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What is NLP?

NL ∈ {Mandarin Chinese,English,Spanish,Hindi, . . . , Lushootseed}

Automation of:

I analysis (NL→ R)

I generation (R → NL)

I acquisition of R from knowledge and data

What is R?
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analysis
generation RNL
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What does it mean to “know” a language?
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Levels of Linguistic Knowledge

phonology
orthography

morphology

syntax

semantics

pragmatics

discourse

phonetics

"shallower"

"deeper"

speech text

lexemes
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Orthography

ลูกศิษย์วัดกระทิงยังยื้อปิดถนนทางขึ้นไปนมัสการพระบาทเขาคิชฌกูฏ หวิดปะทะ
กับเจ้าถิ่นที่ออกมาเผชิญหน้าเพราะเดือดร้อนสัญจรไม่ได้ ผวจ.เร่งทุกฝ่ายเจรจา 
ก่อนที่ชื่อเสียงของจังหวัดจะเสียหายไปมากกว่านี้ พร้อมเสนอหยุดจัดงาน 15 วัน....
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Morphology

uygarlaştıramadıklarımızdanmışsınızcasına
“(behaving) as if you are among those whom we could not civilize”

TIFGOSH ET HA-LELED BA-GAN
“you will meet the boy in the park”

unfriend, Obamacare, Manfuckinghattan
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The Challenges of “Words”

I Segmenting text into words (e.g., Thai example)

I Morphological variation (e.g., Turkish and Hebrew examples)

I Words with multiple meanings: bank, mean

I Domain-specific meanings: latex

I Multiword expressions: make a decision, take out, make up, bad hombres
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Example: Part-of-Speech Tagging

ikr smh he asked fir yo last name

so he can add u on fb lololol
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Example: Part-of-Speech Tagging

I know, right shake my head for your

ikr smh he asked fir yo last name

you Facebook laugh out loud

so he can add u on fb lololol
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Example: Part-of-Speech Tagging

I know, right shake my head for your

ikr smh he asked fir yo last name
! G O V P D A N

interjection acronym pronoun verb prep. det. adj. noun

you Facebook laugh out loud

so he can add u on fb lololol
P O V V O P ∧ !

preposition proper noun
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Syntax

NP

NP

Adj.

natural

Noun

language

Noun

processing

vs. NP

Adj.

natural

NP

Noun

language

Noun

processing
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Morphology + Syntax
A ship-shipping ship, shipping shipping-ships.
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Syntax + Semantics

We saw the woman with the telescope wrapped in paper.

I Who has the telescope?

I Who or what is wrapped in paper?

I An event of perception, or an assault?
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Semantics

Every fifteen minutes a woman in this country gives birth.

– Groucho Marx
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Semantics

Every fifteen minutes a woman in this country gives birth. Our job is to find
this woman, and stop her!

– Groucho Marx
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Can R be “Meaning”?

Depends on the application!

I Giving commands to a robot

I Querying a database

I Reasoning about relatively closed, grounded worlds

Harder to formalize:

I Analyzing opinions

I Talking about politics or policy

I Ideas in science
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Why NLP is Hard

1. Mappings across levels are complex.
I A string may have many possible interpretations in different contexts, and resolving

ambiguity correctly may rely on knowing a lot about the world.
I Richness: any meaning may be expressed many ways, and there are immeasurably

many meanings.
I Linguistic diversity across languages, dialects, genres, styles, . . .

2. Appropriateness of a representation depends on the application.

3. Any R is a theorized construct, not directly observable.

4. There are many sources of variation and noise in linguistic input.
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Desiderata for NLP Methods
(ordered arbitrarily)

1. Sensitivity to a wide range of the phenomena and constraints in human language

2. Generality across different languages, genres, styles, and modalities

3. Computational efficiency at construction time and runtime

4. Strong formal guarantees (e.g., convergence, statistical efficiency, consistency,
etc.)

5. High accuracy when judged against expert annotations and/or task-specific
performance
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NLP
?
= Machine Learning

I To be successful, a machine learner needs bias/assumptions; for NLP, that might
be linguistic theory/representations.

I R is not directly observable.

I Early connections to information theory (1940s)

I Symbolic, probabilistic, and connectionist ML have all seen NLP as a source of
inspiring applications.
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NLP
?
= Linguistics

I NLP must contend with NL data as found in the world

I NLP ≈ computational linguistics

I Linguistics has begun to use tools originating in NLP!
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Fields with Connections to NLP

I Machine learning

I Linguistics (including psycho-, socio-, descriptive, and theoretical)

I Cognitive science

I Information theory

I Logic

I Theory of computation

I Data science

I Political science

I Psychology

I Economics

I Education
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The Engineering Side

I Application tasks are difficult to define formally; they are always evolving.

I Objective evaluations of performance are always up for debate.

I Different applications require different R.

I People who succeed in NLP for long periods of time are foxes, not hedgehogs.
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Today’s Applications

I Conversational agents

I Information extraction and question answering

I Machine translation

I Opinion and sentiment analysis

I Social media analysis

I Rich visual understanding

I Essay evaluation

I Mining legal, medical, or scholarly literature
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Factors Changing the NLP Landscape
(Hirschberg and Manning, 2015)

I Increases in computing power

I The rise of the web, then the social web

I Advances in machine learning

I Advances in understanding of language in social context
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Administrivia
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Course Website

http://courses.cs.washington.edu/courses/csep517/17sp/
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Your Instructors

Noah (instructor):

I UW CSE professor since 2015, teaching NLP since 2006, studying NLP since
1998, first NLP program in 1991

I Research interests: machine learning for structured problems in NLP, NLP for
social science

George (TA):

I Computer Science Ph.D. student

I Research interests: machine learning for multilingual NLP
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Outline of CSE 517

1. Probabilistic language models, which define probability distributions over text
passages. (about 2 weeks)

2. Text classifiers, which infer attributes of a piece of text by “reading” it. (about 1
week)

3. Sequence models (about 1 week)

4. Parsers (about 2 weeks)

5. Semantics (about 2 weeks)

6. Machine translation (about 1 week)
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Readings

I Main reference text: Jurafsky and Martin, 2008, some chapters from new edition
(Jurafsky and Martin, forthcoming) when available

I Course notes from the instructor and others

I Research articles

Lecture slides will include references for deeper reading on some topics.
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Evaluation

I Approximately five assignments (A1–5), completed individually (50%).

I Quizzes (20%), given roughly weekly, online

I An exam (30%), to take place at the end of the quarter

35 / 87



Evaluation

I Approximately five assignments (A1–5), completed individually (50%).
I Some pencil and paper, mostly programming
I Graded mostly on your writeup (so please take written communication seriously!)

I Quizzes (20%), given roughly weekly, online

I An exam (30%), to take place at the end of the quarter
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To-Do List

I Entrance survey: due Wednesday

I Online quiz: due Friday

I Print, sign, and return the academic integrity statement

I Read: Jurafsky and Martin (2008, ch. 1), Hirschberg and Manning (2015), and
Smith (2017);
optionally, Jurafsky and Martin (2016) and Collins (2011) §2

I A1, out today, due April 7
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Very Quick Review of Probability

I Event space (e.g., X , Y)—in this class, usually discrete

I Random variables (e.g., X, Y )

I Typical statement: “random variable X takes value x ∈ X with probability
p(X = x), or, in shorthand, p(x)”

I Joint probability: p(X = x, Y = y)

I Conditional probability: p(X = x | Y = y)

I Always true:
p(X = x, Y = y) = p(X = x | Y = y) · p(Y = y) = p(Y = y | X = x) · p(X = x)

I Sometimes true: p(X = x, Y = y) = p(X = x) · p(Y = y)

I The difference between true and estimated probability distributions
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Language Models: Definitions

I V is a finite set of (discrete) symbols (, “words” or possibly characters); V = |V|
I V† is the (infinite) set of sequences of symbols from V whose final symbol is 8
I p : V† → R, such that:

I For any x ∈ V†, p(x) ≥ 0

I
∑
x∈V†

p(X = x) = 1

(I.e., p is a proper probability distribution.)

Language modeling: estimate p from examples, x1:n = 〈x1,x2, . . . ,xn〉.
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Immediate Objections

1. Why would we want to do this?

2. Are the nonnegativity and sum-to-one constraints really necessary?

3. Is “finite V” realistic?
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Motivation: Noisy Channel Models
A pattern for modeling a pair of random variables, D and O:

source −→ D −→ channel −→ O

I D is the plaintext, the true message, the missing information, the output

I O is the ciphertext, the garbled message, the observable evidence, the input

I Decoding: select d given O = o.

d∗ = argmax
d

p(d | o)

= argmax
d

p(o | d) · p(d)
p(o)

= argmax
d

p(o | d)︸ ︷︷ ︸
channel model

· p(d)︸︷︷︸
source model
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Noisy Channel Example: Speech Recognition

source −→ sequence in V† −→ channel −→ acoustics

I Acoustic model defines p(sounds | d) (channel)

I Language model defines p(d) (source)

53 / 87



Noisy Channel Example: Speech Recognition
Credit: Luke Zettlemoyer

word sequence log p(acoustics | word sequence)

the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739
the station ’s signs are in deep in english -14740
the station signs are in deep in the english -14741
the station signs are indeed in english -14757
the station ’s signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807
the stations signs are indians and english -14815
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Noisy Channel Example: Machine Translation

Also knowing nothing official about, but having guessed and inferred
considerable about, the powerful new mechanized methods in
cryptography—methods which I believe succeed even when one does not
know what language has been coded—one naturally wonders if the problem of
translation could conceivably be treated as a problem in cryptography. When
I look at an article in Russian, I say: “This is really written in English, but it
has been coded in some strange symbols. I will now proceed to decode.”

Warren Weaver, 1955
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Noisy Channel Examples

I Speech recognition

I Machine translation

I Optical character recognition

I Spelling and grammar correction
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Immediate Objections

1. Why would we want to do this?

2. Are the nonnegativity and sum-to-one constraints really necessary?

3. Is “finite V” realistic?
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Evaluation: Perplexity
Intuitively, language models should assign high probability to real language they have
not seen before.
For out-of-sample (“held-out” or “test”) data x̄1:m:

I Probability of x̄1:m is
m∏
i=1

p(x̄i)

I Log-probability of x̄1:m is
m∑
i=1

log2 p(x̄i)

I Average log-probability per word of x̄1:m is

l =
1

M

m∑
i=1

log2 p(x̄i)

if M =
∑m

i=1 |x̄i| (total number of words in the corpus)

I Perplexity (relative to x̄1:m) is 2−l
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I Perplexity (relative to x̄1:m) is 2−l

Lower is better.
62 / 87



Understanding Perplexity

2

− 1

M

m∑
i=1

log2 p(x̄i)

It’s a branching factor!

I Assign probability of 1 to the test data ⇒ perplexity = 1

I Assign probability of 1
|V| to every word ⇒ perplexity = |V|

I Assign probability of 0 to anything ⇒ perplexity = ∞
I This motivates a stricter constraint than we had before:

I For any x ∈ V†, p(x) > 0
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Perplexity

I Perplexity on conventionally accepted test sets is often reported in papers.
I Generally, I won’t discuss perplexity numbers much, because:

I Perplexity is only an intermediate measure of performance.
I Understanding the models is more important than remembering how well they

perform on particular train/test sets.

I If you’re curious, look up numbers in the literature; always take them with a grain
of salt!
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Immediate Objections

1. Why would we want to do this?

2. Are the nonnegativity and sum-to-one constraints really necessary?

3. Is “finite V” realistic?
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Is “finite V” realistic?

No
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Is “finite V” realistic?

No
no
n0
-no

notta
No

/no
//no
(no
|no
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The Language Modeling Problem

Input: x1:n (“training data”)
Output: p : V† → R+

, p should be a “useful” measure of plausibility (not grammaticality).
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A Trivial Language Model

p(x) =
|{i | xi = x}|

n
=
cx1:n(x)

n
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A Trivial Language Model

p(x) =
|{i | xi = x}|

n
=
cx1:n(x)

n

What if x is not in the training data?
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Using the Chain Rule

p(X = x) =


p(X1 = x1 | X0 = x0)
· p(X2 = x2 | X0:1 = x0:1)
· p(X3 = x3 | X0:2 = x0:2)
...
· p(X` = 8 | X0:`−1 = x0:`−1)


=

∏̀
j=1

p(Xj = xj | X0:j−1 = x0:j−1)
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Unigram Model

p(X = x) =
∏̀
j=1

p(Xj = xj | X0:j−1 = x0:j−1)

assumption
=

∏̀
j=1

pθ(Xj = xj) =
∏̀
j=1

θxj ≈
∏̀
j=1

θ̂xj

Maximum likelihood estimate:

∀v ∈ V, θ̂v =
|{i, j | [xi]j = v}|

N

=
cx1:n(v)

N

where N =
∑n

i=1 |xi|.
Also known as “relative frequency estimation.”
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Unigram Models: Assessment

Pros:

I Easy to understand

I Cheap

I Good enough for information retrieval
(maybe)

Cons:

I “Bag of words” assumption is
linguistically inaccurate

I p(the the the the)�
p(I want ice cream)

I Data sparseness; high variance in the
estimator

I “Out of vocabulary” problem
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Markov Models ≡ n-gram Models

p(X = x) =
∏̀
j=1

p(Xj = xj | X0:j−1 = x0:j−1)

assumption
=

∏̀
j=1

pθ(Xj = xj | Xj−n+1:j−1 = xj−n+1:j−1)

(n− 1)th-order Markov assumption ≡ n-gram model

I Unigram model is the n = 1 case

I For a long time, trigram models (n = 3) were widely used

I 5-gram models (n = 5) are not uncommon now in MT
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Estimating n-Gram Models

unigram bigram trigram

pθ(x) =
∏̀
j=1

θxj

∏̀
j=1

θxj |xj−1

∏̀
j=1

θxj |xj−2xj−1

Parameters: θv θv|v′ θv|v′′v′

∀v ∈ V ∀v ∈ V, v′ ∈ V ∪ {©} ∀v ∈ V, v′, v′′ ∈ V ∪ {©}

MLE:
c(v)

N

c(v′v)∑
u∈V c(v

′u)

c(v′′v′v)∑
u∈V c(v

′′v′u)

General case:∏̀
j=1

θxj |xj−n+1:j−1
θv|h, ∀v ∈ V,h ∈ (V ∪ {©})n−1

c(hv)∑
u∈V c(hu)
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The Problem with MLE

I The curse of dimensionality: the number of parameters grows exponentially in n

I Data sparseness: most n-grams will never be observed, even if they are
linguistically plausible

I No one actually uses the MLE!
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Smoothing

A few years ago, I’d have spent a whole lecture on this! /
I Simple method: add λ > 0 to every count (including zero-counts) before

normalizing
I What makes it hard: ensuring that the probabilities over all sequences sum to one

I Otherwise, perplexity calculations break

I Longstanding champion: modified Kneser-Ney smoothing (Chen and Goodman,
1998)

I Stupid backoff: reasonable, easy solution when you don’t care about perplexity
(Brants et al., 2007)
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Interpolation

If p and q are both language models, then so is

αp+ (1− α)q

for any α ∈ [0, 1].

I This idea underlies many smoothing methods

I Often a new model q only beats a reigning champion p when interpolated with it

I How to pick the “hyperparameter” α?
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Algorithms To Know

I Score a sentence x

I Train from a corpus x1:n

I Sample a sentence given θ
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n-gram Models: Assessment

Pros:

I Easy to understand

I Cheap (with modern hardware; Lin
and Dyer, 2010)

I Good enough for machine
translation, speech recognition, . . .

Cons:

I Markov assumption is linguistically
inaccurate

I (But not as bad as unigram
models!)

I Data sparseness; high variance in the
estimator

I “Out of vocabulary” problem

82 / 87



Dealing with Out-of-Vocabulary Terms

I Define a special OOV or “unknown” symbol unk. Transform some (or all) rare
words in the training data to unk.

I / You cannot fairly compare two language models that apply different unk
treatments!

I Build a language model at the character level.
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What’s wrong with n-grams?

Data sparseness: most histories and most words will be seen only rarely (if at all).

84 / 87



What’s wrong with n-grams?

Data sparseness: most histories and most words will be seen only rarely (if at all).

Next central idea: teach histories and words how to share.
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Log-Linear Models: Definitions

We define a conditional log-linear model p(Y | X) as:

I Y is the set of events/outputs (, for language modeling, V)

I X is the set of contexts/inputs (, for n-gram language modeling, Vn−1)

I φ : X × Y → Rd is a feature vector function

I w ∈ Rd are the model parameters

pw(Y = y | X = x) =
expw · φ(x, y)∑

y′∈Y
expw · φ(x, y′)
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