
Natural Language Processing (CSEP 517):
Language Models, Continued

Noah Smith
c© 2017

University of Washington
nasmith@cs.washington.edu

April 3, 2017

1 / 102

To-Do List

I Online quiz: due Sunday

I Print, sign, and return the academic integrity statement (if you haven’t already)

I Read: Smith (2017);
optionally, Jurafsky and Martin (2016), Collins (2011) §2, and Goldberg (2015)
§0–4, 10–13 if you want to know more about neural networks

I A1 now due April 9 (Sunday)

I Late policy: four late days

2 / 102

Language Models: Definitions

I V is a finite set of (discrete) symbols (, “words” or possibly characters); V = |V|
I V† is the (infinite) set of sequences of symbols from V whose final symbol is 8
I p : V† → R, such that:

I For any x ∈ V†, p(x) ≥ 0

I
∑
x∈V†

p(X = x) = 1

(I.e., p is a proper probability distribution.)

Language modeling: estimate p from examples, x1:n = 〈x1,x2, . . . ,xn〉.
Evaluation on test data x̄1:m: perplexity, 2−

1
M

∑m
i=1 log2 p(x̄i)

3 / 102

Log-Linear Models: Definitions

We define a conditional log-linear model p(Y | X) as:

I Y is the set of events/outputs (, for language modeling, V)

I X is the set of contexts/inputs (, for n-gram language modeling, Vn−1)

I φ : X × Y → Rd is a feature vector function

I w ∈ Rd are the model parameters

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y′)

4 / 102

Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

5 / 102

Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)

6 / 102

Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)
nonnegative expw · φ(x, y)

7 / 102

Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)
nonnegative expw · φ(x, y)

normalizer
∑
y′∈Y

expw · φ(x, y′) = Zw(x)

8 / 102

Breaking It Down

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y)

linear score w · φ(x, y)
nonnegative expw · φ(x, y)

normalizer
∑
y′∈Y

expw · φ(x, y′) = Zw(x)

“Log-linear” comes from the fact that:

log pw(Y = y | X = x) = w · φ(x, y)− logZw(x)︸ ︷︷ ︸
constant in y

This is an instance of the family of generalized linear models.
9 / 102

The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

As a simple example, let the two features be binary functions.

10 / 102

The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

w · φ = w1φ1 + w2φ2 = 0

11 / 102

The Geometric View
Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

distance(w · φ = 0,φ0) =
|w · φ0|
‖w‖2

∝ |w · φ0|

12 / 102

The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

w · φ(x, y1) > w · φ(x, y3) > w · φ(x, y4) > 0 ≥ w · φ(x, y2)

13 / 102

The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

pw(y1 | x) > pw(y3 | x) > pw(y4 | x) > pw(y2 | x)

14 / 102

The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

15 / 102

The Geometric View

Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

pw(y3 | x) > pw(y1 | x) > pw(y2 | x) > pw(y4 | x)

16 / 102

The Geometric View
Suppose we have instance x, Y = {y1, y2, y3, y4}, and there are only two features, φ1
and φ2.

(x, y3)

ϕ1

ϕ2

(x, y1)

(x, y4)(x, y2)

Log-linear parameter estimation tries to choose w so that pw(Y | x) matches the

empirical distribution, c(x,Y)
c(x) .

17 / 102

Why Build Language Models This Way?

I Exploit features of histories for sharing of statistical strength and better
smoothing (Lau et al., 1993)

I Condition the whole text on more interesting variables like the gender, age, or
political affiliation of the author (Eisenstein et al., 2011)

I Interpretability!
I Each feature φk controls a factor to the probability (ewk).
I If wk < 0 then φk makes the event less likely by a factor of 1

ewk
.

I If wk > 0 then φk makes the event more likely by a factor of ewk .
I If wk = 0 then φk has no effect.

18 / 102

Log-Linear n-Gram Models

pw(X = x) =
∏̀
j=1

pw(Xj = xj | X0:j−1 = x0:j−1)

=
∏̀
j=1

expw · φ(x0:j−1, xj)
Zw(x0:j−1)

assumption
=

∏̀
j−1

expw · φ(xj−n+1:j−1, xj)

Zw(xj−n+1:j−1)

=
∏̀
j=1

expw · φ(hj , xj)
Zw(hj)

19 / 102

Example

The man who knew too

much
many
little
few

...
hippopotamus

20 / 102

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: “Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

21 / 102

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: “Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

22 / 102

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: “Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

23 / 102

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: “Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

24 / 102

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: “Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

25 / 102

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: “Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

26 / 102

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: “Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

You can define any features you want!
I Too many features, and your model will overfit /

I “Feature selection” methods, e.g., ignoring features with very low counts, can help.

I Too few (good) features, and your model will not learn /

27 / 102

What Features in φ(Xj−n+1:j−1, Xj)?

I Traditional n-gram features: “Xj−1 = the ∧Xj = man”

I “Gappy” n-grams: “Xj−2 = the ∧Xj = man”

I Spelling features: “Xj ’s first character is capitalized”

I Class features: “Xj is a member of class 132”

I Gazetteer features: “Xj is listed as a geographic place name”

You can define any features you want!
I Too many features, and your model will overfit /

I “Feature selection” methods, e.g., ignoring features with very low counts, can help.

I Too few (good) features, and your model will not learn /

28 / 102

“Feature Engineering”

I Many advances in NLP (not just language modeling) have come from careful
design of features.

I Sometimes “feature engineering” is used pejoratively.

I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della Pietra et al., 1997).

I More recent work in neural networks can be seen as discovering features (instead
of engineering them).

I But in much of NLP, there’s a strong preference for interpretable features.

29 / 102

“Feature Engineering”

I Many advances in NLP (not just language modeling) have come from careful
design of features.

I Sometimes “feature engineering” is used pejoratively.

I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della Pietra et al., 1997).

I More recent work in neural networks can be seen as discovering features (instead
of engineering them).

I But in much of NLP, there’s a strong preference for interpretable features.

30 / 102

“Feature Engineering”

I Many advances in NLP (not just language modeling) have come from careful
design of features.

I Sometimes “feature engineering” is used pejoratively.
I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della Pietra et al., 1997).

I More recent work in neural networks can be seen as discovering features (instead
of engineering them).

I But in much of NLP, there’s a strong preference for interpretable features.

31 / 102

“Feature Engineering”

I Many advances in NLP (not just language modeling) have come from careful
design of features.

I Sometimes “feature engineering” is used pejoratively.
I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della Pietra et al., 1997).

I More recent work in neural networks can be seen as discovering features (instead
of engineering them).

I But in much of NLP, there’s a strong preference for interpretable features.

32 / 102

“Feature Engineering”

I Many advances in NLP (not just language modeling) have come from careful
design of features.

I Sometimes “feature engineering” is used pejoratively.
I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della Pietra et al., 1997).

I More recent work in neural networks can be seen as discovering features (instead
of engineering them).

I But in much of NLP, there’s a strong preference for interpretable features.

33 / 102

“Feature Engineering”

I Many advances in NLP (not just language modeling) have come from careful
design of features.

I Sometimes “feature engineering” is used pejoratively.
I Some people would rather not spend their time on it!

I There is some work on automatically inducing features (Della Pietra et al., 1997).

I More recent work in neural networks can be seen as discovering features (instead
of engineering them).

I But in much of NLP, there’s a strong preference for interpretable features.

34 / 102

How to Estimate w?

n-gram log-linear n-gram

pθ(x) =
∏̀
j=1

θxj |hj

∏̀
j−1

expw · φ(hj , xj)
Zw(hj)

Parameters: θv|h wk
∀v ∈ V,h ∈ (V ∪ {©})n−1 ∀k ∈ {1, . . . , d}

MLE: θ̂v|h =
c(hv)

c(h)
no closed form

35 / 102

MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

log
expw · φ(hi, xi)

Zw(hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.

I Zw(hi) involves a sum over V terms.

36 / 102

MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

log
expw · φ(hi, xi)

Zw(hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.

I Zw(hi) involves a sum over V terms.

37 / 102

MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

log
expw · φ(hi, xi)

Zw(hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.

I Zw(hi) involves a sum over V terms.

38 / 102

MLE for w

I Let training data consist of {(hi, xi)}Ni=1.

I Maximum likelihood estimation is:

max
w∈Rd

N∑
i=1

log pw(xi | hi)

= max
w∈Rd

N∑
i=1

log
expw · φ(hi, xi)

Zw(hi)

= max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)︸ ︷︷ ︸
Zw(hi)

I This is concave in w.

I Zw(hi) involves a sum over V terms.

39 / 102

MLE for w

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)︸ ︷︷ ︸
fi(w)

40 / 102

MLE for w

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)︸ ︷︷ ︸
fi(w)

Hope/fear view: for each instance i,

I increase the score of the correct output xi, score(xi) = w · φ(hi, xi)
I decrease the “softened max” score overall, log

∑
v∈V exp score(v)

41 / 102

MLE for w

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)︸ ︷︷ ︸
fi(w)

Gradient view:

∇wfi = φ(hi, xi)︸ ︷︷ ︸
observed features

−
∑
v∈V

pw(v | hi) · φ(hi, v)︸ ︷︷ ︸
expected features

Setting this to zero means getting model’s expectations to match empirical
observations.

42 / 102

MLE for w: Algorithms

I Batch methods (L-BFGS is popular)

I Stochastic gradient ascent/descent more common today, especially with special
tricks for adapting the step size over time

I Many specialized methods (e.g., “iterative scaling”)

43 / 102

Stochastic Gradient Descent

Goal: minimize
∑N

i=1 fi(w) with respect to w.

Input: initial value w, number of epochs T , learning rate α

For t ∈ {1, . . . , T}:
I Choose a random permutation π of {1, . . . , N}.
I For i ∈ {1, . . . , N}:

w← w − α · ∇wfπ(i)

Output: w

44 / 102

Avoiding Overfitting

Maximum likelihood estimation:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)

I If φj(h, x) is (almost) always positive, we can always increase the objective (a
little bit) by increasing wj toward +∞.

45 / 102

Avoiding Overfitting

Maximum likelihood estimation:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− logZw(hi)

I If φj(h, x) is (almost) always positive, we can always increase the objective (a
little bit) by increasing wj toward +∞.

Standard solution is to add a regularization term:

max
w∈Rd

N∑
i=1

w · φ(hi, xi)− log
∑
v∈V

expw · φ(hi, v)− λ‖w‖pp

where λ > 0 is a hyperparameter and p = 2 or 1.

46 / 102

MLE for w

If we had more time, we’d study this problem more carefully!

Here’s what you must remember:

I There is no closed form; you must use a numerical optimization algorithm like
stochastic gradient descent.

I Log-linear models are powerful but expensive (Zw(hi)).
I Regularization is very important; we don’t actually do MLE.

I Just like for n-gram models! Only even more so, since log-linear models are even
more expressive.

47 / 102

Quick Recap

Two kinds of language models so far:

representation? estimation? think about?

n-gram hi is (n− 1) previous symbols count and normalize smoothing

log-linear featurized representation of 〈hi, xi〉 iterative gradient descent features

48 / 102

Neural Network: Definitions
Warning: there is no widely accepted standard notation!

A feedforward neural network nν is defined by:
I A function family that maps parameter values to functions of the form
n : Rdin → Rdout ; typically:

I Non-linear
I Differentiable with respect to its inputs
I “Assembled” through a series of affine transformations and non-linearities, composed

together
I Symbolic/discrete inputs handled through lookups.

I Parameter values ν
I Typically a collection of scalars, vectors, and matrices
I We often assume they are linearized into RD

49 / 102

A Couple of Useful Functions
I softmax : Rk → Rk

〈x1, x2, . . . , xk〉 7→

〈
ex1∑k
j=1 e

xj
,

ex2∑k
j=1 e

xj
, . . . ,

exk∑k
j=1 e

xj

〉
I tanh : R→ [−1, 1]

x 7→ ex − e−x

ex + e−x

Generalized to be elementwise, so that it maps Rk → [−1, 1]k.
I Others include: ReLUs, logistic sigmoids, PReLUs, . . .

50 / 102

“One Hot” Vectors

Arbitrarily order the words in V, giving each an index in {1, . . . , V }.

Let ei ∈ RV contain all zeros, with the exception of a 1 in position i.

This is the “one hot” vector for the ith word in V.

51 / 102

Feedforward Neural Network Language Model
(Bengio et al., 2003)

Define the n-gram probability as follows:

p(· | 〈h1, . . . , hn−1〉) = nν
(
〈eh1 , . . . , ehn−1〉

)
=

softmax

b
V

+

n−1∑
j=1

ehj
V

>M
V × d

Aj
d× V

+ W
V ×H

tanh

u
H

+

n−1∑
j=1

e>hjM Tj
d×H

where each ehj ∈ RV is a one-hot vector and H is the number of “hidden units” in the
neural network (a “hyperparameter”).

Parameters ν include:

I M ∈ RV×d, which are called “embeddings” (row vectors), one for every word in V
I Feedforward NN parameters b ∈ RV , A ∈ R(n−1)×d×V , W ∈ RV×H , u ∈ RH ,

T ∈ R(n−1)×d×H

52 / 102

Breaking It Down

Look up each of the history words hj , ∀j ∈ {1, . . . , n− 1} in M; keep two copies.

ehj
V

>M
V × d

ehj
V

>M
V × d

53 / 102

Breaking It Down

Look up each of the history words hj ,∀j ∈ {1, . . . , n− 1} in M; keep two copies.
Rename the embedding for hj as mhj .

ehj
>M = mhj

ehj
>M = mhj

54 / 102

Breaking It Down

Apply an affine transformation to the second copy of the history-word embeddings (u,
T)

mhj

u
H

+

n−1∑
j=1

mhj Tj
d×H

55 / 102

Breaking It Down

Apply an affine transformation to the second copy of the history-word embeddings (u,
T) and a tanh nonlinearity.

mhj

tanh

 u +

n−1∑
j=1

mhj Tj

56 / 102

Breaking It Down

Apply an affine transformation to everything (b, A, W).

b
V

+

n−1∑
j=1

mhj Aj
d× V

+ W
V ×H

tanh

 u +

n−1∑
j=1

mhj Tj

57 / 102

Breaking It Down

Apply a softmax transformation to make the vector sum to one.

softmax

 b +

n−1∑
j=1

mhj Aj

+ W tanh

 u +
n−1∑
j=1

mhj Tj

58 / 102

Breaking It Down

softmax

 b +

n−1∑
j=1

mhj Aj

+ W tanh

 u +

n−1∑
j=1

mhj Tj

Like a log-linear language model with two kinds of features:

I Concatenation of context-word embeddings vectors mhj

I tanh-affine transformation of the above

New parameters arise from (i) embeddings and (ii) affine transformation “inside” the
nonlinearity.

59 / 102

Visualization

M
u,
T

b, A

tanh

so
ftm
axW

60 / 102

Number of Parameters

D = V d︸︷︷︸
M

+ V︸︷︷︸
b

+(n− 1)dV︸ ︷︷ ︸
A

+ V H︸︷︷︸
W

+ H︸︷︷︸
u

+(n− 1)dH︸ ︷︷ ︸
T

For Bengio et al. (2003):
I V ≈ 18000 (after OOV processing)
I d ∈ {30, 60}
I H ∈ {50, 100}
I n− 1 = 5

So D = 461V + 30100 parameters, compared to O(V n) for classical n-gram models.

I Forcing A = 0 eliminated 300V parameters and performed a bit better, but was
slower to converge.

I If we averaged mhj instead of concatenating, we’d get to 221V + 6100 (this is a
variant of “continuous bag of words,” Mikolov et al., 2013).

61 / 102

Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2.

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

62 / 102

Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2.

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

63 / 102

Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2.

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

64 / 102

xor Example

x1

x2

y

Tuples where y = xor(x1, x2) are red; tuples where y 6= xor(x1, x2) are blue.

65 / 102

Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

66 / 102

xor Example (D = 13)
Credit: Chris Dyer (https://github.com/clab/cnn/blob/master/examples/xor.cc)

●

●●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●

0 5 10 15 20 25 30

0
1

2
3

4
5

iterations

m
ea

n
sq

ua
re

d
er

ro
r

min
v,a,W,b

∑
x1∈{0,1}

∑
x2∈{0,1}

(
xor(x1, x2)− v

3

>
(

W
3× 2

x
2

+ b
3

)
+ a

)2

min
v,a,W,b

∑
x1∈{0,1}

∑
x2∈{0,1}

(
xor(x1, x2)− v

3

> tanh

(
W
3× 2

x
2

+ b
3

)
+ a

)2

67 / 102

https://github.com/clab/cnn/blob/master/examples/xor.cc

Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

68 / 102

Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

69 / 102

Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

70 / 102

Why does it work?

I Historical answer: multiple layers and nonlinearities allow feature combinations a
linear model can’t get.

I Suppose we want y = xor(x1, x2); this can’t be expressed as a linear function of x1
and x2. But:

z = x1 · x2
y = x1 + x2 − 2z

I With high-dimensional inputs, there are a lot of conjunctive features to search
through. For log-linear models, Della Pietra et al. (1997) did this, greedily.

I Neural models seem to smoothly explore lots of approximately-conjunctive features.

I Modern answer: representations of words and histories are tuned to the prediction
problem.

I Word embeddings: a powerful idea . . .

71 / 102

Important Idea: Words as Vectors

The idea of “embedding” words in Rd is much older than neural language models.

I Considerable ongoing research on learning word representations to capture
linguistic similarity (Turney and Pantel, 2010); this is known as vector space
semantics.

72 / 102

Important Idea: Words as Vectors

The idea of “embedding” words in Rd is much older than neural language models.
You should think of this as a generalization of the discrete view of V.

I Considerable ongoing research on learning word representations to capture
linguistic similarity (Turney and Pantel, 2010); this is known as vector space
semantics.

73 / 102

Important Idea: Words as Vectors

The idea of “embedding” words in Rd is much older than neural language models.
You should think of this as a generalization of the discrete view of V.

I Considerable ongoing research on learning word representations to capture
linguistic similarity (Turney and Pantel, 2010); this is known as vector space
semantics.

74 / 102

Words as Vectors: Example

baby

cat

75 / 102

Words as Vectors: Example

baby

cat

pig

mouse

76 / 102

Parameter Estimation

Bad news for neural language models:
I Log-likelihood function is not concave.

I So any perplexity experiment is evaluating the model and an algorithm for
estimating it.

I Calculating log-likelihood and its gradient is very expensive (5 epochs took 3
weeks on 40 CPUs).

77 / 102

Parameter Estimation

Bad news for neural language models:
I Log-likelihood function is not concave.

I So any perplexity experiment is evaluating the model and an algorithm for
estimating it.

I Calculating log-likelihood and its gradient is very expensive (5 epochs took 3
weeks on 40 CPUs).

Good news:

I nν is differentiable with respect to M (from which its inputs come) and ν (its
parameters), so gradient-based methods are available.

I Essential: the chain rule from calculus (sometimes called “backpropagation”)

Lots more details in Bengio et al. (2003) and (for NNs more generally) in Goldberg
(2015).

78 / 102

Next Up

More examples of neural language models (in brief):

I The log-bilinear language model

I Recurrent neural network language models

79 / 102

Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
mhj

d

>Aj
d× d

+ b
d

>
)

mv
d

+cv

∑
v′∈V

exp

n−1∑
j=1

(
mhj

d

>Aj
d× d

+ b
d

>
)

mv′
d

+cv

I Number of parameters: D = V d︸︷︷︸
M

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector mv, not just on the vectors
of the history words.

I Training this model involves a sum over the vocabulary (like log-linear models we
saw earlier).

I Later work explored variations to make learning faster.

80 / 102

Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
mhj

d

>Aj
d× d

+ b
d

>
)

mv
d

+cv

∑
v′∈V

exp

n−1∑
j=1

(
mhj

d

>Aj
d× d

+ b
d

>
)

mv′
d

+cv

I Number of parameters: D = V d︸︷︷︸

M

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector mv, not just on the vectors
of the history words.

I Training this model involves a sum over the vocabulary (like log-linear models we
saw earlier).

I Later work explored variations to make learning faster.

81 / 102

Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
mhj

d

>Aj
d× d

+ b
d

>
)

mv
d

+cv

∑
v′∈V

exp

n−1∑
j=1

(
mhj

d

>Aj
d× d

+ b
d

>
)

mv′
d

+cv

I Number of parameters: D = V d︸︷︷︸

M

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector mv, not just on the vectors
of the history words.

I Training this model involves a sum over the vocabulary (like log-linear models we
saw earlier).

I Later work explored variations to make learning faster.

82 / 102

Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
mhj

d

>Aj
d× d

+ b
d

>
)

mv
d

+cv

∑
v′∈V

exp

n−1∑
j=1

(
mhj

d

>Aj
d× d

+ b
d

>
)

mv′
d

+cv

I Number of parameters: D = V d︸︷︷︸

M

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector mv, not just on the vectors
of the history words.

I Training this model involves a sum over the vocabulary (like log-linear models we
saw earlier).

I Later work explored variations to make learning faster.

83 / 102

Log-Bilinear Language Model
(Mnih and Hinton, 2007)

Define the n-gram probability as follows, for each v ∈ V:

p(v | 〈h1, . . . , hn−1〉) =

exp

n−1∑
j=1

(
mhj

d

>Aj
d× d

+ b
d

>
)

mv
d

+cv

∑
v′∈V

exp

n−1∑
j=1

(
mhj

d

>Aj
d× d

+ b
d

>
)

mv′
d

+cv

I Number of parameters: D = V d︸︷︷︸

M

+(n− 1)d2︸ ︷︷ ︸
A

+ d︸︷︷︸
b

+ V︸︷︷︸
c

I The predicted word’s probability depends on its vector mv, not just on the vectors
of the history words.

I Training this model involves a sum over the vocabulary (like log-linear models we
saw earlier).

I Later work explored variations to make learning faster.
84 / 102

Observations about Neural Language Models (So Far)

I There’s no knowledge built in that the most recent word hn−1 should generally be
more informative than earlier ones.

I This has to be learned.

I In addition to choosing n, also have to choose dimensionalities like d and H.

I Parameters of these models are hard to interpret.

I Architectures are not intuitive.

I Still, impressive perplexity gains got people’s interest.

85 / 102

Observations about Neural Language Models (So Far)

I There’s no knowledge built in that the most recent word hn−1 should generally be
more informative than earlier ones.

I This has to be learned.

I In addition to choosing n, also have to choose dimensionalities like d and H.
I Parameters of these models are hard to interpret.

I Example: `2-norm of Aj and Tj in the feedforward model correspond to the
importance of history position j.

I Individual word embeddings can be clustered and dimensions can be analyzed (e.g.,
Tsvetkov et al., 2015).

I Architectures are not intuitive.

I Still, impressive perplexity gains got people’s interest.

86 / 102

Observations about Neural Language Models (So Far)

I There’s no knowledge built in that the most recent word hn−1 should generally be
more informative than earlier ones.

I This has to be learned.

I In addition to choosing n, also have to choose dimensionalities like d and H.

I Parameters of these models are hard to interpret.

I Architectures are not intuitive.

I Still, impressive perplexity gains got people’s interest.

87 / 102

Observations about Neural Language Models (So Far)

I There’s no knowledge built in that the most recent word hn−1 should generally be
more informative than earlier ones.

I This has to be learned.

I In addition to choosing n, also have to choose dimensionalities like d and H.

I Parameters of these models are hard to interpret.

I Architectures are not intuitive.

I Still, impressive perplexity gains got people’s interest.

88 / 102

Recurrent Neural Network

I Each input element is understood to be an element of a sequence: 〈x1,x2, . . . ,x`〉
I At each timestep t:

I The tth input element xt is processed alongside the previous state st−1 to calculate
the new state (st).

I The tth output is a function of the state st.
I The same functions are applied at each iteration:

st = frecurrent(xt, st−1)

yt = foutput(st)

In RNN language models, words and histories are represented as vectors (respectively,
xt = ext and st).

89 / 102

RNN Language Model

The original version, by Mikolov et al. (2010) used a “simple” RNN architecture along
these lines:

st = frecurrent(ext , st−1) = sigmoid

((
e>xtM

)>
A + s>t−1B + c

)
yt = foutput(st) = softmax

(
s>t U

)
p(v | x1, . . . , xt−1) = [yt]v

Note: this is not an n-gram (Markov) model!

90 / 102

Visualization

M
A,
B,
c

sig
m

oid

so
ftm

ax

U

st - 1

st

ytxt
91 / 102

Visualization

M
A,
B,
c

sig
m
oid

so
ftm
ax

U
M

A,
B,
c

sig
m
oid

so
ftm
ax

U
M

A,
B,
c

sig
m
oid

so
ftm
ax

U
M

A,
B,
c

sig
m
oid

so
ftm
ax

U

92 / 102

Improvements to RNN Language Models

The simple RNN is known to suffer from two related problems:

I “Vanishing gradients” during learning make it hard to propagate error into the
distant past.

I State tends to change a lot on each iteration; the model “forgets” too much.

Some variants:

I “Stacking” these functions to make deeper networks.

I Sundermeyer et al. (2012) use “long short-term memories” (LSTMs) and Cho
et al. (2014) use “gated recurrent units” (GRUs) to define frecurrent.

I Mikolov et al. (2014) engineer the linear transformation in the simple RNN for
better preservation.

I Jozefowicz et al. (2015) used randomized search to find even better architectures.

93 / 102

Comparison: Probabilistic vs. Connectionist Modeling

Probabilistic Connectionist
What do we engineer? features, assumptions architectures

Theory? as N gets large not really

Interpretation of parame-
ters?

often easy usually hard

94 / 102

Parting Shots

I I said very little about estimating the parameters.

I At present, this requires a lot of engineering.
I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

95 / 102

Parting Shots

I I said very little about estimating the parameters.

I At present, this requires a lot of engineering.
I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

96 / 102

Parting Shots

I I said very little about estimating the parameters.
I At present, this requires a lot of engineering.

I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

97 / 102

Parting Shots

I I said very little about estimating the parameters.
I At present, this requires a lot of engineering.
I New libraries to help you are coming out all the time.

I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

98 / 102

Parting Shots

I I said very little about estimating the parameters.
I At present, this requires a lot of engineering.
I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

99 / 102

Parting Shots

I I said very little about estimating the parameters.
I At present, this requires a lot of engineering.
I New libraries to help you are coming out all the time.
I Many of them use GPUs to speed things up.

I This progression is worth reflecting on:

history: represented as:

before 1996 (n− 1)-gram discrete
1996–2003 feature vector
2003–2010 embedded vector
since 2010 unrestricted embedded

100 / 102

References I

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language model.
Journal of Machine Learning Research, 3(Feb):1137–1155, 2003. URL
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder for statistical machine
translation. In Proc. of EMNLP, 2014.

Michael Collins. Log-linear models, MEMMs, and CRFs, 2011. URL
http://www.cs.columbia.edu/~mcollins/crf.pdf.

Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of random fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–393, 1997.

Jacob Eisenstein, Amr Ahmed, and Eric P Xing. Sparse additive generative models of text. In Proc. of ICML,
2011.

Yoav Goldberg. A primer on neural network models for natural language processing, 2015. URL
http://u.cs.biu.ac.il/~yogo/nnlp.pdf.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of recurrent network
architectures. In Proc. of ICML, 2015. URL
http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf.

Daniel Jurafsky and James H. Martin. N-grams (draft chapter), 2016. URL
https://web.stanford.edu/~jurafsky/slp3/4.pdf.

101 / 102

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.cs.columbia.edu/~mcollins/crf.pdf
http://u.cs.biu.ac.il/~yogo/nnlp.pdf
http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
https://web.stanford.edu/~jurafsky/slp3/4.pdf

References II
Raymond Lau, Ronald Rosenfeld, and Salim Roukos. Trigger-based language models: A maximum entropy

approach. In Proc. of ICASSP, 1993.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Recurrent neural
network based language model. In Proc. of Interspeech, 2010. URL http:

//www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in
vector space. In Proceedings of ICLR, 2013. URL http://arxiv.org/pdf/1301.3781.pdf.

Tomas Mikolov, Armand Joulin, Sumit Chopra, Michael Mathieu, and Marc’Aurelio Ranzato. Learning longer
memory in recurrent neural networks, 2014. arXiv:1412.7753.

Andriy Mnih and Geoffrey Hinton. Three new graphical models for statistical language modelling. In Proc. of
ICML, 2007.

Noah A. Smith. Probabilistic language models 1.0, 2017. URL
http://homes.cs.washington.edu/~nasmith/papers/plm.17.pdf.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural networks for language modeling. In Proc.
of Interspeech, 2012.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guillaume Lample, and Chris Dyer. Evaluation of word vector
representations by subspace alignment. In Proc. of EMNLP, 2015.

Peter D. Turney and Patrick Pantel. From frequency to meaning: Vector space models of semantics. Journal of
Artificial Intelligence Research, 37(1):141–188, 2010. URL
https://www.jair.org/media/2934/live-2934-4846-jair.pdf.

102 / 102

http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://arxiv.org/pdf/1301.3781.pdf
http://homes.cs.washington.edu/~nasmith/papers/plm.17.pdf
https://www.jair.org/media/2934/live-2934-4846-jair.pdf

