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To-Do List

I Online quiz: due Sunday

I Print, sign, and return the academic integrity statement (if you haven’t already)

I Read: Smith (2017);
optionally, Jurafsky and Martin (2016), Collins (2011) §2, and Goldberg (2015)
§0–4, 10–13 if you want to know more about neural networks

I A1 now due April 9 (Sunday)

I Late policy: four late days
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Language Models: Definitions

I V is a finite set of (discrete) symbols (, “words” or possibly characters); V = |V|
I V† is the (infinite) set of sequences of symbols from V whose final symbol is 8
I p : V† → R, such that:

I For any x ∈ V†, p(x) ≥ 0

I
∑
x∈V†

p(X = x) = 1

(I.e., p is a proper probability distribution.)

Language modeling: estimate p from examples, x1:n = 〈x1,x2, . . . ,xn〉.
Evaluation on test data x̄1:m: perplexity, 2−

1
M

∑m
i=1 log2 p(x̄i)
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Log-Linear Models: Definitions

We define a conditional log-linear model p(Y | X) as:

I Y is the set of events/outputs (, for language modeling, V)

I X is the set of contexts/inputs (, for n-gram language modeling, Vn−1)

I φ : X × Y → Rd is a feature vector function

I w ∈ Rd are the model parameters

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y′)
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Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)
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linear score w · φ(x, y)
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Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)
nonnegative expw · φ(x, y)
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Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)
nonnegative expw · φ(x, y)

normalizer
∑
y′∈Y

expw · φ(x, y′) = Zw(x)

“Log-linear” comes from the fact that:

log pw(Y = y | X = x) = w · φ(x, y)− logZw(x)︸ ︷︷ ︸
constant in y

This is an instance of the family of generalized linear models.
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The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

As a simple example, let the two features be binary functions.
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The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

w · φ = w1φ1 + w2φ2 = 0
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The Geometric View
Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

distance(w · φ = 0,φ0) =
|w · φ0|
‖w‖2

∝ |w · φ0|
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The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

w · φ(x, y1) > w · φ(x, y3) > w · φ(x, y4) > 0 ≥ w · φ(x, y2)
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The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

pw(y1 | x) > pw(y3 | x) > pw(y4 | x) > pw(y2 | x)
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The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

pw(y3 | x) > pw(y1 | x) > pw(y2 | x) > pw(y4 | x)
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The Geometric View
Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

Log-linear parameter estimation tries to choose w so that pw(Y | x) matches the

empirical distribution, c(x,Y )
c(x) .
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Why Build Language Models This Way?

I Exploit features of histories for sharing of statistical strength and better
smoothing (Lau et al., 1993)

I Condition the whole text on more interesting variables like the gender, age, or
political affiliation of the author (Eisenstein et al., 2011)

I Interpretability!
I Each feature φk controls a factor to the probability (ewk).
I If wk < 0 then φk makes the event less likely by a factor of 1

ewk
.

I If wk > 0 then φk makes the event more likely by a factor of ewk .
I If wk = 0 then φk has no effect.
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Log-Linear n-Gram Models

pw(X = x) =
∏̀
j=1

pw(Xj = xj | X0:j−1 = x0:j−1)

=
∏̀
j=1

expw · φ(x0:j−1, xj)
Zw(x0:j−1)

assumption
=

∏̀
j−1

expw · φ(xj−n+1:j−1, xj)

Zw(xj−n+1:j−1)

=
∏̀
j=1

expw · φ(hj , xj)
Zw(hj)
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Example

The man who knew too

much
many
little
few

...
hippopotamus
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What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: “Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”
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What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: “Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

You can define any features you want!
I Too many features, and your model will overfit /

I “Feature selection” methods, e.g., ignoring features with very low counts, can help.

I Too few (good) features, and your model will not learn /
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“Feature Engineering”

I Many advances in NLP (not just language modeling) have come from careful
design of features.

I Sometimes “feature engineering” is used pejoratively.

I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della Pietra et al., 1997).

I More recent work in neural networks can be seen as discovering features (instead
of engineering them).

I But in much of NLP, there’s a strong preference for interpretable features.
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How to Estimate w?

n-gram log-linear n-gram

pθ(x) =
∏̀
j=1

θxj |hj

∏̀
j−1

expw · φ(hj , xj)
Zw(hj)

Parameters: θv|h wk
∀v ∈ V,h ∈ (V ∪ {©})n−1 ∀k ∈ {1, . . . , d}

MLE: θ̂v|h =
c(hv)

c(h)
no closed form
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MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

log
expw · φ(hi, xi)

Zw(hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.

I Zw(hi) involves a sum over V terms.
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MLE for w

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)︸ ︷︷ ︸
fi(w)
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MLE for w

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)︸ ︷︷ ︸
fi(w)

Hope/fear view: for each instance i,

I increase the score of the correct output xi, score(xi) = w · φ(hi, xi)
I decrease the “softened max” score overall, log

∑
v∈V exp score(v)
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MLE for w

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)︸ ︷︷ ︸
fi(w)

Gradient view:

∇wfi = φ(hi, xi)︸ ︷︷ ︸
observed features

−
∑
v∈V

pw(v | hi) · φ(hi, v)︸ ︷︷ ︸
expected features

Setting this to zero means getting model’s expectations to match empirical
observations.
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MLE for w: Algorithms

I Batch methods (L-BFGS is popular)

I Stochastic gradient ascent/descent more common today, especially with special
tricks for adapting the step size over time

I Many specialized methods (e.g., “iterative scaling”)
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Stochastic Gradient Descent

Goal: minimize
∑N

i=1 fi(w) with respect to w.

Input: initial value w, number of epochs T , learning rate α

For t ∈ {1, . . . , T}:
I Choose a random permutation π of {1, . . . , N}.
I For i ∈ {1, . . . , N}:

w← w − α · ∇wfπ(i)

Output: w
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Avoiding Overfitting

Maximum likelihood estimation:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)

I If φj(h, x) is (almost) always positive, we can always increase the objective (a
little bit) by increasing wj toward +∞.
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Avoiding Overfitting

Maximum likelihood estimation:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)

I If φj(h, x) is (almost) always positive, we can always increase the objective (a
little bit) by increasing wj toward +∞.

Standard solution is to add a regularization term:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖pp

where λ > 0 is a hyperparameter and p = 2 or 1.
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MLE for w

If we had more time, we’d study this problem more carefully!

Here’s what you must remember:

I There is no closed form; you must use a numerical optimization algorithm like
stochastic gradient descent.

I Log-linear models are powerful but expensive (Zw(hi)).
I Regularization is very important; we don’t actually do MLE.

I Just like for n-gram models! Only even more so, since log-linear models are even
more expressive.
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Quick Recap

Two kinds of language models so far:

representation? estimation? think about?

n-gram hi is (n− 1) previous symbols count and normalize smoothing

log-linear featurized representation of 〈hi, xi〉 iterative gradient descent features
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Neural Network: Definitions
Warning: there is no widely accepted standard notation!

A feedforward neural network nν is defined by:
I A function family that maps parameter values to functions of the form
n : Rdin → Rdout ; typically:

I Non-linear
I Differentiable with respect to its inputs
I “Assembled” through a series of affine transformations and non-linearities, composed

together
I Symbolic/discrete inputs handled through lookups.

I Parameter values ν
I Typically a collection of scalars, vectors, and matrices
I We often assume they are linearized into RD
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A Couple of Useful Functions
I softmax : Rk → Rk

〈x1, x2, . . . , xk〉 7→

〈
ex1∑k
j=1 e

xj
,

ex2∑k
j=1 e

xj
, . . . ,

exk∑k
j=1 e

xj

〉
I tanh : R→ [−1, 1]

x 7→ ex − e−x

ex + e−x

Generalized to be elementwise, so that it maps Rk → [−1, 1]k.
I Others include: ReLUs, logistic sigmoids, PReLUs, . . .
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“One Hot” Vectors

Arbitrarily order the words in V, giving each an index in {1, . . . , V }.

Let ei ∈ RV contain all zeros, with the exception of a 1 in position i.

This is the “one hot” vector for the ith word in V.
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Feedforward Neural Network Language Model
(Bengio et al., 2003)

Define the n-gram probability as follows:

p(· | 〈h1, . . . , hn−1〉) = nν
(
〈eh1 , . . . , ehn−1〉

)
=

softmax

b
V

+

n−1∑
j=1

ehj
V

>M
V × d

Aj
d× V

+ W
V ×H

tanh

u
H

+

n−1∑
j=1

e>hjM Tj
d×H


where each ehj ∈ RV is a one-hot vector and H is the number of “hidden units” in the
neural network (a “hyperparameter”).

Parameters ν include:

I M ∈ RV×d, which are called “embeddings” (row vectors), one for every word in V
I Feedforward NN parameters b ∈ RV , A ∈ R(n−1)×d×V , W ∈ RV×H , u ∈ RH ,

T ∈ R(n−1)×d×H
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Breaking It Down

Look up each of the history words hj , ∀j ∈ {1, . . . , n− 1} in M; keep two copies.

ehj
V

>M
V × d

ehj
V

>M
V × d
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Breaking It Down

Look up each of the history words hj ,∀j ∈ {1, . . . , n− 1} in M; keep two copies.
Rename the embedding for hj as mhj .

ehj
>M = mhj

ehj
>M = mhj
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Breaking It Down

Apply an affine transformation to the second copy of the history-word embeddings (u,
T)

mhj

u
H

+

n−1∑
j=1

mhj Tj
d×H
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Breaking It Down

Apply an affine transformation to the second copy of the history-word embeddings (u,
T) and a tanh nonlinearity.

mhj

tanh

 u +

n−1∑
j=1

mhj Tj


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Breaking It Down

Apply an affine transformation to everything (b, A, W).

b
V

+

n−1∑
j=1

mhj Aj
d× V

+ W
V ×H

tanh

 u +

n−1∑
j=1

mhj Tj


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Breaking It Down

Apply a softmax transformation to make the vector sum to one.

softmax

 b +

n−1∑
j=1

mhj Aj

+ W tanh

 u +
n−1∑
j=1

mhj Tj


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Breaking It Down

softmax

 b +

n−1∑
j=1

mhj Aj

+ W tanh

 u +

n−1∑
j=1

mhj Tj


Like a log-linear language model with two kinds of features:

I Concatenation of context-word embeddings vectors mhj

I tanh-affine transformation of the above

New parameters arise from (i) embeddings and (ii) affine transformation “inside” the
nonlinearity.
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Visualization

M
u,
T

b, A

tanh

so
ftm
axW
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Number of Parameters

D = V d︸︷︷︸
M

+ V︸︷︷︸
b

+(n− 1)dV︸ ︷︷ ︸
A

+ V H︸︷︷︸
W

+ H︸︷︷︸
u

+(n− 1)dH︸ ︷︷ ︸
T

For Bengio et al. (2003):
I V ≈ 18000 (after OOV processing)
I d ∈ {30, 60}
I H ∈ {50, 100}
I n− 1 = 5

So D = 461V + 30100 parameters, compared to O(V n) for classical n-gram models.

I Forcing A = 0 eliminated 300V parameters and performed a bit better, but was
slower to converge.

I If we averaged mhj instead of concatenating, we’d get to 221V + 6100 (this is a
variant of “continuous bag of words,” Mikolov et al., 2013).
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Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2.

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .
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xor Example

x1

x2

y

Tuples where y = xor(x1, x2) are red; tuples where y 6= xor(x1, x2) are blue.
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xor Example (D = 13)
Credit: Chris Dyer (https://github.com/clab/cnn/blob/master/examples/xor.cc)
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Important Idea: Words as Vectors

The idea of “embedding” words in Rd is much older than neural language models.

I Considerable ongoing research on learning word representations to capture
linguistic similarity (Turney and Pantel, 2010); this is known as vector space
semantics.
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Words as Vectors: Example

baby

cat
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Words as Vectors: Example

baby

cat

pig

mouse
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Parameter Estimation

Bad news for neural language models:
I Log-likelihood function is not concave.

I So any perplexity experiment is evaluating the model and an algorithm for
estimating it.

I Calculating log-likelihood and its gradient is very expensive (5 epochs took 3
weeks on 40 CPUs).
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Bad news for neural language models:
I Log-likelihood function is not concave.

I So any perplexity experiment is evaluating the model and an algorithm for
estimating it.

I Calculating log-likelihood and its gradient is very expensive (5 epochs took 3
weeks on 40 CPUs).

Good news:

I nν is differentiable with respect to M (from which its inputs come) and ν (its
parameters), so gradient-based methods are available.

I Essential: the chain rule from calculus (sometimes called “backpropagation”)

Lots more details in Bengio et al. (2003) and (for NNs more generally) in Goldberg
(2015).

78 / 102



Next Up

More examples of neural language models (in brief):

I The log-bilinear language model

I Recurrent neural network language models
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Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
mhj

d

>Aj
d× d

+ b
d

>
)

mv
d

+cv


∑
v′∈V

exp

n−1∑
j=1

(
mhj

d

>Aj
d× d

+ b
d

>
)

mv′
d

+cv



I Number of parameters: D = V d︸︷︷︸
M

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector mv, not just on the vectors
of the history words.

I Training this model involves a sum over the vocabulary (like log-linear models we
saw earlier).

I Later work explored variations to make learning faster.
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Observations about Neural Language Models (So Far)

I There’s no knowledge built in that the most recent word hn−1 should generally be
more informative than earlier ones.

I This has to be learned.

I In addition to choosing n, also have to choose dimensionalities like d and H.

I Parameters of these models are hard to interpret.

I Architectures are not intuitive.

I Still, impressive perplexity gains got people’s interest.
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I There’s no knowledge built in that the most recent word hn−1 should generally be
more informative than earlier ones.

I This has to be learned.

I In addition to choosing n, also have to choose dimensionalities like d and H.
I Parameters of these models are hard to interpret.

I Example: `2-norm of Aj and Tj in the feedforward model correspond to the
importance of history position j.

I Individual word embeddings can be clustered and dimensions can be analyzed (e.g.,
Tsvetkov et al., 2015).

I Architectures are not intuitive.

I Still, impressive perplexity gains got people’s interest.
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Recurrent Neural Network

I Each input element is understood to be an element of a sequence: 〈x1,x2, . . . ,x`〉
I At each timestep t:

I The tth input element xt is processed alongside the previous state st−1 to calculate
the new state (st).

I The tth output is a function of the state st.
I The same functions are applied at each iteration:

st = frecurrent(xt, st−1)

yt = foutput(st)

In RNN language models, words and histories are represented as vectors (respectively,
xt = ext and st).
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RNN Language Model

The original version, by Mikolov et al. (2010) used a “simple” RNN architecture along
these lines:

st = frecurrent(ext , st−1) = sigmoid

((
e>xtM

)>
A + s>t−1B + c

)
yt = foutput(st) = softmax

(
s>t U

)
p(v | x1, . . . , xt−1) = [yt]v

Note: this is not an n-gram (Markov) model!
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Visualization
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Improvements to RNN Language Models

The simple RNN is known to suffer from two related problems:

I “Vanishing gradients” during learning make it hard to propagate error into the
distant past.

I State tends to change a lot on each iteration; the model “forgets” too much.

Some variants:

I “Stacking” these functions to make deeper networks.

I Sundermeyer et al. (2012) use “long short-term memories” (LSTMs) and Cho
et al. (2014) use “gated recurrent units” (GRUs) to define frecurrent.

I Mikolov et al. (2014) engineer the linear transformation in the simple RNN for
better preservation.

I Jozefowicz et al. (2015) used randomized search to find even better architectures.
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Comparison: Probabilistic vs. Connectionist Modeling

Probabilistic Connectionist
What do we engineer? features, assumptions architectures

Theory? as N gets large not really

Interpretation of parame-
ters?

often easy usually hard
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Parting Shots

I I said very little about estimating the parameters.

I At present, this requires a lot of engineering.
I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded
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