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To-Do List

I Online quiz: due Sunday

I Read: Collins (2011), which has somewhat different notation; Jurafsky and Martin
(2016a,b,c)

I A2 due April 23 (Sunday)
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Linguistic Analysis: Overview

Every linguistic analyzer is comprised of:

1. Theoretical motivation from linguistics and/or the text domain

2. An algorithm that maps V† to some output space Y.

3. An implementation of the algorithm
I Once upon a time: rule systems and crafted rules
I Most common now: supervised learning from annotated data
I Frontier: less supervision (semi-, un-, reinforcement, distant, . . . )
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Sequence Labeling

After text classification (V† → L), the next simplest type of output is a sequence
labeling.

〈x1, x2, . . . , x`〉 7→ 〈y1, y2, . . . , y`〉
x 7→ y

Every word gets a label in L.
Example problems:

I part-of-speech tagging (Church, 1988)

I spelling correction (Kernighan et al., 1990)

I word alignment (Vogel et al., 1996)

I named-entity recognition (Bikel et al., 1999)

I compression (Conroy and O’Leary, 2001)
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The Simplest Sequence Labeler: “Local” Classifier

Define features of a labeled word in context: φ(x, i, y).

Train a classifier, e.g.,

ŷi = argmax
y∈L

s(x, i, y)

linear
= argmax

y∈L
w · φ(x, i, y)

Decide the label for each word independently.
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The Simplest Sequence Labeler: “Local” Classifier

Define features of a labeled word in context: φ(x, i, y).

Train a classifier, e.g.,

ŷi = argmax
y∈L

s(x, i, y)

linear
= argmax

y∈L
w · φ(x, i, y)

Decide the label for each word independently.

Sometimes this works!

We can do better when there are predictable relationships between Yi and Yi+1.
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Generative Sequence Labeling: Hidden Markov Models

p(x,y) =

`+1∏
i=1

p(xi | yi) · p(yi | yi−1)

For each state/label y ∈ L:

I p(Xi | Yi = y) is the “emission” distribution for y

I p(Yi | Yi−1 = y) is called the “transition” distribution for y

Assume Y0 is always a start state and Y`+1 is always a stop state; x`+1 is always the
stop symbol.
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Graphical Representation of Hidden Markov Models

x1 x2 x3 x4

y1 y2 y3 y4y0 y5

x5

Note: handling of beginning and end of sequence is a bit different than before. Last x
is known since p(8 |8) = 1.
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Structured vs. Not

Each of these has an advantage over the other:

I The HMM lets the different labels “interact.”

I The local classifier makes all of x available for every decision.
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Prediction with HMMs

The classical HMM tells us to choose:

argmax
y∈L`+1

`+1∏
i=1

p(xi, | yi) · p(yi | yi−1)

How to optimize over |L|` choices without explicit enumeration?
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Prediction with HMMs

The classical HMM tells us to choose:

argmax
y∈L`+1

`+1∏
i=1

p(xi, | yi) · p(yi | yi−1)

How to optimize over |L|` choices without explicit enumeration?

Key: exploit the conditional independence assumptions:

Yi⊥Y 1:i−2 | Yi−1
Yi⊥Y i+2:` | Yi+1
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Part-of-Speech Tagging Example

I suspect the present forecast is pessimistic .

noun • • • • • •
adj. • • • •
adv. •
verb • • • •
num. •
det. •
punc. •

With this very simple tag set, 78 = 5.7 million labelings.
(Even restricting to the possibilities above, 288 labelings.)

13 / 98



Two Obvious Solutions

Brute force: Enumerate all solutions, score them, pick the best.

Greedy: Pick each ŷi according to:

ŷi = argmax
y∈L

p(y | ŷi−1) · p(xi | y)

What’s wrong with these?
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Two Obvious Solutions

Brute force: Enumerate all solutions, score them, pick the best.

Greedy: Pick each ŷi according to:

ŷi = argmax
y∈L

p(y | ŷi−1) · p(xi | y)

What’s wrong with these?

Consider:
“the old dog the footsteps of the young” (credit: Julia Hirschberg)
“the horse raced past the barn fell”
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Conditional Independence

We can get an exact solution in polynomial time!

Yi⊥Y 1:i−2 | Yi−1
Yi⊥Y i+2:` | Yi+1

Given the adjacent labels to Yi, others do not matter.

Let’s start at the last position, ` . . .

16 / 98



High-Level View of Viterbi

I The decision about Y` is a function of y`−1, x`, and nothing else!

p(Y` = y | x,y1:(`−1)) = p

Y` = y

∣∣∣∣∣∣
X` = x`,
Y`−1 = y`−1,
Y`+1 = 8


=
p(Y` = y,X` = x`, Y`−1 = y`−1, Y`+1 = 8)

p(X` = x`, Y`−1 = y`−1, Y`+1 = 8)

∝ p(8 | y) · p(x` | y) · p(y | y`−1)

I If, for each value of y`−1, we knew the best y1:(`−1), then picking y` would be
easy.

I Idea: for each position i, calculate the score of the best label prefix y1:i ending in
each possible value for Yi.

I With a little bookkeeping, we can then trace backwards and recover the best label
sequence.
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Chart Data Structure

x1 x2 . . . x`
y

y′

...

ylast
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Recurrence

First, think about the score of the best sequence.

Let si(y) be the score of the best label sequence for x1:i that ends in y. It is defined
recursively:

s`(y) = p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · s`−1(y′)
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Recurrence

First, think about the score of the best sequence.

Let si(y) be the score of the best label sequence for x1:i that ends in y. It is defined
recursively:

s`(y) = p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · s`−1(y′)

s`−1(y) = p(x`−1 | y) ·max
y′∈L

p(y | y′) · s`−2(y′)

s`−2(y) = p(x`−2 | y) ·max
y′∈L

p(y | y′) · s`−3(y′)

24 / 98



Recurrence
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Recurrence
First, think about the score of the best sequence.
Let si(y) be the score of the best label sequence for x1:i that ends in y. It is defined
recursively:

s`(y) = p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · s`−1(y′)

s`−1(y) = p(x`−1 | y) ·max
y′∈L

p(y | y′) · s`−2(y′)

s`−2(y) = p(x`−2 | y) ·max
y′∈L

p(y | y′) · s`−3(y′)

...

si(y) = p(xi | y) ·max
y′∈L

p(y | y′) · si−1(y′)

...

s1(y) = p(x1 | y) · p(y | y0)
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Viterbi Procedure (Part I: Prefix Scores)

x1 x2 . . . x`
y

y′

...

ylast
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Viterbi Procedure (Part I: Prefix Scores)

x1 x2 . . . x`
y s1(y)

y′ s1(y
′)

...

ylast s1(y
last)

s1(y) = p(x1 | y) · p(y | y0)
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Viterbi Procedure (Part I: Prefix Scores)

x1 x2 . . . x`
y s1(y) s2(y)

y′ s1(y
′) s2(y

′)
...

ylast s1(y
last) s2(y

last)

si(y) = p(xi | y) ·max
y′∈L

p(y | y′) · si−1(y′)
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Viterbi Procedure (Part I: Prefix Scores)

x1 x2 . . . x`
y s1(y) s2(y) s`(y)

y′ s1(y
′) s2(y

′) s`(y
′)

...

ylast s1(y
last) s2(y

last) s`(y
last)

s`(y) = p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · s`−1(y′)
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Claim: max
y∈L

s`(y) = max
y∈L`+1

p(x,y)
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High-Level View of Viterbi

I The decision about Y` is a function of y`−1, x`, and nothing else!

p(Y` = y | x,y1:(`−1)) = p

Y` = y

∣∣∣∣∣∣
X` = x`,
Y`−1 = y`−1,
Y`+1 = 8


=
p(Y` = y,X` = x`, Y`−1 = y`−1, Y`+1 = 8)

p(X` = x`, Y`−1 = y`−1, Y`+1 = 8)

∝ p(8 | y) · p(x` | y) · p(y | y`−1)

I If, for each value of y`−1, we knew the best y1:(`−1), then picking y` would be
easy.

I Idea: for each position i, calculate the score of the best label prefix y1:i ending in
each possible value for Yi.

I With a little bookkeeping, we can then trace backwards and recover the best label
sequence.
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)

x1 x2 . . . x`
y

y′

...

ylast
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)

x1 x2 . . . x`
y s1(y)

b1(y)

y′ s1(y
′)

b1(y
′)

...

ylast s1(y
last)

b1(y
last)

s1(y) = p(x1 | y) · p(y | y0)
b1(y) = y0
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)

x1 x2 . . . x`
y s1(y) s2(y)

b1(y) b2(y)

y′ s1(y
′) s2(y

′)
b1(y

′) b2(y
′)

...

ylast s1(y
last) s2(y

last)
b1(y

last) b2(y
last)

si(y) = p(xi | y) ·max
y′∈L

p(y | y′) · si−1(y′)

bi(y) = argmax
y′∈L

p(y | y′) · si−1(y′)
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Viterbi Procedure (Part I: Prefix Scores and Backpointers)

x1 x2 . . . x`
y s1(y) s2(y) s`(y)

b1(y) b2(y) b`(y)

y′ s1(y
′) s2(y

′) s`(y
′)

b1(y
′) b2(y

′) b`(y
′)

...

ylast s1(y
last) s2(y

last) s`(y
last)

b1(y
last) b2(y

last) b`(y
last)

s`(y) = p(8 | y) · p(x` | y) ·max
y′∈L

p(y | y′) · s`−1(y′)

b`(y) = argmax
y′∈L

p(y | y′) · s`−1(y′)
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Full Viterbi Procedure

Input: x, p(Xi | Yi), p(Yi+1 | Yi)

Output: ŷ

1. For i ∈ 〈1, . . . , `〉:
I Solve for si(∗) and bi(∗).

I Special base case for i = 1 to handle start state y0 (no max)
I General recurrence for i ∈ 〈2, . . . , `− 1〉
I Special case for i = ` to handle stopping probability

2. ŷ` ← argmax
y∈L

s`(y)

3. For i ∈ 〈`, . . . , 1〉:
I ŷi−1 ← b(yi)
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Viterbi Asymptotics

Space: O(|L|`)

Runtime: O(|L|2`)

x1 x2 . . . x`
y

y′

...

ylast
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Generalizing Viterbi

I Instead of HMM parameters, we can “featurize” or “neuralize.”

I Viterbi instantiates an general algorithm called max-product variable
elimination, for inference along a chain of variables with pairwise “links.”
HMMs are the simplest example of a structured predictor: a collection of
classifiers whose decisions depend on each other.

I Viterbi solves a special case of the “best path” problem.

I Higher-order dependencies among Y are also possible.
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Generalizing Viterbi
I Instead of HMM parameters, we can “featurize” or “neuralize.”

Define features of adjacent labeled words in context: φ(x, i, y, y′)
“Structured” classifer/predictor:

ŷ = argmax
y∈L`+1

`+1∑
i=1

w · φ(x, i, yi, yi−1)

HMM
= argmax

y∈L`+1

`+1∑
i=1

log p(xi | yi) + log p(yi | yi−1)

I Viterbi instantiates an general algorithm called max-product variable
elimination, for inference along a chain of variables with pairwise “links.”
HMMs are the simplest example of a structured predictor: a collection of
classifiers whose decisions depend on each other.

I Viterbi solves a special case of the “best path” problem.
I Higher-order dependencies among Y are also possible.
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Generalizing Viterbi
I Instead of HMM parameters, we can “featurize” or “neuralize.”
I Viterbi instantiates an general algorithm called max-product variable

elimination, for inference along a chain of variables with pairwise “links.”
HMMs are the simplest example of a structured predictor: a collection of
classifiers whose decisions depend on each other.

I Viterbi solves a special case of the “best path” problem.

Y1 = N

Y1 = V

Y2 = N

Y2 = V

Y2 = A

Y3 = N

Y3 = V

Y3 = A

Y4 = N

Y4 = V

Y4 = A

initial Y5 =    

Y1 = A

Y0 = N

Y0 = V

Y0 = A

I Higher-order dependencies among Y are also possible.
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Generalizing Viterbi

I Instead of HMM parameters, we can “featurize” or “neuralize.”

I Viterbi instantiates an general algorithm called max-product variable
elimination, for inference along a chain of variables with pairwise “links.”
HMMs are the simplest example of a structured predictor: a collection of
classifiers whose decisions depend on each other.

I Viterbi solves a special case of the “best path” problem.

I Higher-order dependencies among Y are also possible.

si(y, y
′) = max

y′′∈L
p(xi | y) · p(y | y′, y′′) · si−1(y′, y′′)

48 / 98



Applications of Sequence Models

I part-of-speech tagging (Church, 1988)

I supersense tagging (Ciaramita and Altun, 2006)

I named-entity recognition (Bikel et al., 1999)

I multiword expressions (Schneider and Smith, 2015)

I base noun phrase chunking (Sha and Pereira, 2003)

49 / 98



Parts of Speech
http://mentalfloss.com/article/65608/master-particulars-grammar-pop-culture-primer
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Parts of Speech

I “Open classes”: Nouns, verbs, adjectives, adverbs, numbers
I “Closed classes”:

I Modal verbs
I Prepositions (on, to)
I Particles (off, up)
I Determiners (the, some)
I Pronouns (she, they)
I Conjunctions (and, or)
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Parts of Speech in English: Decisions
Granularity decisions regarding:

I verb tenses, participles

I plural/singular for verbs, nouns

I proper nouns

I comparative, superlative adjectives and adverbs

Some linguistic reasoning required:

I Existential there

I Infinitive marker to

I wh words (pronouns, adverbs, determiners, possessive whose)

Interactions with tokenization:

I Punctuation

I Compounds (Mark’ll, someone’s, gonna)

Penn Treebank: 45 tags, ∼40 pages of guidelines (Marcus et al., 1993)
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Parts of Speech in English: Decisions
Granularity decisions regarding:
I verb tenses, participles
I plural/singular for verbs, nouns
I proper nouns
I comparative, superlative adjectives and adverbs

Some linguistic reasoning required:
I Existential there
I Infinitive marker to
I wh words (pronouns, adverbs, determiners, possessive whose)

Interactions with tokenization:
I Punctuation
I Compounds (Mark’ll, someone’s, gonna)
I Social media: hashtag, at-mention, discourse marker (RT), URL, emoticon,

abbreviations, interjections, acronyms

Penn Treebank: 45 tags, ∼40 pages of guidelines (Marcus et al., 1993)
TweetNLP: 20 tags, 7 pages of guidelines (Gimpel et al., 2011)

53 / 98



Example: Part-of-Speech Tagging

ikr smh he asked fir yo last name

so he can add u on fb lololol
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Example: Part-of-Speech Tagging

I know, right shake my head for your

ikr smh he asked fir yo last name

you Facebook laugh out loud

so he can add u on fb lololol
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Example: Part-of-Speech Tagging

I know, right shake my head for your

ikr smh he asked fir yo last name
! G O V P D A N

interjection acronym pronoun verb prep. det. adj. noun

you Facebook laugh out loud

so he can add u on fb lololol
P O V V O P ∧ !

preposition proper noun
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Why POS?

I Text-to-speech: record, lead, protest

I Lemmatization: saw/V → see; saw/N → saw

I Quick-and-dirty multiword expressions: (Adjective | Noun)∗ Noun (Justeson and
Katz, 1995)

I Preprocessing for harder disambiguation problems:
I The Georgia branch had taken on loan commitments . . .
I The average of interbank offered rates plummeted . . .
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A Simple POS Tagger

Define a map V → L.
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A Simple POS Tagger

Define a map V → L.

How to pick the single POS for each word? E.g., raises, Fed, . . .
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A Simple POS Tagger

Define a map V → L.

How to pick the single POS for each word? E.g., raises, Fed, . . .

Penn Treebank: most frequent tag rule gives 90.3%, 93.7% if you’re clever about
handling unknown words.
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A Simple POS Tagger

Define a map V → L.

How to pick the single POS for each word? E.g., raises, Fed, . . .

Penn Treebank: most frequent tag rule gives 90.3%, 93.7% if you’re clever about
handling unknown words.

All datasets have some errors; estimated upper bound for Penn Treebank is 98%.
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Supervised Training of Hidden Markov Models

Given: annotated sequences 〈〈x1,y1, 〉, . . . , 〈xn,yn〉〉

p(x,y) =

`+1∏
i=1

θxi|yi · γyi|yi−1

Parameters: for each state/label y ∈ L:

I θ∗|y is the “emission” distribution, estimating p(x | y) for each x ∈ V
I γ∗|y is called the “transition” distribution, estimating p(y′ | y) for each y′ ∈ L
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Supervised Training of Hidden Markov Models

Given: annotated sequences 〈〈x1,y1, 〉, . . . , 〈xn,yn〉〉

p(x,y) =

`+1∏
i=1

θxi|yi · γyi|yi−1

Parameters: for each state/label y ∈ L:

I θ∗|y is the “emission” distribution, estimating p(x | y) for each x ∈ V
I γ∗|y is called the “transition” distribution, estimating p(y′ | y) for each y′ ∈ L

Maximum likelihood estimate: count and normalize!
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Back to POS

TnT, a trigram HMM tagger with smoothing: 96.7% (Brants, 2000)
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Back to POS

TnT, a trigram HMM tagger with smoothing: 96.7% (Brants, 2000)

State of the art: ∼97.5% (Toutanova et al., 2003); uses a feature-based model with:

I capitalization features

I spelling features

I name lists (“gazetteers”)

I context words

I hand-crafted patterns
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Back to POS

TnT, a trigram HMM tagger with smoothing: 96.7% (Brants, 2000)

State of the art: ∼97.5% (Toutanova et al., 2003); uses a feature-based model with:

I capitalization features

I spelling features

I name lists (“gazetteers”)

I context words

I hand-crafted patterns

There might be very recent improvements to this.
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Other Labels

Parts of speech are a minimal syntactic representation.

Sequence labeling can get you a lightweight semantic representation, too.
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Supersenses

A problem with a long history: word-sense disambiguation.
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Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

I E.g., from a dictionary
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Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

I E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006) used a lexicon called
WordNet to define 41 semantic classes for words.

I WordNet (Fellbaum, 1998) is a fascinating resource in its own right! See
http://wordnetweb.princeton.edu/perl/webwn to get an idea.
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Supersenses

A problem with a long history: word-sense disambiguation.

Classical approaches assumed you had a list of ambiguous words and their senses.

I E.g., from a dictionary

Ciaramita and Johnson (2003) and Ciaramita and Altun (2006) used a lexicon called
WordNet to define 41 semantic classes for words.

I WordNet (Fellbaum, 1998) is a fascinating resource in its own right! See
http://wordnetweb.princeton.edu/perl/webwn to get an idea.

This represents a coarsening of the annotations in the Semcor corpus (Miller et al.,
1993).
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Example: box’s Thirteen Synonym Sets, Eight Supersenses

1. box: a (usually rectangular) container; may have a lid. “he rummaged through a box of spare parts”

2. box/loge: private area in a theater or grandstand where a small group can watch the performance. “the
royal box was empty”

3. box/boxful: the quantity contained in a box. “he gave her a box of chocolates”

4. corner/box: a predicament from which a skillful or graceful escape is impossible. “his lying got him into a
tight corner”

5. box: a rectangular drawing. “the flowchart contained many boxes”

6. box/boxwood: evergreen shrubs or small trees

7. box: any one of several designated areas on a ball field where the batter or catcher or coaches are
positioned. “the umpire warned the batter to stay in the batter’s box”

8. box/box seat: the driver’s seat on a coach. “an armed guard sat in the box with the driver”

9. box: separate partitioned area in a public place for a few people. “the sentry stayed in his box to avoid
the cold”

10. box: a blow with the hand (usually on the ear). “I gave him a good box on the ear”

11. box/package: put into a box. “box the gift, please”

12. box: hit with the fist. “I’ll box your ears!”

13. box: engage in a boxing match.
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Example: box’s Thirteen Synonym Sets, Eight Supersenses
1. box: a (usually rectangular) container; may have a lid. “he rummaged through a box of spare parts”  

n.artifact

2. box/loge: private area in a theater or grandstand where a small group can watch the performance. “the
royal box was empty”  n.artifact

3. box/boxful: the quantity contained in a box. “he gave her a box of chocolates”  n.quantity

4. corner/box: a predicament from which a skillful or graceful escape is impossible. “his lying got him into a
tight corner”  n.state

5. box: a rectangular drawing. “the flowchart contained many boxes”  n.shape

6. box/boxwood: evergreen shrubs or small trees  n.plant

7. box: any one of several designated areas on a ball field where the batter or catcher or coaches are
positioned. “the umpire warned the batter to stay in the batter’s box”  n.artifact

8. box/box seat: the driver’s seat on a coach. “an armed guard sat in the box with the driver”  
n.artifact

9. box: separate partitioned area in a public place for a few people. “the sentry stayed in his box to avoid
the cold”  n.artifact

10. box: a blow with the hand (usually on the ear). “I gave him a good box on the ear”  n.act

11. box/package: put into a box. “box the gift, please”  v.contact

12. box: hit with the fist. “I’ll box your ears!”  v.contact

13. box: engage in a boxing match.  v.competition
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Supersense Tagging Example

Clara Harris , one of the guests in the
n.person n.person

box , stood up and demanded
n.artifact v.motion v.communication

water .
n.substance

74 / 98



Ciaramita and Altun’s Approach

Features at each position in the sentence:

I word

I “first sense” from WordNet (also conjoined with word)

I POS, coarse POS

I shape (case, punctuation symbols, etc.)

I previous label

All of these fit into “φ(x, i, y, y′).”
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Featurizing HMMs
Log-probability score of y (given x) decomposes into a sum of local scores:

score(x,y) =

`+1∑
i=1

local score at position i︷ ︸︸ ︷
(log p(xi | yi) + log p(yi | yi−1)) (1)

Featurized HMM:

score(x,y) =

`+1∑
i=1

local score at position i︷ ︸︸ ︷
(w · φ(x, i, yi, yi−1)) (2)

= w ·
`+1∑
i=1

φ(x, i, yi, yi−1)︸ ︷︷ ︸
global features, Φ(x,y)

(3)
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What Changes?
Algorithmically, not much!

Viterbi recurrence before (using log math):

s1(y) = log p(x1 | y) + log p(y | y0)

si(y) = log p(xi | y) + max
y′∈L

log p(y | y′) + si−1(y
′)

s`(y) = log p(8 | y) + log p(x` | y) + max
y′∈L

log p(y | y′) + s`−1(y
′)

After:

s1(y) = w · φ(x, 1, y, y0)

si(y) = max
y′∈L

w · φ(x, i, y, y′) + si−1(y
′)

s`(y) = max
y′∈L

w ·
(
φ(x, `, y, y′) + φ(x, `+ 1,8, y)

)
+ s`−1(y

′)
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Supervised Training of Sequence Models (Discriminative)

Given: annotated sequences 〈〈x1,y1, 〉, . . . , 〈xn,yn〉〉

Assume:

predict(x) = argmax
y∈L`+1

score(x,y)

= argmax
y∈L`+1

`+1∑
i=1

w · φ(x, i, yi, yi−1)

= argmax
y∈L`+1

w ·
`+1∑
i=1

φ(x, i, yi, yi−1)

= argmax
y∈L`+1

w ·Φ(x,y)

Estimate: w
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Perceptron

Perceptron algorithm for classification:
I For t ∈ {1, . . . , T}:

I Pick it uniformly at random from {1, . . . , n}.
I ˆ̀

it ← argmax
`∈L

w · φ(xit , `)

I w← w − α
(
φ(xit ,

ˆ̀
it)− φ(xit , `it)

)
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Structured Perceptron
Collins (2002)

Perceptron algorithm for classification structured prediction:
I For t ∈ {1, . . . , T}:

I Pick it uniformly at random from {1, . . . , n}.
I ŷit ← argmax

y∈L`+1

w ·Φ(xit ,y)

I w← w − α
(
Φ(xit , ŷit)−Φ(xit ,yit)

)
This can be viewed as stochastic subgradient descent on the structured hinge loss:

n∑
i=1

max
y∈L`i+1

w ·Φ(xi,y)︸ ︷︷ ︸
fear

−w ·Φ(xi,yi)︸ ︷︷ ︸
hope
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Back to Supersenses

Clara Harris , one of the guests in the
n.person n.person

box , stood up and demanded
n.artifact v.motion v.communication

water .
n.substance

Shouldn’t Clara Harris and stood up be respectively “grouped”?
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Segmentations

Segmentation:

I Input: x = 〈x1, x2, . . . , x`〉
I Output:

〈 x1:`1 ,
x(1+`1):(`1+`2),

x(1+`1+`2):(`1+`2+`3), . . . ,

x(1+
∑m−1

i=1 `i):
∑m

i=1 `i

〉
(4)

where ` =
∑m

i=1 `i.

Application: word segmentation for writing systems without whitespace.
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Segmentations

Segmentation:

I Input: x = 〈x1, x2, . . . , x`〉
I Output:

〈 x1:`1 ,
x(1+`1):(`1+`2),

x(1+`1+`2):(`1+`2+`3), . . . ,

x(1+
∑m−1

i=1 `i):
∑m

i=1 `i

〉
(4)

where ` =
∑m

i=1 `i.

Application: word segmentation for writing systems without whitespace.

With arbitrarily long segments, this does not look like a job for φ(x, i, y, y′)!
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Segmentation as Sequence Labeling
Ramshaw and Marcus (1995)

Two labels: B (“beginning of new segment”), I (“inside segment”)

I `1 = 4, `2 = 3, `3 = 1, `4 = 2 −→ 〈B, I, I, I, B, I, I, B, B, I〉

Three labels: B, I, O (“outside segment”)

Five labels: B, I, O, E (“end of segment”), S (“singleton”)
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Segmentation as Sequence Labeling
Ramshaw and Marcus (1995)

Two labels: B (“beginning of new segment”), I (“inside segment”)

I `1 = 4, `2 = 3, `3 = 1, `4 = 2 −→ 〈B, I, I, I, B, I, I, B, B, I〉

Three labels: B, I, O (“outside segment”)

Five labels: B, I, O, E (“end of segment”), S (“singleton”)

Bonus: combine these with a label to get labeled segmentation!
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Named Entity Recognition as Segmentation and Labeling

An older and narrower subset of supersenses used in information extraction:

I person,

I location,

I organization,

I geopolitical entity,

I . . . and perhaps domain-specific additions.
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Named Entity Recognition

With Commander Chris Ferguson at the helm ,
person

Atlantis touched down at Kennedy Space Center .
spacecraft location
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Named Entity Recognition

With Commander Chris Ferguson at the helm ,
person

O B I I O O O O

Atlantis touched down at Kennedy Space Center .
spacecraft location

B O O O B I I O
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Named Entity Recognition: Evaluation

1 2 3 4 5 6 7 8 9

x = Britain sent warships across the English Channel Monday to
y = B O O O O B I B O
y′ = O O O O O B I B O

10 11 12 13 14 15 16 17 18 19

rescue Britons stranded by Eyjafjallajökull ’s volcanic ash cloud .
O B O O B O O O O O
O B O O B O O O O O
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Segmentation Evaluation

Typically: precision, recall, and F1.
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Multiword Expressions
Schneider et al. (2014b)

I MW compounds: red tape, motion picture, daddy longlegs, Bayes net, hot air balloon, skinny dip, trash
talk

I verb-particle: pick up, dry out, take over, cut short
I verb-preposition: refer to, depend on, look for, prevent from
I verb-noun(-preposition): pay attention (to), go bananas, lose it, break a leg, make the most of
I support verb: make decisions, take breaks, take pictures, have fun, perform surgery
I other phrasal verb: put up with, miss out (on), get rid of, look forward to, run amok, cry foul, add insult

to injury, make off with
I PP modifier: above board, beyond the pale, under the weather,at all, from time to time, in the nick of

time
I coordinated phrase: cut and dry, more or less, up and leave
I conjunction/connective: as well as, let alone, in spite of, on the face of it/on its face
I semi-fixed VP: smack <one>’s lips, pick up where <one> left off, go over <thing> with a

fine-tooth(ed) comb, take <one>’s time, draw <oneself> up to <one>’s full height
I fixed phrase: easy as pie, scared to death, go to hell in a handbasket, bring home the bacon, leave of

absence, sense of humor
I phatic: You’re welcome. Me neither!
I proverb: Beggars can’t be choosers. The early bird gets the worm. To each his own. One man’s

<thing1> is another man’s <thing2>.
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Sequence Labeling with Nesting
Schneider et al. (2014a)

he was willing to budge1 a2 little2 on1 the price
O O O O B b ı̄ Ī O O

which means4 a43 lot43 to4 me4 .

O B Ĩ Ī Ĩ Ĩ O

Strong (subscript) vs. weak (superscript) MWEs.

One level of nesting, plus strong/weak distinction, can be handled with an eight-tag
scheme.
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Back to Syntax

Base noun phrase chunking:

[He]NP reckons [the current account deficit]NP will narrow to
[only $ 1.8 billion]NP in [September]NP

(What is a base noun phrase?)

“Chunking” used generically includes base verb and prepositional phrases, too.

Sequence labeling with BIO tags and features can be applied to this problem (Sha and
Pereira, 2003).
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Remarks

Sequence models are extremely useful:

I syntax: part-of-speech tags, base noun phrase chunking

I semantics: supersense tags, named entity recognition, multiword expressions

All of these are called “shallow” methods (why?).
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Remarks

Sequence models are extremely useful:

I syntax: part-of-speech tags, base noun phrase chunking

I semantics: supersense tags, named entity recognition, multiword expressions

All of these are called “shallow” methods (why?).

Issues to be aware of:

I Supervised data for these problems is not cheap.

I Performance always suffers when you test on a different style, genre, dialect, etc.
than you trained on.

I Runtime depends on the size of L and the number of consecutive labels that
features can depend on.
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