tagging

ikr smh he asked fir yo last name

so he can add u on fb lololol

54 / 98

Example: Part-of-Speech Tagging

I know, right shake my head for your

ikr smh he asked fir yo last name

you Facebook laugh out loud

so he can add u on fb lololol

55 / 98

Example: Part-of-Speech Tagging

I know, right shake my head for your

ikr smh he asked fir yo last name
! G O V P D A N

interjection acronym pronoun verb prep. det. adj. noun

you Facebook laugh out loud

so he can add u on fb lololol
P O V V O P ∧ !

preposition proper noun

56 / 98

Why POS?

I Text-to-speech: record, lead, protest

I Lemmatization: saw/V → see; saw/N → saw

I Quick-and-dirty multiword expressions: (Adjective | Noun)∗ Noun (Justeson and
Katz, 1995)

I Preprocessing for harder disambiguation problems:
I The Georgia branch had taken on loan commitments . . .
I The average of interbank offered rates plummeted . . .

57 / 98

A Simple POS Tagger

Define a map V → L.

58 / 98

A Simple POS Tagger

Define a map V → L.

How to pick the single POS for each word? E.g., raises, Fed, . . .

59 / 98

A Simple POS Tagger

Define a map V → L.

How to pick the single POS for each word? E.g., raises, Fed, . . .

Penn Treebank: most frequent tag rule gives 90.3%, 93.7% if you’re clever about
handling unknown words.

60 / 98

A Simple POS Tagger

Define a map V → L.

How to pick the single POS for each word? E.g., raises, Fed, . . .

Penn Treebank: most frequent tag rule gives 90.3%, 93.7% if you’re clever about
handling unknown words.

All datasets have some errors; estimated upper bound for Penn Treebank is 98%.

61 / 98

Supervised Training of Hidden Markov Models

Given: annotated sequences 〈〈x1,y1, 〉, . . . , 〈xn,yn〉〉

p(x,y) =

`+1∏
i=1

θxi|yi · γyi|yi−1

Parameters: for each state/label y ∈ L:

I θ∗|y is the “emission” distribution, estimating p(x | y) for each x ∈ V
I γ∗|y is called the “transition” distribution, estimating p(y′ | y) for each y′ ∈ L

62 / 98

Supervised Training of Hidden Markov Models

Given: annotated sequences 〈〈x1,y1, 〉, . . . , 〈xn,yn〉〉

p(x,y) =

`+1∏
i=1

θxi|yi · γyi|yi−1

Parameters: for each state/label y ∈ L:

I θ∗|y is the “emission” distribution, estimating p(x | y) for each x ∈ V
I γ∗|y is called the “transition” distribution, estimating p(y′ | y) for each y′ ∈ L

Maximum likelihood estimate: count and normalize!

63 / 98

Back to POS

TnT, a trigram HMM tagger with smoothing: 96.7% (Brants, 2000)

64 / 98

Back to POS

TnT, a trigram HMM tagger with smoothing: 96.7% (Brants, 2000)

State of the art: ∼97.5% (Toutanova et al., 2003); uses a feature-based model with:

I capitalization features

I spelling features

I name lists (“gazetteers”)

I context words

I hand-crafted patterns

65 / 98

Back to POS

TnT, a trigram HMM tagger with smoothing: 96.7% (Brants, 2000)

State of the art: ∼97.5% (Toutanova et al., 2003); uses a feature-based model with:

I capitalization features

I spelling features

I name lists (“gazetteers”)

I context words

I hand-crafted patterns

There might be very recent improvements to this.

66 / 98

Other Labels

Parts of speech are a minimal syntactic representation.

Sequence labeling can get you a lightweight semantic representation, too.

67 / 98

Supersenses

A problem with a long history: word-sense disambiguation.

68 / 98

Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

I E.g., from a dictionary

69 / 98

Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

I E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006) used a lexicon called
WordNet to define 41 semantic classes for words.

I WordNet (Fellbaum, 1998) is a fascinating resource in its own right! See
http://wordnetweb.princeton.edu/perl/webwn to get an idea.

70 / 98

http://wordnetweb.princeton.edu/perl/webwn

Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

I E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006) used a lexicon called
WordNet to define 41 semantic classes for words.

I WordNet (Fellbaum, 1998) is a fascinating resource in its own right! See
http://wordnetweb.princeton.edu/perl/webwn to get an idea.

This represents a coarsening of the annotations in the Semcor corpus (Miller et al.,
1993).

71 / 98

http://wordnetweb.princeton.edu/perl/webwn

Example: box’s Thirteen Synonym Sets, Eight Supersenses

1. box: a (usually rectangular) container; may have a lid. “he rummaged through a box of spare parts”

2. box/loge: private area in a theater or grandstand where a small group can watch the performance. “the
royal box was empty”

3. box/boxful: the quantity contained in a box. “he gave her a box of chocolates”

4. corner/box: a predicament from which a skillful or graceful escape is impossible. “his lying got him into a
tight corner”

5. box: a rectangular drawing. “the flowchart contained many boxes”

6. box/boxwood: evergreen shrubs or small trees

7. box: any one of several designated areas on a ball field where the batter or catcher or coaches are
positioned. “the umpire warned the batter to stay in the batter’s box”

8. box/box seat: the driver’s seat on a coach. “an armed guard sat in the box with the driver”

9. box: separate partitioned area in a public place for a few people. “the sentry stayed in his box to avoid
the cold”

10. box: a blow with the hand (usually on the ear). “I gave him a good box on the ear”

11. box/package: put into a box. “box the gift, please”

12. box: hit with the fist. “I’ll box your ears!”

13. box: engage in a boxing match.

72 / 98

Example: box’s Thirteen Synonym Sets, Eight Supersenses
1. box: a (usually rectangular) container; may have a lid. “he rummaged through a box of spare parts”

n.artifact

2. box/loge: private area in a theater or grandstand where a small group can watch the performance. “the
royal box was empty” n.artifact

3. box/boxful: the quantity contained in a box. “he gave her a box of chocolates” n.quantity

4. corner/box: a predicament from which a skillful or graceful escape is impossible. “his lying got him into a
tight corner” n.state

5. box: a rectangular drawing. “the flowchart contained many boxes” n.shape

6. box/boxwood: evergreen shrubs or small trees n.plant

7. box: any one of several designated areas on a ball field where the batter or catcher or coaches are
positioned. “the umpire warned the batter to stay in the batter’s box” n.artifact

8. box/box seat: the driver’s seat on a coach. “an armed guard sat in the box with the driver”
n.artifact

9. box: separate partitioned area in a public place for a few people. “the sentry stayed in his box to avoid
the cold” n.artifact

10. box: a blow with the hand (usually on the ear). “I gave him a good box on the ear” n.act

11. box/package: put into a box. “box the gift, please” v.contact

12. box: hit with the fist. “I’ll box your ears!” v.contact

13. box: engage in a boxing match. v.competition

73 / 98

Supersense Tagging Example

Clara Harris , one of the guests in the
n.person n.person

box , stood up and demanded
n.artifact v.motion v.communication

water .
n.substance

74 / 98

Ciaramita and Altun’s Approach

Features at each position in the sentence:

I word

I “first sense” from WordNet (also conjoined with word)

I POS, coarse POS

I shape (case, punctuation symbols, etc.)

I previous label

All of these fit into “φ(x, i, y, y′).”

75 / 98

Featurizing HMMs
Log-probability score of y (given x) decomposes into a sum of local scores:

score(x,y) =

`+1∑
i=1

local score at position i︷ ︸︸ ︷
(log p(xi | yi) + log p(yi | yi−1)) (1)

Featurized HMM:

score(x,y) =

`+1∑
i=1

local score at position i︷ ︸︸ ︷
(w · φ(x, i, yi, yi−1)) (2)

= w ·
`+1∑
i=1

φ(x, i, yi, yi−1)︸ ︷︷ ︸
global features, Φ(x,y)

(3)

76 / 98

What Changes?
Algorithmically, not much!

Viterbi recurrence before (using log math):

s1(y) = log p(x1 | y) + log p(y | y0)

si(y) = log p(xi | y) + max
y′∈L

log p(y | y′) + si−1(y
′)

s`(y) = log p(8 | y) + log p(x` | y) + max
y′∈L

log p(y | y′) + s`−1(y
′)

After:

s1(y) = w · φ(x, 1, y, y0)

si(y) = max
y′∈L

w · φ(x, i, y, y′) + si−1(y
′)

s`(y) = max
y′∈L

w ·
(
φ(x, `, y, y′) + φ(x, `+ 1,8, y)

)
+ s`−1(y

′)

77 / 98

Supervised Training of Sequence Models (Discriminative)

Given: annotated sequences 〈〈x1,y1, 〉, . . . , 〈xn,yn〉〉

Assume:

predict(x) = argmax
y∈L`+1

score(x,y)

= argmax
y∈L`+1

`+1∑
i=1

w · φ(x, i, yi, yi−1)

= argmax
y∈L`+1

w ·
`+1∑
i=1

φ(x, i, yi, yi−1)

= argmax
y∈L`+1

w ·Φ(x,y)

Estimate: w

78 / 98

Perceptron

Perceptron algorithm for classification:
I For t ∈ {1, . . . , T}:

I Pick it uniformly at random from {1, . . . , n}.
I ˆ̀

it ← argmax
`∈L

w · φ(xit , `)

I w← w − α
(
φ(xit ,

ˆ̀
it)− φ(xit , `it)

)

79 / 98

Structured Perceptron
Collins (2002)

Perceptron algorithm for classification structured prediction:
I For t ∈ {1, . . . , T}:

I Pick it uniformly at random from {1, . . . , n}.
I ŷit ← argmax

y∈L`+1

w ·Φ(xit ,y)

I w← w − α
(
Φ(xit , ŷit)−Φ(xit ,yit)

)
This can be viewed as stochastic subgradient descent on the structured hinge loss:

n∑
i=1

max
y∈L`i+1

w ·Φ(xi,y)︸ ︷︷ ︸
fear

−w ·Φ(xi,yi)︸ ︷︷ ︸
hope

80 / 98

Back to Supersenses

Clara Harris , one of the guests in the
n.person n.person

box , stood up and demanded
n.artifact v.motion v.communication

water .
n.substance

Shouldn’t Clara Harris and stood up be respectively “grouped”?

81 / 98

Segmentations

Segmentation:

I Input: x = 〈x1, x2, . . . , x`〉
I Output:

〈 x1:`1 ,
x(1+`1):(`1+`2),

x(1+`1+`2):(`1+`2+`3), . . . ,

x(1+
∑m−1

i=1 `i):
∑m

i=1 `i

〉
(4)

where ` =
∑m

i=1 `i.

Application: word segmentation for writing systems without whitespace.

82 / 98

Segmentations

Segmentation:

I Input: x = 〈x1, x2, . . . , x`〉
I Output:

〈 x1:`1 ,
x(1+`1):(`1+`2),

x(1+`1+`2):(`1+`2+`3), . . . ,

x(1+
∑m−1

i=1 `i):
∑m

i=1 `i

〉
(4)

where ` =
∑m

i=1 `i.

Application: word segmentation for writing systems without whitespace.

With arbitrarily long segments, this does not look like a job for φ(x, i, y, y′)!

83 / 98

Segmentation as Sequence Labeling
Ramshaw and Marcus (1995)

Two labels: B (“beginning of new segment”), I (“inside segment”)

I `1 = 4, `2 = 3, `3 = 1, `4 = 2 −→ 〈B, I, I, I, B, I, I, B, B, I〉

Three labels: B, I, O (“outside segment”)

Five labels: B, I, O, E (“end of segment”), S (“singleton”)

84 / 98

Segmentation as Sequence Labeling
Ramshaw and Marcus (1995)

Two labels: B (“beginning of new segment”), I (“inside segment”)

I `1 = 4, `2 = 3, `3 = 1, `4 = 2 −→ 〈B, I, I, I, B, I, I, B, B, I〉

Three labels: B, I, O (“outside segment”)

Five labels: B, I, O, E (“end of segment”), S (“singleton”)

Bonus: combine these with a label to get labeled segmentation!

85 / 98

Named Entity Recognition as Segmentation and Labeling

An older and narrower subset of supersenses used in information extraction:

I person,

I location,

I organization,

I geopolitical entity,

I . . . and perhaps domain-specific additions.

86 / 98

Named Entity Recognition

With Commander Chris Ferguson at the helm ,
person

Atlantis touched down at Kennedy Space Center .
spacecraft location

87 / 98

Named Entity Recognition

With Commander Chris Ferguson at the helm ,
person

O B I I O O O O

Atlantis touched down at Kennedy Space Center .
spacecraft location

B O O O B I I O

88 / 98

Named Entity Recognition: Evaluation

1 2 3 4 5 6 7 8 9

x = Britain sent warships across the English Channel Monday to
y = B O O O O B I B O
y′ = O O O O O B I B O

10 11 12 13 14 15 16 17 18 19

rescue Britons stranded by Eyjafjallajökull ’s volcanic ash cloud .
O B O O B O O O O O
O B O O B O O O O O

89 / 98

Segmentation Evaluation

Typically: precision, recall, and F1.

90 / 98

Multiword Expressions
Schneider et al. (2014b)

I MW compounds: red tape, motion picture, daddy longlegs, Bayes net, hot air balloon, skinny dip, trash
talk

I verb-particle: pick up, dry out, take over, cut short
I verb-preposition: refer to, depend on, look for, prevent from
I verb-noun(-preposition): pay attention (to), go bananas, lose it, break a leg, make the most of
I support verb: make decisions, take breaks, take pictures, have fun, perform surgery
I other phrasal verb: put up with, miss out (on), get rid of, look forward to, run amok, cry foul, add insult

to injury, make off with
I PP modifier: above board, beyond the pale, under the weather,at all, from time to time, in the nick of

time
I coordinated phrase: cut and dry, more or less, up and leave
I conjunction/connective: as well as, let alone, in spite of, on the face of it/on its face
I semi-fixed VP: smack <one>’s lips, pick up where <one> left off, go over <thing> with a

fine-tooth(ed) comb, take <one>’s time, draw <oneself> up to <one>’s full height
I fixed phrase: easy as pie, scared to death, go to hell in a handbasket, bring home the bacon, leave of

absence, sense of humor
I phatic: You’re welcome. Me neither!
I proverb: Beggars can’t be choosers. The early bird gets the worm. To each his own. One man’s

<thing1> is another man’s <thing2>.

91 / 98

Sequence Labeling with Nesting
Schneider et al. (2014a)

he was willing to budge1 a2 little2 on1 the price
O O O O B b ı̄ Ī O O

which means4 a43 lot43 to4 me4 .

O B Ĩ Ī Ĩ Ĩ O

Strong (subscript) vs. weak (superscript) MWEs.

One level of nesting, plus strong/weak distinction, can be handled with an eight-tag
scheme.

92 / 98

Back to Syntax

Base noun phrase chunking:

[He]NP reckons [the current account deficit]NP will narrow to
[only $ 1.8 billion]NP in [September]NP

(What is a base noun phrase?)

“Chunking” used generically includes base verb and prepositional phrases, too.

Sequence labeling with BIO tags and features can be applied to this problem (Sha and
Pereira, 2003).

93 / 98

Remarks

Sequence models are extremely useful:

I syntax: part-of-speech tags, base noun phrase chunking

I semantics: supersense tags, named entity recognition, multiword expressions

All of these are called “shallow” methods (why?).

94 / 98

Remarks

Sequence models are extremely useful:

I syntax: part-of-speech tags, base noun phrase chunking

I semantics: supersense tags, named entity recognition, multiword expressions

All of these are called “shallow” methods (why?).

Issues to be aware of:

I Supervised data for these problems is not cheap.

I Performance always suffers when you test on a different style, genre, dialect, etc.
than you trained on.

I Runtime depends on the size of L and the number of consecutive labels that
features can depend on.

95 / 98

References I

Daniel M. Bikel, Richard Schwartz, and Ralph M. Weischedel. An algorithm that learns what’s in a name.
Machine learning, 34(1–3):211–231, 1999. URL
http://people.csail.mit.edu/mcollins/6864/slides/bikel.pdf.

Thorsten Brants. TnT – a statistical part-of-speech tagger. In Proc. of ANLP, 2000.

Kenneth W. Church. A stochastic parts program and noun phrase parser for unrestricted text. In Proc. of
ANLP, 1988.

Massimiliano Ciaramita and Yasemin Altun. Broad-coverage sense disambiguation and information extraction
with a supersense sequence tagger. In Proc. of EMNLP, 2006.

Massimiliano Ciaramita and Mark Johnson. Supersense tagging of unknown nouns in WordNet. In Proc. of
EMNLP, 2003.

Michael Collins. Discriminative training methods for hidden Markov models: Theory and experiments with
perceptron algorithms. In Proc. of EMNLP, 2002.

Michael Collins. Tagging with hidden Markov models, 2011. URL
http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/hmms.pdf.

John M. Conroy and Dianne P. O’Leary. Text summarization via hidden Markov models. In Proc. of SIGIR,
2001.

Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.

96 / 98

http://people.csail.mit.edu/mcollins/6864/slides/bikel.pdf
http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/hmms.pdf

References II

Kevin Gimpel, Nathan Schneider, Brendan O’Connor, Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael
Heilman, Dani Yogatama, Jeffrey Flanigan, and Noah A. Smith. Part-of-speech tagging for Twitter:
Annotation, features, and experiments. In Proc. of ACL, 2011.

Daniel Jurafsky and James H. Martin. Hidden Markov models (draft chapter), 2016a. URL
https://web.stanford.edu/~jurafsky/slp3/9.pdf.

Daniel Jurafsky and James H. Martin. Information extraction (draft chapter), 2016b. URL
https://web.stanford.edu/~jurafsky/slp3/21.pdf.

Daniel Jurafsky and James H. Martin. Part-of-speech tagging (draft chapter), 2016c. URL
https://web.stanford.edu/~jurafsky/slp3/10.pdf.

John S. Justeson and Slava M. Katz. Technical terminology: Some linguistic properties and an algorithm for
identification in text. Natural Language Engineering, 1:9–27, 1995.

Mark D. Kernighan, Kenneth W. Church, and William A. Gale. A spelling correction program based on a noisy
channel model. In Proc. of COLING, 1990.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus of
English: the Penn treebank. Computational Linguistics, 19(2):313–330, 1993.

G. A. Miller, C. Leacock, T. Randee, and R. Bunker. A semantic concordance. In Proc. of HLT, 1993.

Lance A Ramshaw and Mitchell P. Marcus. Text chunking using transformation-based learning, 1995. URL
http://arxiv.org/pdf/cmp-lg/9505040.pdf.

97 / 98

https://web.stanford.edu/~jurafsky/slp3/9.pdf
https://web.stanford.edu/~jurafsky/slp3/21.pdf
https://web.stanford.edu/~jurafsky/slp3/10.pdf
http://arxiv.org/pdf/cmp-lg/9505040.pdf

References III

Nathan Schneider and Noah A. Smith. A corpus and model integrating multiword expressions and supersenses.
In Proc. of NAACL, 2015.

Nathan Schneider, Emily Danchik, Chris Dyer, and Noah A. Smith. Discriminative lexical semantic
segmentation with gaps: Running the MWE gamut. Transactions of the Association for Computational
Linguistics, 2:193–206, April 2014a.

Nathan Schneider, Spencer Onuffer, Nora Kazour, Emily Danchik, Michael T. Mordowanec, Henrietta Conrad,
and Noah A. Smith. Comprehensive annotation of multiword expressions in a social web corpus. In Proc. of
LREC, 2014b.

Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In Proc. of NAACL, 2003.

Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. Feature-rich part-of-speech tagging
with a cyclic dependency network. In Proc. of NAACL, 2003.

Stephan Vogel, Hermann Ney, and Christoph Tillmann. HMM-based word alignment in statistical translation. In
Proc. of COLING, 1996.

98 / 98

