CSEP 517 Natural Language Processing Autumn 2015

Parsing (Trees)

Yejin Choi - University of Washington

[Slides from Dan Klein, Michael Collins, Luke Zettlemoyer and Ray Mooney]

Topics

- Parse Trees
- (Probabilistic) Context Free Grammars
 - Supervised learning
 - Parsing: most likely tree, marginal distributions
- Treebank Parsing (English, edited text)

Parse Trees

The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market

Penn Treebank Non-terminals

Table 1.2. The Penn Treebank syntactic tagset

ADJP Adjective phrase

ADVP Adverb phrase NP Noun phrase

PP Prepositional phrase

S Simple declarative clause

SBAR Subordinate clause

SBARQ Direct question introduced by *wh*-element

SINV Declarative sentence with subject-aux inversion

SQ Yes/no questions and subconstituent of SBARQ excluding wh-element

VP Verb phrase

WHADVP Wh-adverb phrase WHNP Wh-noun phrase

WHPP Wh-prepositional phrase

X Constituent of unknown or uncertain category

* "Understood" subject of infinitive or imperative

O Zero variant of *that* in subordinate clauses

Trace of wh-Constituent

The Penn Treebank: Size

- ▶ Penn WSJ Treebank = 50,000 sentences with associated trees
- ▶ Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Phrase Structure Parsing

- Phrase structure parsing organizes syntax into constituents or brackets
- In general, this involves nested trees
- Linguists can, and do, argue about details
- Lots of ambiguity
- Not the only kind of syntax...

new art critics write reviews with computers

Constituency Tests

- How do we know what nodes go in the tree?
- Classic constituency tests:
 - Substitution by proform
 - he, she, it, they, ...
 - Question / answer
 - Deletion
 - Movement / dislocation
 - Conjunction / coordination
- Cross-linguistic arguments, too

Conflicting Tests

- Constituency isn't always clear
 - Units of transfer:
 - think about ~ penser à
 - talk about ~ hablar de
 - Phonological reduction:
 - I will go → I'll go
 - I want to go → I wanna go
 - a le centre → au centre

La vélocité des ondes sismiques

- Coordination
 - He went to and came from the store.

Non-Local Phenomena

- Dislocation / gapping
 - Which book should Peter buy?
 - A debate arose which continued until the election.

Binding

- Reference
 - The IRS audits itself
- Control
 - I want to go
 - I want you to go

Classical NLP: Parsing

Write symbolic or logical rules:

Gramma	ar (CFG)	Lexicon
$ROOT \to S$	$NP \rightarrow NP PP$	$NN \rightarrow interest$
$S \to NP VP$	$VP \rightarrow VBP NP$	$\text{NNS} \rightarrow \text{raises}$
$NP \to DT \; NN$	$VP \rightarrow VBP NP PP$	$VBP \to interest$
$NP \to NN \; NNS$	$PP \rightarrow IN NP$	$VBZ \to raises$
		•••

- Use deduction systems to prove parses from words
 - Minimal grammar on "Fed raises" sentence: 36 parses
 - Simple 10-rule grammar: 592 parses
 - Real-size grammar: many millions of parses
- This scaled very badly, didn't yield broad-coverage tools

Attachment Ambiguity

- I cleaned the dishes from dinner
- I cleaned the dishes with detergent
- I cleaned the dishes in my pajamas
- I cleaned the dishes in the sink

I shot an elephant in my pajamas

Syntactic Ambiguities I

- Prepositional phrases:
 They cooked the beans in the pot on the stove with handles.
- Particle vs. preposition:
 The puppy tore up the staircase.
- Complement structures
 The tourists objected to the guide that they couldn't hear.
 She knows you like the back of her hand.
- Gerund vs. participial adjective
 Visiting relatives can be boring.
 Changing schedules frequently confused passengers.

Syntactic Ambiguities II

- Modifier scope within NPs impractical design requirements plastic cup holder
- Multiple gap constructions
 The chicken is ready to eat.
 The contractors are rich enough to sue.
- Coordination scope: Small rats and mice can squeeze into holes or cracks in the wall.

Dark Ambiguities

 Dark ambiguities: most analyses are shockingly bad (meaning, they don't have an interpretation you can get your mind around)

This analysis corresponds to the correct parse of

"This will panic buyers!"

- Unknown words and new usages
- Solution: We need mechanisms to focus attention on the best ones, probabilistic techniques do this

Context-Free Grammars

- A context-free grammar is a tuple <N, Σ, S, R>
 - N: the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
 - Σ: the set of terminals (the words)
 - S: the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
 - R: the set of rules
 - Of the form $X \to Y_1 Y_2 ... Y_n$, with $X \in \mathbb{N}$, $n \ge 0$, $Y_i \in (\mathbb{N} \cup \Sigma)$
 - Examples: S → NP VP, VP → VP CC VP
 - Also called rewrites, productions, or local trees

Example Grammar

```
N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN\}

S = S

\Sigma = \{\text{sleeps, saw, man, woman, telescope, the, with, in}\}
```

R =	S	\Rightarrow	NP	VP
	VP	\Rightarrow	Vi	
	VP	\Rightarrow	Vt	NP
	VP	\Rightarrow	VP	PP
	NP	\Rightarrow	DT	NN
	NP	\Rightarrow	NP	PP
	PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

$R \Rightarrow$ NP S VP VP Vi NP VP Vt VP VPPP NP NN PP NP NP PP IN NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

Example Parses

S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

Probabilistic Context-Free Grammars

- A context-free grammar is a tuple <N, Σ,S, R>
 - N: the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB, etc.
 - Σ: the set of terminals (the words)
 - S: the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
 - R: the set of rules
 - Of the form $X \to Y_1 Y_2 ... Y_n$, with $X \in \mathbb{N}$, $n \ge 0$, $Y_i \in (\mathbb{N} \cup \Sigma)$
 - Examples: S → NP VP, VP → VP CC VP
- A PCFG adds a distribution q:
 - Probability q(r) for each $r \in R$, such that for all $X \in N$:

$$\sum_{\alpha \to \beta \in R: \alpha = X} q(\alpha \to \beta) = 1$$

PCFG Example

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccc} NN & \Rightarrow & man & 0.7 \\ NN & \Rightarrow & woman & 0.2 \\ NN & \Rightarrow & telescope & 0.1 \\ DT & \Rightarrow & the & 1.0 \\ IN & \Rightarrow & with & 0.5 \end{array}$	Vi	\Rightarrow	sleeps	1.0
$\begin{array}{cccc} NN & \Rightarrow & woman & 0.2 \\ NN & \Rightarrow & telescope & 0.1 \\ DT & \Rightarrow & the & 1.0 \\ IN & \Rightarrow & with & 0.5 \end{array}$	Vt	\Rightarrow	saw	1.0
$\begin{array}{ccc} \text{NN} & \Rightarrow & \text{telescope} & 0.1 \\ \text{DT} & \Rightarrow & \text{the} & 1.0 \\ \text{IN} & \Rightarrow & \text{with} & 0.5 \end{array}$	NN	\Rightarrow	man	0.7
$\begin{array}{ccc} DT & \Rightarrow & \text{the} & 1.0 \\ IN & \Rightarrow & \text{with} & 0.5 \end{array}$	NN	\Rightarrow	woman	0.2
$IN \Rightarrow with \qquad 0.5$	NN	\Rightarrow	telescope	0.1
	DT	\Rightarrow	the	1.0
$ IN \Rightarrow in $	IN	\Rightarrow	with	0.5
	IN	\Rightarrow	in	0.5

• Probability of a tree t with rules

$$\alpha_1 \to \beta_1, \alpha_2 \to \beta_2, \dots, \alpha_n \to \beta_n$$

is

$$p(t) = \prod_{i=1}^{n} q(\alpha_i \to \beta_i)$$

where $q(\alpha \to \beta)$ is the probability for rule $\alpha \to \beta$.

PCFG Example

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

 $p(t_s)=1.8*0.3*1.0*0.7*0.2*0.4*1.0*0.3*1.0*0.2*0.4*0.5*0.3*1.0*0.1$

PCFGs: Learning and Inference

Model

• The probability of a tree t with n rules $\alpha_i \rightarrow \beta_i$, i = 1..n

$$p(t) = \prod_{i=1}^{n} q(\alpha_i \to \beta_i)$$

Learning

 Read the rules off of labeled sentences, use ML estimates for probabilities

$$q_{ML}(\alpha \to \beta) = \frac{\mathsf{Count}(\alpha \to \beta)}{\mathsf{Count}(\alpha)}$$

and use all of our standard smoothing tricks!

Inference

For input sentence s, define T(s) to be the set of trees whole yield is s
(whole leaves, read left to right, match the words in s)

$$t^*(s) = \arg\max_{t \in \mathcal{T}(s)} p(t)$$

Chomsky Normal Form

- Chomsky normal form:
 - All rules of the form $X \rightarrow Y Z$ or $X \rightarrow w$
 - In principle, this is no limitation on the space of (P)CFGs
 - N-ary rules introduce new non-terminals

- Unaries / empties are "promoted"
- In practice it's kind of a pain:
 - Reconstructing n-aries is easy
 - Reconstructing unaries is trickier
 - The straightforward transformations don't preserve tree scores
- Makes parsing algorithms simpler!

$S \rightarrow NP VP$	8.0
$S \rightarrow Aux NP VP$	0.1

$$S \rightarrow VP$$
 0.1

NP → Pronoun	0.2
$NP \rightarrow Proper-Noun$	0.2
NP → Det Nominal	0.6
Nominal → Noun	0.3
Nominal → Nominal Noun	0.2
Nominal → Nominal PP	0.5
VP → Verb	0.2
$VP \rightarrow Verb NP$	0.5
$VP \rightarrow VP PP$	0.3
$PP \rightarrow Prep NP$	1.0

Lexicon:

```
Noun \rightarrow book | flight | meal | money 0.1 0.5 0.2 0.2

Verb \rightarrow book | include | prefer 0.5 0.2 0.3
```

CNF Conversion Example

```
Det → the | a | that | this 0.6 \ 0.2 \ 0.1 \ 0.1

Pronoun → I | he | she | me 0.5 \ 0.1 \ 0.1 \ 0.3

Proper-Noun → Houston | NWA 0.8 \ 0.2

Aux → does 1.0

Prep → from | to | on | near | through 0.25 \ 0.25 \ 0.1 \ 0.2 \ 0.2
```

Chomsky Normal Form

$S \rightarrow NP VP$ $S \rightarrow Aux NP VP$	0.8 0.1	$S \rightarrow NP VP$ $S \rightarrow X1 VP$ $X1 \rightarrow Aux NP$	0.8 0.1 1.0
$S \rightarrow VP$	0.1		1.0

NP → Pronoun	0.2
$NP \rightarrow Proper-Noun$	0.2
NP → Det Nominal Nominal → Noun	0.6 0.3
Nominal → Nominal Noun Nominal → Nominal PP VP → Verb	0.2 0.5 0.2
$VP \rightarrow Verb NP$ $VP \rightarrow VP PP$ $PP \rightarrow Prep NP$	0.5 0.3 1.0

Lexicon (See previous slide for full list) : Noun \rightarrow book | flight | meal | money 0.1 0.5 0.2 0.2 Verb \rightarrow book | include | prefer 0.5 0.2 0.3

Chomsky Normal Form

$S \rightarrow NP VP$ $S \rightarrow Aux NP VP$	0.8 0.1	$S \rightarrow NP VP$ $S \rightarrow X1 VP$	0.8 0.1
S → VP	0.1	X1 → Aux NP S → book include prefer	1.0
		$S \rightarrow Verb NP$ $S \rightarrow VP PP$	

```
NP \rightarrow Pronoun 0.2
```

$$NP \rightarrow Proper-Noun$$
 0.2

Nominal
$$\rightarrow$$
 Nominal Noun 0.2
Nominal \rightarrow Nominal PP 0.5
 $VP \rightarrow Verb$ 0.2

$$VP \rightarrow Verb NP$$
 0.5
 $VP \rightarrow VP PP$ 0.3
 $PP \rightarrow Prep NP$ 1.0

Lexicon (See previous slide for full list):

Noun
$$\rightarrow$$
 book | flight | meal | money 0.1 0.5 0.2 0.2

Verb
$$\rightarrow$$
 book | include | prefer 0.5 0.2 0.3

Chomsky Normal Form

$S \rightarrow NP VP$	8.0	$S \rightarrow NP VP$	0.8
$S \rightarrow Aux NP VP$	0.1	$S \rightarrow X1 VP$	0.1
		X1 → Aux NP	1.0
$S \rightarrow VP$	0.1	S → book include prefer	
_	_	0.01 0.004 0.006	
		$S \rightarrow Verb NP$	0.05
		$S \rightarrow VP PP$	0.03
NP → Pronoun	0.2	$NP \rightarrow I \mid he \mid she \mid me$	0.00
	V	0.1 0.02 0.02 0.06	
NP → Proper-Noun	0.2	NP → Houston NWA	
THE FIRE POLITICAL	0.2	0.16 .04	
NP → Det Nominal	0.6	NP → Det Nominal	0.6
Nominal → Noun	0.3	Nominal → book flight meal money	0.0
Nominal → Noun	0.5	0.03 0.15 0.06 0.06	
Nominal → Nominal Noun	0.2	Nominal → Nominal Noun	0.2
Nominal → Nominal PP	0.5	Nominal → Nominal PP	0.5
			0.5
VP → Verb	0.2	$VP \rightarrow book \mid include \mid prefer$ 0.1 0.04 0.06	
VP → Verb NP	0.5	VP → Verb NP	0.5
$VP \rightarrow VP PP$	0.3	$VP \rightarrow VP PP$	0.3
PP → Prep NP	1.0	PP → Prep NP	1.0
11 / 11 0 p 141	1.0		1.0

```
Lexicon (See previous slide for full list) : Noun → book | flight | meal | money 0.1 \quad 0.5 \quad 0.2 \quad 0.2

Verb → book | include | prefer 0.5 \quad 0.2 \quad 0.3
```

The Parsing Problem

A Recursive Parser

- Will this parser work?
- Why or why not?
- Memory/time requirements?
- Q: Remind you of anything? Can we adapt this to other models / inference tasks?

Dynamic Programming

• We will store: score of the max parse of x_i to x_j with root non-terminal X

$$\pi(i,j,X)$$

So we can compute the most likely parse:

$$\pi(1, n, S) = \arg \max_{t \in T_G(s)}$$

Via the recursion:

$$\pi(i,j,X) = \max_{\substack{X \rightarrow YZ \in R, \\ s \in \{i...(j-1)\}}} (q(X \rightarrow YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z))$$

With base case:

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

The CKY Algorithm

- Input: a sentence s = x₁ .. x_n and a PCFG = <N, Σ ,S, R, q>
- Initialization: For i = 1 ... n and all X in N

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

- For I = 1 ... (n-1)
 - For i = 1 ... (n-l) and j = i+l
 - For all X in N

[iterate all phrase lengths]
[iterate all phrases of length I]
[iterate all non-terminals]

$$\pi(i, j, X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i \dots (j-1)\}}} (q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z))$$

also, store back pointers

$$bp(i,j,X) = \underset{s \in \{i...(j-1)\}}{\text{max}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

Probabilistic CKY Parser

$S \rightarrow NP VP$	8.0
$S \rightarrow X1 \text{ VP}$	0.1
$X1 \rightarrow Aux NP$	1.0
$S \rightarrow book \mid include \mid prefer$	
0.01 0.004 0.006	
$S \rightarrow Verb NP$	0.05
$S \rightarrow VP PP$	0.03
$NP \rightarrow I \mid he \mid she \mid me$	
0.1 0.02 0.02 0.06	
NP → Houston NWA	
0.16 .04	
$Det \rightarrow the \mid a \mid an$	
0.6 0.1 0.05	
$NP \rightarrow Det Nominal$	0.6
Nr → Det Nommai	0.0
NP → Det Nommai Nominal → book flight meal	
$\begin{array}{c} Nominal \rightarrow book \mid flight \mid meal \\ 0.03 0.15 0.06 \end{array}$	money 0.06
Nominal \rightarrow book flight meal	money 0.06
$\begin{array}{c} Nominal \rightarrow book \mid flight \mid meal \\ 0.03 0.15 0.06 \end{array}$	money 0.06
$\begin{array}{c} Nominal \rightarrow book \mid flight \mid meal \\ 0.03 0.15 0.06 \\ Nominal \rightarrow Nominal Nominal \end{array}$	money 0.06 0.2
$\begin{array}{c} Nominal \rightarrow book \mid flight \mid meal \\ 0.03 0.15 0.06 \\ Nominal \rightarrow Nominal Nominal \\ Nominal \rightarrow Nominal PP \end{array}$	money 0.06 0.2 0.5
$\begin{array}{c} Nominal \rightarrow book \mid flight \mid meal \\ 0.03 0.15 0.06 \\ Nominal \rightarrow Nominal Nominal \\ Nominal \rightarrow Nominal PP \\ Verb \rightarrow book \mid include \mid prefer \\ \end{array}$	money 0.06 0.2 0.5
$\begin{array}{c} Nominal \rightarrow book \mid flight \mid meal \\ 0.03 0.15 0.06 \\ Nominal \rightarrow Nominal Nominal \\ Nominal \rightarrow Nominal PP \\ Verb \rightarrow book \mid include \mid prefer \\ 0.5 0.04 0.06 \\ VP \rightarrow Verb NP \\ VP \rightarrow VP PP \end{array}$	money 0.06 0.2 0.5
$\begin{array}{c} Nominal \rightarrow book \mid flight \mid meal \\ 0.03 0.15 0.06 \\ Nominal \rightarrow Nominal Nominal \\ Nominal \rightarrow Nominal PP \\ Verb \rightarrow book \mid include \mid prefer \\ 0.5 0.04 0.06 \\ VP \rightarrow Verb NP \\ VP \rightarrow VP PP \\ Prep \rightarrow through \mid to \mid from \\ \end{array}$	money 0.06 0.2 0.5
$\begin{array}{c} Nominal \rightarrow book \mid flight \mid meal \\ 0.03 0.15 0.06 \\ Nominal \rightarrow Nominal Nominal \\ Nominal \rightarrow Nominal PP \\ Verb \rightarrow book \mid include \mid prefer \\ 0.5 0.04 0.06 \\ VP \rightarrow Verb NP \\ VP \rightarrow VP PP \end{array}$	money 0.06 0.2 0.5

Probabilistic CKY Parser

Probabilistic CKY Parser

Memory

- How much memory does this require?
 - Have to store the score cache
 - Cache size: |symbols|*n² doubles
 - For the plain treebank grammar:
 - X ~ 20K, n = 40, double ~ 8 bytes = ~ 256MB
 - Big, but workable.
- Pruning: Beams
 - score[X][i][j] can get too large (when?)
 - Can keep beams (truncated maps score[i][j]) which only store the best few scores for the span [i,j]
- Pruning: Coarse-to-Fine
 - Use a smaller grammar to rule out most X[i,j]
 - Much more on this later...

Time: Theory

- How much time will it take to parse?
 - For each diff (<= n)</p>
 - For each i (<= n)</p>
 - For each rule $X \rightarrow Y Z$
 - For each split point k
 Do constant work

- Total time: |rules|*n³
- Something like 5 sec for an unoptimized parse of a 20-word sentences

Time: Practice

Parsing with the vanilla treebank grammar:

- Why's it worse in practice?
 - Longer sentences "unlock" more of the grammar
 - All kinds of systems issues don't scale

Other Dynamic Programs

Can also compute other quantities:

- Best Inside: score of the max parse of w_i to w_j with root non-terminal X
- Best Outside: score of the max parse of w₀ to w_n with a gap from w_i to w_i rooted with non-terminal X
 - see notes for derivation, it is a bit more complicated

Why Chomsky Normal Form?

Inference:

Can we keep N-ary (N > 2) rules and still do dynamic programming?

Can we keep unary rules and still do dynamic programming?

Learning:

Can we reconstruct the original trees?

CNF + Unary Closure

We need unaries to be non-cyclic

- Calculate closure Close(R) for unary rules in R
 - Add X→Y if there exists a rule chain X→Z₁, Z₁→Z₂,..., Z_k →Y with $q(X \rightarrow Y) = q(X \rightarrow Z_1)^* q(Z_1 \rightarrow Z_2)^* ... *q(Z_k \rightarrow Y)$
 - If no unary rule exist for X, add $X \rightarrow X$ with $q(X \rightarrow X)=1$ for all X in N

- Rather than zero or more unaries, always exactly one
- Alternate unary and binary layers
- What about X→Y with different unary paths (and scores)?

The CKY Algorithm

- Input: a sentence s = x₁ .. x_n and a PCFG = <N, Σ ,S, R, q>
- Initialization: For i = 1 ... n and all X in N

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

- For I = 1 ... (n-1)
 - For i = 1 ... (n-l) and j = i+l
 - For all X in N

[iterate all phrase lengths]
[iterate all phrases of length I]
[iterate all non-terminals]

$$\pi(i, j, X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i \dots (j-1)\}}} (q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z))$$

also, store back pointers

$$bp(i,j,X) = \underset{s \in \{i...(j-1)\}}{\text{max}} \left(q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

CKY with Unary Closure

- Input: a sentence s = x₁ .. x_n and a PCFG = <N, Σ ,S, R, q>
- Initialization: For i = 1 ... n:

• Step 1: for all X in N:
$$\pi(i,i,X) = \left\{ \begin{array}{l} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{array} \right.$$

Step 2: for all X in N:

$$\pi_U(i, i, X) = \max_{X \to Y \in Close(R)} (q(X \to Y) \times \pi(i, i, Y))$$

• For I = 1 ... (n-1)

[iterate all phrase lengths]

■ For i = 1 ... (n-l) and j = i+l

[iterate all phrases of length I]

- Step 1: (Binary)
 - For all X in N

[iterate all non-terminals]

$$\pi_B(i, j, X) = \max_{X \to YZ \in R, s \in \{i...(j-1)\}} (q(X \to YZ) \times \pi_U(i, s, Y) \times \pi_U(s+1, j, Z))$$

- Step 2: (Unary)
 - For all X in N

[iterate all non-terminals]

$$\pi_U(i,j,X) = \max_{X \to Y \in Close(R)} (q(X \to Y) \times \pi_B(i,j,Y))$$

Treebank Sentences

```
( (S (NP-SBJ The move)
     (VP followed
         (NP (NP a round)
             (PP of
                  (NP (NP similar increases)
                      (PP by
                          (NP other lenders))
                      (PP against
                          (NP Arizona real estate loans)))))
         (S-ADV (NP-SBJ *)
                (VP reflecting
                     (NP (NP a continuing decline)
                         (PP-LOC in
                                 (NP that market))))))
     .))
```

Treebank Grammars

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn't work well):

- Better results by enriching the grammar (e.g., lexicalization).
- Can also get reasonable parsers without lexicalization.

Grammar encodings: Non-black states are active, non-white states are accepting, and bold transitions are phrasal. FSAs for a subset of the rules for the category NP.

Treebank Grammar Scale

- Treebank grammars can be enormous
 - As FSAs, the raw grammar has ~10K states, excluding the lexicon
 - Better parsers usually make the grammars larger, not smaller

NP:

Typical Experimental Setup

Corpus: Penn Treebank, WSJ

- Accuracy F1: harmonic mean of per-node labeled precision and recall.
- Here: also size number of symbols in grammar.
 - Passive / complete symbols: NP, NP^S
 - Active / incomplete symbols: NP → NP CC •

How to Evaluate?

Correct Tree T

Computed Tree P

PARSEVAL Example

Correct Tree T

Computed Tree P

Constituents: 11

Constituents: 12

Correct Constituents: 10

Recall = 10/11= 90.9% Precision = 10/12=83.3%

 $F_1 = 87.4\%$

Evaluation Metric

- PARSEVAL metrics measure the fraction of the constituents that match between the computed and human parse trees. If P is the system's parse tree and T is the human parse tree (the "gold standard"):
 - Recall = (# correct constituents in P) / (# constituents in T)
 - Precision = (# correct constituents in P) / (# constituents in P)
- Labeled Precision and labeled recall require getting the non-terminal label on the constituent node correct to count as correct.
- F1 is the harmonic mean of precision and recall.
 - F1= (2 * Precision * Recall) / (Precision + Recall)

72.0

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn't work well):

Baseline

Conditional Independence?

- Not every NP expansion can fill every NP slot
 - A grammar with symbols like "NP" won't be context-free
 - Statistically, conditional independence too strong

Non-Independence

Independence assumptions are often too strong.

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

Grammar Refinement

- Structure Annotation [Johnson '98, Klein&Manning '03]
- Lexicalization [Collins '99, Charniak '00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Structural annotation

Vertical Markovization

 Vertical Markov order: rewrites depend on past k ancestor nodes.

(cf. parent annotation)

Horizontal Markovization

Vertical and Horizontal

Raw treebank: v=1, h=∞

Johnson 98: v=2, h=∞

■ Collins 99: v=2, h=2

■ Best F1: v=3, h=2v

Model	F1	Size
Base: v=h=2v	77.8	7.5K

Unlexicalized PCFG Grammar Size

		Horizontal Markov Order				
Vei	rtical Order	h = 0	h = 1	$h \leq 2$	h=2	$h = \infty$
v = 1	No annotation	71.27	72.5	73.46	72.96	72.62
		(854)	(3119)	(3863)	(6207)	(9657)
$v \leq 2$	Sel. Parents	74.75	77.42	77.77	77.50	76.91
		(2285)	(6564)	(7619)	(11398)	(14247)
v=2	All Parents	74.68	77.42	77.81	77.50	76.81
		(2984)	(7312)	(8367)	(12132)	(14666)
$v \leq 3$	Sel. GParents	76.50	78.59	79.07	78.97	78.54
		(4943)	(12374)	(13627)	(19545)	(20123)
v=3	All GParents	76.74	79.18	79.74	79.07	78.72
		(7797)	(15740)	(16994)	(22886)	(22002)

Figure 2: Markovizations: F₁ and grammar size.

Tag Splits

 Problem: Treebank tags are too coarse.

Example: Sentential,
 PP, and other
 prepositions are all
 marked IN.

- Partial Solution:
 - Subdivide the IN tag.

Annotation	F1	Size
Previous	78.3	8.0K
SPLIT-IN	80.3	8.1K

Other Tag Splits

- UNARY-DT: mark demonstratives as DT^U ("the X" vs. "those")
- UNARY-RB: mark phrasal adverbs as RB^U ("quickly" vs. "very")
- TAG-PA: mark tags with non-canonical parents ("not" is an RB^VP)
- SPLIT-AUX: mark auxiliary verbs with –AUX [cf. Charniak 97]
- SPLIT-CC: separate "but" and "&" from other conjunctions
- SPLIT-%: "%" gets its own tag.

F1	Size
80.4	8.1K
80.5	8.1K
81.2	8.5K
81.6	9.0K
81.7	9.1K
81.8	9.3K

A Fully Annotated (Unlex) Tree

Some Test Set Results

Parser	LP	LR	F1
Magerman 95	84.9	84.6	84.7
Collins 96	86.3	85.8	86.0
Unlexicalized	86.9	85.7	86.3
Charniak 97	87.4	87.5	87.4
Collins 99	88.7	88.6	88.6

- Beats "first generation" lexicalized parsers.
- Lots of room to improve more complex models next.

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Structural annotation [Johnson '98, Klein and Manning 03]
- Head lexicalization [Collins '99, Charniak '00]

Problems with PCFGs

- If we do no annotation, these trees differ only in one rule:
 - VP → VP PP
 - NP → NP PP
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words

Problems with PCFGs

- What's different between basic PCFG scores here?
- What (lexical) correlations need to be scored?

Lexicalize Trees!

- Add "headwords" to each phrasal node
 - Headship not in (most) treebanks
 - Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N*
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VB*
 - Take leftmost VP
 - Take left child

Lexicalized PCFGs?

Problem: we now have to estimate probabilities like

- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps

Complement / Adjunct Distinction

- Complement: defines a property/argument (often obligatory), ex: [capitol [of Rome]]
- Adjunct: modifies / describes something (always optional), ex: [quickly ran]
- A Test for Adjuncts: [X Y] --> can claim X and Y
 - [they ran and it happened quickly] vs. [capitol and it was of Rome]

Lexical Derivation Steps

 Main idea: define a linguistically-motivated Markov process for generating children given the parent

Step 1: Choose a head tag and word

Step 2: Choose a complement bag

VP(saw)

VBD(saw) NP-C() NP()

Step 3: Generate children (incl. adjuncts)

VP(saw)

VBD(saw) NP-C(her) NP(today)

Step 4: Recursively derive children

Lexicalized CKY

```
(VP->VBD...NP •)[saw]
             (VP->VBD •)[saw]
                              NP[her]
bestScore(X,i,j,h)
  if (j = i+1)
    return tagScore(X,s[i])
  else
    return
                  score(X[h]->Y[h] Z[h']) *
      max
            max
         k,h',
                  bestScore(Y,i,k,h) *
         X->YZ
                  bestScore(Z,k,j,h')
                  score(X[h]->Y[h'] Z[h]) *
           max
                  bestScore(Y,i,k,h') *
         k,h',
```

bestScore(Z,k,j,h)

X->YZ

still cubic time?

Pruning with Beams

- The Collins parser prunes with per-cell beams [Collins 99]
 - Essentially, run the O(n⁵) CKY
 - Remember only a few hypotheses for each span <i,j>.
 - If we keep K hypotheses at each span, then we do at most O(nK²) work per span (why?)
 - Keeps things more or less cubic
- Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)

Model	F1
Naïve Treebank Grammar	72.6
Klein & Manning '03	86.3
Collins 99	88.6

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Parent annotation [Johnson '98]
- Head lexicalization [Collins '99, Charniak '00]
- Automatic clustering?

Manual Annotation

Manually split categories

- NP: subject vs object
- DT: determiners vs demonstratives
- IN: sentential vs prepositional

Advantages:

- Fairly compact grammar
- Linguistic motivations

Disadvantages:

- Performance leveled out
- Manually annotated

Learning Latent Annotations

Latent Annotations:

- Brackets are known
- Base categories are known
- Hidden variables for subcategories

Can learn with EM: like Forward-Backward for HMMs.

Backward/Inside

Automatic Annotation Induction

Advantages:

• Automatically learned:

Label all nodes with latent variables. Same number \boldsymbol{k} of subcategories

for all categories.

Disadvantages:

- Grammar gets too large
- Most categories are oversplit while others are undersplit.

Model	F1
Klein & Manning '03	86.3
Matsuzaki et al. '05	86.7

Refinement of the DT tag

Hierarchical refinement

- Repeatedly learn more fine-grained subcategories
- start with two (per non-terminal), then keep splitting
- initialize each EM run with the output of the last

Adaptive Splitting

- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful

Adaptive Splitting

Evaluate loss in likelihood from removing each split =

Data likelihood with split reversed

Data likelihood with split

 No loss in accuracy when 50% of the splits are reversed.

Adaptive Splitting Results

Number of Phrasal Subcategories

Number of Lexical Subcategories

Final Results

	F1	F1
Parser	≤ 40 words	all words
Klein & Manning '03	86.3	85.7
Matsuzaki et al. '05	86.7	86.1
Collins '99	88.6	88.2
Charniak & Johnson '05	90.1	89.6
Petrov et. al. 06	90.2	89.7

Learned Splits

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

Personal pronouns (PRP):

PRP-0	It	He	
PRP-1	it	he	they
PRP-2	it	them	him

Learned Splits

Relative adverbs (RBR):

RBR-0	further	lower	higher
RBR-1	more	less	More
RBR-2	earlier	Earlier	later

Cardinal Numbers (CD):

CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34

Hierarchical Pruning

Parse multiple times, with grammars at different levels of granularity!

split in eight:	 							
1								ı

Bracket Posteriors

1621 min **111** min **35** min 15 min (no search error)

Final Results (Accuracy)

		≤ 40 words	all
		F1	F1
ENG	Charniak&Johnson '05 (generative)	90.1	89.6
G	Split / Merge	90.6	90.1
	_ , , , , , , ,		
G	Dubey '05	76.3	-
ER	Split / Merge	80.8	80.1
<u>0</u>	Chiang et al. '02	80.0	76.6
CHN	Split / Merge	86.3	83.4

Still higher numbers from reranking / self-training methods

Dependency Parsing*

Lexicalized parsers can be seen as producing dependency trees

 Each local binary tree corresponds to an attachment in the dependency graph

Dependency Parsing*

Pure dependency parsing is only cubic [Eisner 99]

- Some work on non-projective dependencies
 - Common in, e.g. Czech parsing
 - Can do with MST algorithms [McDonald and Pereira 05]

Tree-adjoining grammars*

- Start with local trees
- Can insert structure with adjunction operators
- Mildly contextsensitive
- Models longdistance dependencies naturally
- ... as well as other weird stuff that CFGs don't capture well (e.g. crossserial dependencies)

TAG: Long Distance*

CCG Parsing*

- Combinatory Categorial Grammar
 - Fully (mono-) lexicalized grammar
 - Categories encode argument sequences
 - Very closely related to the lambda calculus (more later)
 - Can have spurious ambiguities (why?)

 $John \vdash NP$ $shares \vdash NP$ $buys \vdash (S \setminus NP) / NP$ $sleeps \vdash S \setminus NP$ $well \vdash (S \setminus NP) \setminus (S \setminus NP)$

