
Assignment 4
CSEP 517: Natural Language Processing

University of Washington

Due: May 14, 2017

1 Exploring Existing Parsers (30%)

In this part of the assignment, you will run existing PCFG and dependency parsers and try to find some
errors that they make. You can use whichever parsers you want, but here are some options that include a web
interface for your convenience. It’s also perfectly fine to download and install a parser.

Parsers with web interface:

• http://tomato.banatao.berkeley.edu:8080/parser/parser.html
• http://nlp.stanford.edu:8080/parser/
• http://demo.ark.cs.cmu.edu/parse
• https://spacy.io/demos/displacy
• http://lil.cs.washington.edu/easysrl/demo.cgi

These resources might be useful in decoding the part-of-speech tags, nonterminal labels, and dependency
labels:

• http://cs.jhu.edu/˜jason/465/hw-parse/treebank-notation.pdf
• http://www.surdeanu.info/mihai/teaching/ista555-fall13/readings/PennTreebankConstituents.
html
• http://nlp.stanford.edu/software/dependencies_manual.pdf

Keep in mind that you can complete this assignment without having to know all of these labels in detail!
Start with simple sentences like “my dog ate my homework” or “fruit flies like bananas.” Do the results
seem reasonable to you? Try some longer sentences as well, e.g., “two roads diverged in a wood, I took
the one less traveled by, and that has made all the difference.” You might notice that the output of different
parsers is based on different conventions, label sets, etc. These details shouldn’t matter for the purpose of
this assignment.

Deliverables

• Explore at least two different parsers; one should generate some variation of phrase structure, and another
should generate some variation of dependency structure.
• Find four different sentences whose parses that you determine as incorrect. Specify which parser gave

each incorrect parse (please cite it properly, not just a URL, but a full citation). Explain why you think the
parse is incorrect. Your four sentences should show different types of errors. You don’t have to identify
all errors in those sentences. It suffices to identify some errors. You must come up with your own unique
example sentences. If we find your sentences are identical to others’, we will invite you to our office to
parse some very long sentences.

1

http://tomato.banatao.berkeley.edu:8080/parser/parser.html
http://nlp.stanford.edu:8080/parser/
http://demo.ark.cs.cmu.edu/parse
https://spacy.io/demos/displacy
http://lil.cs.washington.edu/easysrl/demo.cgi
http://cs.jhu.edu/~jason/465/hw-parse/treebank-notation.pdf
http://www.surdeanu.info/mihai/teaching/ista555-fall13/readings/PennTreebankConstituents.html
http://www.surdeanu.info/mihai/teaching/ista555-fall13/readings/PennTreebankConstituents.html
http://nlp.stanford.edu/software/dependencies_manual.pdf

2 Variations to the CKY Algorithm (40%)

Recall the CKY algorithm, given here as equations for the scores in the chart (the back pointers are implicit).
Base case: for i ∈ {1, . . . , n} and for each N ∈ N:

si:i(N) = p(xi | N) (1)

For each i, k such that 1 ≤ i < k ≤ n and each N ∈ N:

si:k(N) = max
L,R∈N,j∈{i,...,k−1}

p(L R | N) · si:j(L) · s(j+1):k(R) (2)

1. You find Chomsky normal form inelegant and propose to build a new parser that can also handle context-
free rules with three nonterminals on the righthand side (in addition to the CNF rules). Write the recursive
equation for a modified CKY algorithm that can handle these rules (in the style of Eq. 2). (You may
be tempted to convert the three-child rules into two binary rules. Do not do this. Instead, modify the
algorithm.) The base case is identical to Eq. 1.

2. Noting the incredible success of parent annotation [Johnson, 1998], you decide to derive a CKY-like
algorithm that works with p(children | N,G), where G is the parent of N , as opposed to the original
form, p(children | N). (For this problem, go back to the original CNF rules, no three-child rules.) Write
the recursive equation for a modified CKY algorithm that can handle these probabilities (in the style of
Eq. 2). Here is the base case:

∀i ∈ {1, . . . , n},∀N,G ∈ N, si:i(N
G) = p(xi | N,G)

3. Bonus: what are the O(·) runtime and space requirements of your two new algorithms, as a function of
the sentence length n and the number of nonterminals |N|? Explain how you derived these expressions.

3 Grammar Refinement (30%)

Your friend decides to open a new business and treebank1 corpora professionally. After much agony, he
finally produces a corpus which contains the following three parse trees:

S

NP

John

VP

V1

said

SBAR

COMP

that

S

NP

Sally

VP

VP

V2

snored

ADVP

loudly

1Yes, you can verb treebank.

2 of 4

S

NP

Sally

VP

V1

declared

SBAR

COMP

that

S

NP

Bill

VP

VP

V2

ran

ADVP

quickly

S

NP

Fred

VP

V1

pronounced

SBAR

COMP

that

S

NP

Jeff

VP

VP

V2

swam

ADVP

elegantly

You then purchase this treebank for $2.99, and you decide to build a PCFG and a parser.

Deliverables

• Show the PCFG (CFG with rule probabilities) that you would derive from this treebank if you used relative
frequency estimation (no smoothing).
• Consider the sentence “Jeff pronounced that Bill ran elegantly.” List all of the parse trees and their

probabilities (not just the best one). Note that you cannot use CKY as described to find the parse trees,
because they are not in CNF, but you should still be able to work out what they are.
• You are shocked and dismayed that “Jeff pronounced that Bill ran elegantly” has two possible parses,

and that one of them—that Jeff is doing the pronouncing elegantly—has relatively high probability, in
spite of the fact that such “high” attachment of ADVP (i.e., an ADVP being the child of such an early
VP / high in the tree) has never been seen in the corpus. Since your friend won’t accept returns, you
decide to fix the treebank yourself by refining the grammar, i.e., altering some nonterminal labels in the
corpus. Show one such transformation to the grammar that would give zero probability (under relative
frequency estimation) to parse trees with high attachments. (Hint: consider the options you’ve seen in

3 of 4

the class—parent annotation, markovization, label splitting, lexicalization—or propose a new one). While
it is not necessary to enumerate all production rules after the grammar refinement, you must (1) spell
out at least a subset of the rules with their corresponding probabilities that can clearly demonstrate what
systematic changes you are making to the grammar, and (2) explain clearly how that change can ensure
zero probability to the high attachment of ADVP.
• You get excited about building new treebanks and decide to build a specialized one to focus on the prepo-

sitional phrase attachment problem (see, for example, the “elephant in my pajamas” example in the lecture
slides). To address such ambiguities, you decide to annotate many more sentences with similar ambigui-
ties, for example:

– I fixed a bug in my code.
– I fixed a bug in my dream.
– I cleaned dishes in my pajamas.
– I cleaned dishes in the sink.
– I ate noodles with tofu.
– I ate noodles with chopsticks.

Would parsing with the default PCFG (using, say, Earley’s algorithm, which doesn’t require CNF), if pro-
vided with a sufficient amount of annotated trees, learn to disambiguate the correct structure successfully?
Explain why or why not. If not, then discuss grammar refinements that might help and explain why.

Submission Instructions

• Code: You should have noticed by now that this assignment has no code!
• Report (use the filename A4.pdf and upload to Canvas): Your writeup should be two to three pages long,

or less, in pdf (one-inch margins, reasonable font sizes, preferably LATEX-typeset). Part of the training we
aim to give you in this class includes practice with technical writing. Organize your report as neatly as
possible, and articulate your thoughts as clearly as possible. We prefer quality over quantity. Do not flood
the report with tangential information. Similarly, when discussing the experimental results, do not copy
and paste the entire system output directly to the report. Instead, create tables and figures to organize the
experimental results.
• It is not our intention to have you spend many hours on LATEX-typesetting of charts and trees. Feel free

to use some other tool to draw trees (e.g., neatly hand-drawn and scanned, then included as an image,
or drawn using a graphics editing tool). The graphicx package and \includegraphics command
will help you tremendously.

References

Mark Johnson. PCFG models of linguistic tree representations. Computational Linguistics, 24(4):613–32,
1998.

4 of 4

	Exploring Existing Parsers (30%)
	Variations to the CKY Algorithm (40%)
	Grammar Refinement (30%)

