CSEP 517
Natural Language Processing
Autumn 2015

Parsing (Trees)

Yejin Choi - University of Washington

[Slides from Dan Klein, Michael Collins, Luke Zettlemoyer and Ray Mooney]
Topics

- Parse Trees
- (Probabilistic) Context Free Grammars
 - Supervised learning
 - Parsing: most likely tree, marginal distributions
- Treebank Parsing (English, edited text)
The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market.
Penn Treebank Non-terminals

Table 1.2. The Penn Treebank syntactic tagset

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADJP</td>
<td>Adjective phrase</td>
</tr>
<tr>
<td>ADVP</td>
<td>Adverb phrase</td>
</tr>
<tr>
<td>NP</td>
<td>Noun phrase</td>
</tr>
<tr>
<td>PP</td>
<td>Prepositional phrase</td>
</tr>
<tr>
<td>S</td>
<td>Simple declarative clause</td>
</tr>
<tr>
<td>SBAR</td>
<td>Subordinate clause</td>
</tr>
<tr>
<td>SBARQ</td>
<td>Direct question introduced by wh-element</td>
</tr>
<tr>
<td>SINV</td>
<td>Declarative sentence with subject-aux inversion</td>
</tr>
<tr>
<td>SQ</td>
<td>Yes/no questions and subconstituent of SBARQ excluding wh-element</td>
</tr>
<tr>
<td>VP</td>
<td>Verb phrase</td>
</tr>
<tr>
<td>WHADVP</td>
<td>Wh-adverb phrase</td>
</tr>
<tr>
<td>WHNP</td>
<td>Wh-noun phrase</td>
</tr>
<tr>
<td>WHPP</td>
<td>Wh-prepositional phrase</td>
</tr>
<tr>
<td>X</td>
<td>Constituent of unknown or uncertain category</td>
</tr>
<tr>
<td>*</td>
<td>“Understood” subject of infinitive or imperative</td>
</tr>
<tr>
<td>0</td>
<td>Zero variant of that in subordinate clauses</td>
</tr>
<tr>
<td>T</td>
<td>Trace of wh-Constituent</td>
</tr>
</tbody>
</table>
The Penn Treebank: Size

- Penn WSJ Treebank = 50,000 sentences with associated trees
- Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:
Phrase Structure Parsing

- Phrase structure parsing organizes syntax into constituents or brackets

- In general, this involves nested trees

- Linguists can, and do, argue about details

- Lots of ambiguity

- Not the only kind of syntax…

new art critics write reviews with computers
Constituency Tests

- How do we know what nodes go in the tree?
- Classic constituency tests:
 - Substitution by proform
 - he, she, it, they, ...
 - Question / answer
 - Deletion
 - Movement / dislocation
 - Conjunction / coordination
- Cross-linguistic arguments, too
Conflicting Tests

- Constituency isn’t always clear
 - Units of transfer:
 - think about ~ penser à
 - talk about ~ hablar de
 - Phonological reduction:
 - I will go → I’ll go
 - I want to go → I wanna go
 - a le centre → au centre
- Coordination
 - He went to and came from the store.
Non-Local Phenomena

- Dislocation / gapping
 - Which book should Peter buy?
 - A debate arose which continued until the election.

- Binding
 - Reference
 - The IRS audits itself
 - Control
 - I want to go
 - I want you to go
Classical NLP: Parsing

- Write symbolic or logical rules:

Grammar (CFG)	Lexicon
 ROOT → S | NN → interest
 S → NP VP | NNS → raises
 NP → DT NN | VBP → interest
 NP → NN NNS | VBZ → raises
 VP → VBP NP PP |...

- Use deduction systems to prove parses from words
 - Minimal grammar on “Fed raises” sentence: 36 parses
 - Simple 10-rule grammar: 592 parses
 - Real-size grammar: many millions of parses

- This scaled very badly, didn’t yield broad-coverage tools
Attachment Ambiguity

- I cleaned the dishes from dinner
- I cleaned the dishes with detergent
- I cleaned the dishes in my pajamas
- I cleaned the dishes in the sink
I shot an elephant in my pajamas

Examples from J&M
Syntactic Ambiguities I

- **Prepositional phrases:**
 They cooked the beans in the pot on the stove with handles.

- **Particle vs. preposition:**
 The puppy tore up the staircase.

- **Complement structures**
 The tourists objected to the guide that they couldn’t hear.
 She knows you like the back of her hand.

- **Gerund vs. participial adjective**
 Visiting relatives can be boring.
 Changing schedules frequently confused passengers.
Syntactic Ambiguities II

- Modifier scope within NPs
 impractical design requirements
 plastic cup holder

- Multiple gap constructions
 The chicken is ready to eat.
 The contractors are rich enough to sue.

- Coordination scope:
 Small rats and mice can squeeze into holes or cracks in the wall.
Dark Ambiguities

- **Dark ambiguities:** most analyses are shockingly bad (meaning, they don’t have an interpretation you can get your mind around)

 This analysis corresponds to the correct parse of
 “This will panic buyers!”

- **Unknown words and new usages**

- **Solution:** We need mechanisms to focus attention on the best ones, probabilistic techniques do this
A context-free grammar is a tuple $<N, \Sigma, S, R>$

- N: the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
- Σ: the set of terminals (the words)
- S: the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
- R: the set of rules
 - Of the form $X \rightarrow Y_1 Y_2 \ldots Y_n$, with $X \in N$, $n \geq 0$, $Y_i \in (N \cup \Sigma)$
 - Examples: $S \rightarrow NP \ VP$, $VP \rightarrow VP \ CC \ VP$
 - Also called rewrites, productions, or local trees
Example Grammar

\[N = \{ S, \text{NP, VP, PP, DT, Vi, Vt, NN, IN} \} \]
\[S = S \]
\[\Sigma = \{ \text{sleeps, saw, man, woman, telescope, the, with, in} \} \]

\[R = \]

\begin{tabular}{ | c | c | c | }
\hline
S & \Rightarrow & NP \ VP \\
\hline
VP & \Rightarrow & Vi \\
\hline
VP & \Rightarrow & Vt \ NP \\
\hline
VP & \Rightarrow & VP \ PP \\
\hline
NP & \Rightarrow & DT \ NN \\
\hline
NP & \Rightarrow & NP \ PP \\
\hline
PP & \Rightarrow & IN \ NP \\
\hline
\end{tabular}

\begin{tabular}{ | c | c | }
\hline
Vi & \Rightarrow & \text{sleeps} \\
\hline
Vt & \Rightarrow & \text{saw} \\
\hline
NN & \Rightarrow & \text{man} \\
\hline
NN & \Rightarrow & \text{woman} \\
\hline
NN & \Rightarrow & \text{telescope} \\
\hline
DT & \Rightarrow & \text{the} \\
\hline
IN & \Rightarrow & \text{with} \\
\hline
IN & \Rightarrow & \text{in} \\
\hline
\end{tabular}

S=sentence, VP-verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition
Example Parses

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>⇒</td>
<td>NP VP</td>
</tr>
<tr>
<td>VP</td>
<td>⇒</td>
<td>Vi</td>
</tr>
<tr>
<td>VP</td>
<td>⇒</td>
<td>Vt NP</td>
</tr>
<tr>
<td>VP</td>
<td>⇒</td>
<td>VP PP</td>
</tr>
<tr>
<td>NP</td>
<td>⇒</td>
<td>DT NN</td>
</tr>
<tr>
<td>NP</td>
<td>⇒</td>
<td>NP PP</td>
</tr>
<tr>
<td>PP</td>
<td>⇒</td>
<td>IN NP</td>
</tr>
<tr>
<td>Vi</td>
<td>⇒</td>
<td>sleeps</td>
</tr>
<tr>
<td>Vt</td>
<td>⇒</td>
<td>saw</td>
</tr>
<tr>
<td>NN</td>
<td>⇒</td>
<td>man</td>
</tr>
<tr>
<td>NN</td>
<td>⇒</td>
<td>woman</td>
</tr>
<tr>
<td>NN</td>
<td>⇒</td>
<td>telescope</td>
</tr>
<tr>
<td>DT</td>
<td>⇒</td>
<td>the</td>
</tr>
<tr>
<td>IN</td>
<td>⇒</td>
<td>with</td>
</tr>
<tr>
<td>IN</td>
<td>⇒</td>
<td>in</td>
</tr>
</tbody>
</table>

R =

- The man sleeps
- The man saw the woman with the telescope

- **S**=sentence, **VP**=verb phrase, **NP**=noun phrase, **PP**=prepositional phrase, **DT**=determiner, **Vi**=intransitive verb, **Vt**=transitive verb, **NN**=noun, **IN**=preposition
Probabilistic Context-Free Grammars

- A context-free grammar is a tuple \(<N, \Sigma, S, R>\)
 - \(N\) : the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB, etc.
 - \(\Sigma\) : the set of terminals (the words)
 - \(S\) : the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
 - \(R\) : the set of rules
 - Of the form \(X \rightarrow Y_1 Y_2 \ldots Y_n\), with \(X \in N, n \geq 0, Y_i \in (N \cup \Sigma)\)
 - Examples: \(S \rightarrow NP \; VP\), \(VP \rightarrow VP \; CC \; VP\)

- A PCFG adds a distribution \(q\):
 - Probability \(q(r)\) for each \(r \in R\), such that for all \(X \in N\):
 \[
 \sum_{\alpha \rightarrow \beta \in R: \alpha = X} q(\alpha \rightarrow \beta) = 1
 \]
PCFG Example

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>NP</td>
<td>VP</td>
<td>1.0</td>
</tr>
<tr>
<td>VP</td>
<td>Vi</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>VP</td>
<td>Vt</td>
<td>NP</td>
<td>0.4</td>
</tr>
<tr>
<td>VP</td>
<td>VP</td>
<td>PP</td>
<td>0.2</td>
</tr>
<tr>
<td>NP</td>
<td>DT</td>
<td>NN</td>
<td>0.3</td>
</tr>
<tr>
<td>NP</td>
<td>NP</td>
<td>PP</td>
<td>0.7</td>
</tr>
<tr>
<td>PP</td>
<td>P</td>
<td>NP</td>
<td>1.0</td>
</tr>
<tr>
<td>Vi</td>
<td>sleeper</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Vt</td>
<td>saw</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>NN</td>
<td>man</td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>NN</td>
<td>woman</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>NN</td>
<td>telescope</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>DT</td>
<td>the</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>IN</td>
<td>with</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>IN</td>
<td>in</td>
<td></td>
<td>0.5</td>
</tr>
</tbody>
</table>

- Probability of a tree \(t \) with rules

\[\alpha_1 \rightarrow \beta_1, \alpha_2 \rightarrow \beta_2, \ldots, \alpha_n \rightarrow \beta_n \]

is

\[p(t) = \prod_{i=1}^{n} q(\alpha_i \rightarrow \beta_i) \]

where \(q(\alpha \rightarrow \beta) \) is the probability for rule \(\alpha \rightarrow \beta \).
A Probabilistic Context-Free Grammar (PCFG)

PCFG Example

<table>
<thead>
<tr>
<th>S</th>
<th>NP</th>
<th>VP</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP</td>
<td>Vi</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>VP</td>
<td>Vt</td>
<td>NP</td>
<td>0.4</td>
</tr>
<tr>
<td>VP</td>
<td>VP</td>
<td>PP</td>
<td>0.2</td>
</tr>
<tr>
<td>NP</td>
<td>DT</td>
<td>NN</td>
<td>0.3</td>
</tr>
<tr>
<td>NP</td>
<td>NP</td>
<td>PP</td>
<td>0.7</td>
</tr>
<tr>
<td>PP</td>
<td>P</td>
<td>NP</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vi</th>
<th>sleeps</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vt</td>
<td>saw</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NN</th>
<th>man</th>
<th>0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>woman</td>
<td>0.2</td>
</tr>
<tr>
<td>NN</td>
<td>telescope</td>
<td>0.1</td>
</tr>
<tr>
<td>DT</td>
<td>the</td>
<td>1.0</td>
</tr>
<tr>
<td>IN</td>
<td>with</td>
<td>0.5</td>
</tr>
<tr>
<td>IN</td>
<td>in</td>
<td>0.5</td>
</tr>
</tbody>
</table>

\[
p(t_1) = 1.0 \times 0.3 \times 1.0 \times 0.7 \times 0.4 \times 1.0
\]

\[
p(t_2) = 1.8 \times 0.3 \times 1.0 \times 0.7 \times 0.2 \times 0.4 \times 1.0 \times 0.3 \times 1.0 \times 0.2 \times 0.4 \times 0.5 \times 0.3 \times 1.0 \times 0.1
\]
PCFGs: Learning and Inference

- **Model**
 - The probability of a tree t with n rules $\alpha_i \rightarrow \beta_i$, $i = 1..n$

 $$p(t) = \prod_{i=1}^{n} q(\alpha_i \rightarrow \beta_i)$$

- **Learning**
 - Read the rules off of labeled sentences, use ML estimates for probabilities

 $$q_{ML}(\alpha \rightarrow \beta) = \frac{\text{Count}(\alpha \rightarrow \beta)}{\text{Count}(\alpha)}$$

 - and use all of our standard smoothing tricks!

- **Inference**
 - For input sentence s, define $T(s)$ to be the set of trees whole *yield* is s
 (whole leaves, read left to right, match the words in s)

 $$t^*(s) = \arg \max_{t \in T(s)} p(t)$$
Chomsky Normal Form

- **Chomsky normal form:**
 - All rules of the form $X \rightarrow Y Z$ or $X \rightarrow w$
 - In principle, this is no limitation on the space of (P)CFGs
 - N-ary rules introduce new non-terminals
 - Unaries / empties are “promoted”

- In practice it’s kind of a pain:
 - Reconstructing n-aries is easy
 - Reconstructing unaries is trickier
 - The straightforward transformations don’t preserve tree scores

- Makes parsing algorithms simpler!
Original Grammar

S → NP VP 0.8
S → Aux NP VP 0.1
S → VP 0.1

NP → Pronoun 0.2
NP → Proper-Noun 0.2
NP → Det Nominal 0.6
Nominal → Noun 0.3
Nominal → Nominal Noun 0.2
Nominal → Nominal PP 0.5

VP → Verb 0.2
VP → Verb NP 0.5
VP → VP PP 0.3
PP → Prep NP 1.0

Lexicon:
Noun → book | flight | meal | money
 0.1 0.5 0.2 0.2
Verb → book | include | prefer
 0.5 0.2 0.3

CNF Conversion

Example

Det → the | a | that | this
 0.6 0.2 0.1 0.1
Pronoun → I | he | she | me
 0.5 0.1 0.1 0.3
Proper-Noun → Houston | NWA
 0.8 0.2
Aux → does
 1.0
Prep → from | to | on | near | through
 0.25 0.25 0.1 0.2 0.2
Original Grammar

<table>
<thead>
<tr>
<th>Rule</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → NP VP</td>
<td>0.8</td>
</tr>
<tr>
<td>S → Aux NP VP</td>
<td>0.1</td>
</tr>
<tr>
<td>S → VP</td>
<td>0.1</td>
</tr>
<tr>
<td>NP → Pronoun</td>
<td>0.2</td>
</tr>
<tr>
<td>NP → Proper-Noun</td>
<td>0.2</td>
</tr>
<tr>
<td>NP → Det Nominal</td>
<td>0.6</td>
</tr>
<tr>
<td>Nominal → Noun</td>
<td>0.3</td>
</tr>
<tr>
<td>Nominal → Nominal Noun</td>
<td>0.2</td>
</tr>
<tr>
<td>Nominal → Nominal PP</td>
<td>0.5</td>
</tr>
<tr>
<td>VP → Verb</td>
<td>0.2</td>
</tr>
<tr>
<td>VP → Verb NP</td>
<td>0.5</td>
</tr>
<tr>
<td>VP → VP PP</td>
<td>0.3</td>
</tr>
<tr>
<td>PP → Prep NP</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Chomsky Normal Form

<table>
<thead>
<tr>
<th>Rule</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → NP VP</td>
<td>0.8</td>
</tr>
<tr>
<td>S → X1 VP</td>
<td>0.1</td>
</tr>
<tr>
<td>X1 → Aux NP</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Lexicon (See previous slide for full list):
- **Noun**: book | flight | meal | money
 - Probability: 0.1 0.5 0.2 0.2
- **Verb**: book | include | prefer
 - Probability: 0.5 0.2 0.3
Original Grammar

<table>
<thead>
<tr>
<th>Rule</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → NP VP</td>
<td>0.8</td>
</tr>
<tr>
<td>S → Aux NP VP</td>
<td>0.1</td>
</tr>
<tr>
<td>S → VP</td>
<td>0.1</td>
</tr>
<tr>
<td>NP → Pronoun</td>
<td>0.2</td>
</tr>
<tr>
<td>NP → Proper-Noun</td>
<td>0.2</td>
</tr>
<tr>
<td>NP → Det Nominal</td>
<td>0.6</td>
</tr>
<tr>
<td>Nominal → Noun</td>
<td>0.3</td>
</tr>
<tr>
<td>Nominal → Nominal Noun</td>
<td>0.2</td>
</tr>
<tr>
<td>Nominal → Nominal PP</td>
<td>0.5</td>
</tr>
<tr>
<td>VP → Verb</td>
<td>0.2</td>
</tr>
<tr>
<td>VP → Verb NP</td>
<td>0.5</td>
</tr>
<tr>
<td>VP → VP PP</td>
<td>0.3</td>
</tr>
<tr>
<td>PP → Prep NP</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Chomsky Normal Form

<table>
<thead>
<tr>
<th>Rule</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → NP VP</td>
<td>0.8</td>
</tr>
<tr>
<td>S → X1 VP</td>
<td>0.1</td>
</tr>
<tr>
<td>X1 → Aux NP</td>
<td>1.0</td>
</tr>
<tr>
<td>S → book</td>
<td>include</td>
</tr>
<tr>
<td>S → Verb NP</td>
<td></td>
</tr>
<tr>
<td>S → VP PP</td>
<td></td>
</tr>
</tbody>
</table>

Lexicon

(See previous slide for full list)

<table>
<thead>
<tr>
<th>Noun</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>book</td>
<td>0.1</td>
</tr>
<tr>
<td>flight</td>
<td>0.5</td>
</tr>
<tr>
<td>meal</td>
<td>0.2</td>
</tr>
<tr>
<td>money</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verb</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>book</td>
<td>0.5</td>
</tr>
<tr>
<td>include</td>
<td>0.2</td>
</tr>
<tr>
<td>prefer</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Original Grammar

<table>
<thead>
<tr>
<th>Production</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → NP VP</td>
<td>0.8</td>
</tr>
<tr>
<td>S → Aux NP VP</td>
<td>0.1</td>
</tr>
<tr>
<td>S → VP</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Production</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP → Pronoun</td>
<td>0.2</td>
</tr>
<tr>
<td>NP → Proper-Noun</td>
<td>0.2</td>
</tr>
<tr>
<td>Nominal → Noun</td>
<td>0.3</td>
</tr>
<tr>
<td>Nominal → Nominal Noun</td>
<td>0.2</td>
</tr>
<tr>
<td>Nominal → Nominal PP</td>
<td>0.5</td>
</tr>
<tr>
<td>VP → Verb</td>
<td>0.2</td>
</tr>
<tr>
<td>VP → Verb NP</td>
<td>0.5</td>
</tr>
<tr>
<td>VP → VP PP</td>
<td>0.3</td>
</tr>
<tr>
<td>PP → Prep NP</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Chomsky Normal Form

<table>
<thead>
<tr>
<th>Production</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → NP VP</td>
<td>0.8</td>
</tr>
<tr>
<td>S → X1 VP</td>
<td>0.1</td>
</tr>
<tr>
<td>X1 → Aux NP</td>
<td>1.0</td>
</tr>
<tr>
<td>S → book</td>
<td>include</td>
</tr>
<tr>
<td>S → Verb NP</td>
<td>0.05</td>
</tr>
<tr>
<td>S → VP PP</td>
<td>0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Production</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP → I</td>
<td>0.1</td>
</tr>
<tr>
<td>NP → he</td>
<td>0.02</td>
</tr>
<tr>
<td>NP → she</td>
<td>0.02</td>
</tr>
<tr>
<td>NP → me</td>
<td>0.06</td>
</tr>
<tr>
<td>NP → Houston</td>
<td>0.16</td>
</tr>
<tr>
<td>NP → NWA</td>
<td>0.04</td>
</tr>
<tr>
<td>Nominal → book</td>
<td>flight</td>
</tr>
<tr>
<td>Nominal → Nominal Noun</td>
<td>0.2</td>
</tr>
<tr>
<td>Nominal → Nominal PP</td>
<td>0.5</td>
</tr>
<tr>
<td>VP → book</td>
<td>include</td>
</tr>
<tr>
<td>VP → Verb NP</td>
<td>0.5</td>
</tr>
<tr>
<td>VP → VP PP</td>
<td>0.3</td>
</tr>
<tr>
<td>PP → Prep NP</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Lexicon

(See previous slide for full list):

<table>
<thead>
<tr>
<th>Category</th>
<th>Production</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>book</td>
<td>flight</td>
</tr>
<tr>
<td>Verb</td>
<td>book</td>
<td>include</td>
</tr>
</tbody>
</table>
The Parsing Problem

critics write reviews with computers

S

NP
NP

VP

NP

VP

PP

new

1

art

2

critics

3

write

4

reviews

5

with

6

computers

7
A Recursive Parser

\[
\text{bestScore}(X, i, j, s) \\
\text{if } (j == i) \\
\quad \text{return } q(X->s[i]) \\
\text{else} \\
\quad \text{return max } \prod_{k, X->YZ} q(X->YZ) * \\
\quad \quad \text{bestScore}(Y, i, k) * \\
\quad \quad \text{bestScore}(Z, k+1, j)
\]

- Will this parser work?
- Why or why not?
- Memory/time requirements?
- Q: Remind you of anything? Can we adapt this to other models / inference tasks?
Dynamic Programming

- **We will store:** score of the max parse of x_i to x_j with root non-terminal X
 \[\pi(i, j, X) \]

- **So we can compute the most likely parse:**
 \[\pi(1, n, S) = \arg \max_{t \in T_G(s)} \]

- **Via the recursion:**
 \[\pi(i, j, X) = \max_{X \rightarrow YZ \in R, \ s \in \{i...(j-1)\}} (q(X \rightarrow YZ) \times \pi(i, s, Y) \times \pi(s + 1, j, Z)) \]

- **With base case:**
 \[\pi(i, i, X) = \begin{cases}
 q(X \rightarrow x_i) & \text{if } X \rightarrow x_i \in R \\
 0 & \text{otherwise}
 \end{cases} \]
The CKY Algorithm

- **Input:** a sentence $s = x_1 \ldots x_n$ and a PCFG $= \langle N, \Sigma, S, R, q \rangle$

- **Initialization:** For $i = 1 \ldots n$ and all X in N

 $$\pi(i, i, X) = \begin{cases} q(X \rightarrow x_i) & \text{if } X \rightarrow x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

- For $l = 1 \ldots (n-1)$
 - For $i = 1 \ldots (n-l)$ and $j = i+l$
 - For all X in N

 $$\pi(i, j, X) = \max_{X \rightarrow YZ \in R, s \in \{i \ldots (j-1)\}} (q(X \rightarrow YZ) \times \pi(i, s, Y) \times \pi(s + 1, j, Z))$$

- also, store back pointers

 $$bp(i, j, X) = \arg\max_{X \rightarrow YZ \in R, s \in \{i \ldots (j-1)\}} (q(X \rightarrow YZ) \times \pi(i, s, Y) \times \pi(s + 1, j, Z))$$

- **iterate all phrase lengths**
- **iterate all phrases of length l**
- **iterate all non-terminals**
Probabilistic CKY Parser

S → NP VP 0.8
S → X1 VP 0.1
X1 → Aux NP 1.0
S → book | include | prefer 0.01 0.004 0.006
S → Verb NP 0.05
S → VP PP 0.03
NP → I | he | she | me 0.1 0.02 0.02 0.06
NP → Houston | NWA 0.16 0.04
Det → the | a | an 0.6 0.1 0.05
NP → Det Nominal 0.6
Nominal → book | flight | meal | money 0.03 0.15 0.06 0.06
Nominal → Nominal Nominal 0.2
Nominal → Nominal PP 0.5
Verb → book | include | prefer 0.5 0.04 0.06
VP → Verb NP 0.5
VP → VP PP 0.3
Prep → through | to | from 0.2 0.3 0.3
PP → Prep NP 1.0
Probabilistic CKY Parser

<table>
<thead>
<tr>
<th>Book</th>
<th>the</th>
<th>flight</th>
<th>through</th>
<th>Houston</th>
</tr>
</thead>
<tbody>
<tr>
<td>S :.01, Verb:.5 Nominal:.03</td>
<td>None</td>
<td>S:.05*.5*.054 =.00135</td>
<td>S:.0000216</td>
<td>None</td>
</tr>
<tr>
<td>Det:.6</td>
<td>NP:.6*.6*.15 =.054</td>
<td>None</td>
<td>NP:.6*.6*.0024 =.000864</td>
<td>Nominal:.15</td>
</tr>
<tr>
<td>Nominal:.15</td>
<td>None</td>
<td>Nominal:.5*.15*.032 =.0024</td>
<td>Pick most probable parse, i.e. take max to combine probabilities of multiple derivations of each constituent in each cell.</td>
<td>NP:.16</td>
</tr>
<tr>
<td>Prep:.2</td>
<td>PP:1.0*.2*.16 =.032</td>
<td>NP:.16</td>
<td>Parse Tree #1</td>
<td></td>
</tr>
</tbody>
</table>
Probabilistic CKY Parser

<table>
<thead>
<tr>
<th>Book</th>
<th>the</th>
<th>flight</th>
<th>through</th>
<th>Houston</th>
<th>Parse Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>S: .01, Verb: .5, Nominal: .03</td>
<td>None</td>
<td>S: .05 * .5 * .054 = .00135</td>
<td>None</td>
<td>S: 00001296 S: 00000216</td>
<td></td>
</tr>
<tr>
<td>Det: .6</td>
<td>Nominal: .15 = .054</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP: .6 * .6 * .15 = .0024 = .000864</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal: .15</td>
<td>None</td>
<td>Nominal: .5 * .15 * .032 = .0024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prep: .2 PP: 1.0 * .2 * .16 = .032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP: .16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pick most probable parse, i.e. take max to combine probabilities of multiple derivations of each constituent in each cell.
Memory

- How much memory does this require?
 - Have to store the score cache
 - Cache size: \(|\text{symbols}| \times n^2\) doubles
 - For the plain treebank grammar:
 - \(X \sim 20K, n = 40, \text{double} \sim 8\) bytes = \(~ 256\)MB
 - Big, but workable.

- Pruning: Beams
 - score\([X][i][j]\) can get too large (when?)
 - Can keep beams (truncated maps score\([i][j]\)) which only store the best few scores for the span \([i,j]\)

- Pruning: Coarse-to-Fine
 - Use a smaller grammar to rule out most \(X[i,j]\)
 - Much more on this later…
How much time will it take to parse?

- For each diff (<= n)
 - For each i (<= n)
 - For each rule $X \rightarrow Y Z$
 - For each split point k
 Do constant work

- Total time: $|\text{rules}| * n^3$
- Something like 5 sec for an unoptimized parse of a 20-word sentences
Time: Practice

- Parsing with the vanilla treebank grammar:

 - ~ 20K Rules (not an optimized parser!)
 - Observed exponent: 3.6

- Why’s it worse in practice?
 - Longer sentences “unlock” more of the grammar
 - All kinds of systems issues don’t scale
Other Dynamic Programs

Can also compute other quantities:

- **Best Inside**: score of the max parse of w_i to w_j with root non-terminal X

- **Best Outside**: score of the max parse of w_0 to w_n with a gap from w_i to w_j rooted with non-terminal X
 - see notes for derivation, it is a bit more complicated

- Sum Inside/Outside: Do sums instead of maxes
Why Chomsky Normal Form?

Inference:
- Can we keep N-ary (N > 2) rules and still do dynamic programming?
- Can we keep unary rules and still do dynamic programming?

Learning:
- Can we reconstruct the original trees?
CNF + Unary Closure

We need unaries to be non-cyclic

- Calculate closure Close(R) for unary rules in R
 - Add \(X \rightarrow Y \) if there exists a rule chain \(X \rightarrow Z_1, Z_1 \rightarrow Z_2, \ldots, Z_k \rightarrow Y \) with \(q(X \rightarrow Y) = q(X \rightarrow Z_1) \cdot q(Z_1 \rightarrow Z_2) \cdot \ldots \cdot q(Z_k \rightarrow Y) \)
 - If no unary rule exist for \(X \), add \(X \rightarrow X \) with \(q(X \rightarrow X) = 1 \) for all \(X \) in N

- Rather than zero or more unaries, always exactly one
- Alternate unary and binary layers
- What about \(X \rightarrow Y \) with different unary paths (and scores)?

WARNING: Watch out for unary cycles!
The CKY Algorithm

- **Input:** a sentence $s = x_1 \ldots x_n$ and a PCFG $= \langle N, \Sigma, S, R, q \rangle$
- **Initialization:** For $i = 1 \ldots n$ and all X in N

$$
\pi(i, i, X) = \begin{cases}
q(X \rightarrow x_i) & \text{if } X \rightarrow x_i \in R \\
0 & \text{otherwise}
\end{cases}
$$

- For $l = 1 \ldots (n-1)$
 - For $i = 1 \ldots (n-l)$ and $j = i+l$
 - For all X in N

$$
\pi(i, j, X) = \max_{X \rightarrow YZ \in R, \ s \in \{i\ldots(j-1)\}} (q(X \rightarrow YZ) \times \pi(i, s, Y) \times \pi(s + 1, j, Z))
$$

- also, store back pointers

$$
bp(i, j, X) = \arg \max_{X \rightarrow YZ \in R, \ s \in \{i\ldots(j-1)\}} (q(X \rightarrow YZ) \times \pi(i, s, Y) \times \pi(s + 1, j, Z))
$$
CKY with Unary Closure

- **Input:** a sentence \(s = x_1 \ldots x_n \) and a PCFG = \(\langle N, \Sigma, S, R, q \rangle \)
- **Initialization:** For \(i = 1 \ldots n \):
 - Step 1: for all \(X \) in \(N \):
 \[
 \pi(i, i, X) = \begin{cases}
 q(X \rightarrow x_i) & \text{if } X \rightarrow x_i \in R \\
 0 & \text{otherwise}
 \end{cases}
 \]
 - Step 2: for all \(X \) in \(N \):
 \[
 \pi_U(i, i, X) = \max_{X \rightarrow Y \in \text{Close}(R)} (q(X \rightarrow Y) \times \pi(i, i, Y))
 \]
- For \(l = 1 \ldots (n-1) \) [iterate all phrase lengths]
 - For \(i = 1 \ldots (n-l) \) and \(j = i+l \) [iterate all phrases of length \(l \)]
 - Step 1: (Binary)
 - For all \(X \) in \(N \) [iterate all non-terminals]
 \[
 \pi_B(i, j, X) = \max_{X \rightarrow YZ \in R, s \in \{i\ldots(j-1)\}} (q(X \rightarrow YZ) \times \pi_U(i, s, Y) \times \pi_U(s + 1, j, Z))
 \]
 - Step 2: (Unary)
 - For all \(X \) in \(N \) [iterate all non-terminals]
 \[
 \pi_U(i, j, X) = \max_{X \rightarrow Y \in \text{Close}(R)} (q(X \rightarrow Y) \times \pi_B(i, j, Y))
 \]
((S (NP-SBJ The move)
 (VP followed
 (NP (NP a round)
 (PP of
 (NP (NP similar increases)
 (PP by
 (NP other lenders))
 (PP against
 (NP Arizona real estate loans))))))
,
(S-ADV (NP-SBJ *)
 (VP reflecting
 (NP (NP a continuing decline)
 (PP-LOC in
 (NP that market))))))}}
Treebank Grammars

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn’t work well):

\[
\begin{align*}
\text{ROOT} & \rightarrow \text{S} & 1 \\
\text{S} & \rightarrow \text{NP} \text{ VP} . & 1 \\
\text{NP} & \rightarrow \text{PRP} & 1 \\
\text{VP} & \rightarrow \text{VBD} \text{ ADJP} & 1 \\
\text{He} & \rightarrow \text{was} & \text{JJ} \\
\text{right} & &
\end{align*}
\]

- Better results by enriching the grammar (e.g., lexicalization).
- Can also get reasonable parsers without lexicalization.
Grammar encodings: Non-black states are active, non-white states are accepting, and bold transitions are phrasal. FSAs for a subset of the rules for the category NP.
- Treebank grammars can be enormous
 - As FSAs, the raw grammar has ~10K states, excluding the lexicon
 - Better parsers usually make the grammars larger, not smaller
Typical Experimental Setup

- Corpus: Penn Treebank, WSJ

 - Training: sections 02-21
 - Development: section 22 (here, first 20 files)
 - Test: section 23

- Accuracy – F1: harmonic mean of per-node labeled precision and recall.

- Here: also size – number of symbols in grammar.
 - Passive / complete symbols: NP, NP^S
 - Active / incomplete symbols: NP → NP CC •
How to Evaluate?

Correct Tree T

Computes Tree P
PARSEVAL Example

Correct Tree T

Computed Tree P

Constituents: 11

Correct Constituents: 10

Recall = 10/11 = 90.9%

Precision = 10/12 = 83.3%

$F_1 = 87.4\%$
Evaluation Metric

- PARSEVAL metrics measure the fraction of the constituents that match between the computed and human parse trees. If P is the system’s parse tree and T is the human parse tree (the “gold standard”):
 - Recall = (# correct constituents in P) / (# constituents in T)
 - Precision = (# correct constituents in P) / (# constituents in P)
- Labeled Precision and labeled recall require getting the non-terminal label on the constituent node correct to count as correct.
- F1 is the harmonic mean of precision and recall.
 - F1 = (2 * Precision * Recall) / (Precision + Recall)
Treebank PCFGs

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn’t work well):

```
ROOT → S
S → NP VP .
NP → PRP
NP → VBD ADJP
VP → VBD ADJP
```

Model	F1
Baseline | 72.0

[Charniak 96]
Conditional Independence?

- Not every NP expansion can fill every NP slot
 - A grammar with symbols like “NP” won’t be context-free
 - Statistically, conditional independence too strong
Non-Independence

- Independence assumptions are often too strong.

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!
Grammar Refinement

- Structure Annotation [Johnson ’98, Klein&Manning ’03]
- Lexicalization [Collins ’99, Charniak ’00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. ’06]
The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Structural annotation
Vertical Markovization

- Vertical Markov order: rewrites depend on past k ancestor nodes. (cf. parent annotation)
Horizontal Markovization

Order 1

Order ∞

Horizontal Markov Order

Horizontal Markov Orde

Symbols
Vertical and Horizontal

- **Raw treebank:** $v=1$, $h=\infty$
- **Johnson 98:** $v=2$, $h=\infty$
- **Collins 99:** $v=2$, $h=2$
- **Best F1:** $v=3$, $h=2v$

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base: $v=h=2v$</td>
<td>77.8</td>
<td>7.5K</td>
</tr>
</tbody>
</table>
Unlexicalized PCFG Grammar Size

<table>
<thead>
<tr>
<th>Vertical Order</th>
<th>Horizontal Markov Order</th>
<th>$h = 0$</th>
<th>$h = 1$</th>
<th>$h \leq 2$</th>
<th>$h = 2$</th>
<th>$h = \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v = 1$ No annotation</td>
<td></td>
<td>71.27</td>
<td>72.5</td>
<td>73.46</td>
<td>72.96</td>
<td>72.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(854)</td>
<td>(3119)</td>
<td>(3863)</td>
<td>(6207)</td>
<td>(9657)</td>
</tr>
<tr>
<td>$v \leq 2$ Sel. Parents</td>
<td></td>
<td>74.75</td>
<td>77.42</td>
<td>77.77</td>
<td>77.50</td>
<td>76.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2285)</td>
<td>(6564)</td>
<td>(7619)</td>
<td>(11398)</td>
<td>(14247)</td>
</tr>
<tr>
<td>$v = 2$ All Parents</td>
<td></td>
<td>74.68</td>
<td>77.42</td>
<td>77.81</td>
<td>77.50</td>
<td>76.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2984)</td>
<td>(7312)</td>
<td>(8367)</td>
<td>(12132)</td>
<td>(14666)</td>
</tr>
<tr>
<td>$v \leq 3$ Sel. GParents</td>
<td></td>
<td>76.50</td>
<td>78.59</td>
<td>79.07</td>
<td>78.97</td>
<td>78.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4943)</td>
<td>(12374)</td>
<td>(13627)</td>
<td>(19545)</td>
<td>(20123)</td>
</tr>
<tr>
<td>$v = 3$ All GParents</td>
<td></td>
<td>76.74</td>
<td>79.18</td>
<td>79.74</td>
<td>79.07</td>
<td>78.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7797)</td>
<td>(15740)</td>
<td>(16994)</td>
<td>(22886)</td>
<td>(22002)</td>
</tr>
</tbody>
</table>

Figure 2: Markovizations: F_1 and grammar size.
Tag Splits

- **Problem:** Treebank tags are too coarse.

- **Example:** Sentential, PP, and other prepositions are all marked IN.

- **Partial Solution:**
 - Subdivide the IN tag.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>78.3</td>
<td>8.0K</td>
</tr>
<tr>
<td>SPLIT-IN</td>
<td>80.3</td>
<td>8.1K</td>
</tr>
</tbody>
</table>
Other Tag Splits

- **UNARY-DT**: mark demonstratives as DT\(^U\) ("the X" vs. "those")
- **UNARY-RB**: mark phrasal adverbs as RB\(^U\) ("quickly" vs. "very")
- **TAG-PA**: mark tags with non-canonical parents ("not" is an RB\(^V\)P)
- **SPLIT-AUX**: mark auxiliary verbs with –AUX [cf. Charniak 97]
- **SPLIT-CC**: separate "but" and "&" from other conjunctions
- **SPLIT-%**: "%" gets its own tag.

<table>
<thead>
<tr>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.4</td>
<td>8.1K</td>
</tr>
<tr>
<td>80.5</td>
<td>8.1K</td>
</tr>
<tr>
<td>81.2</td>
<td>8.5K</td>
</tr>
<tr>
<td>81.6</td>
<td>9.0K</td>
</tr>
<tr>
<td>81.7</td>
<td>9.1K</td>
</tr>
<tr>
<td>81.8</td>
<td>9.3K</td>
</tr>
</tbody>
</table>
Some Test Set Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>LP</th>
<th>LR</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magerman 95</td>
<td>84.9</td>
<td>84.6</td>
<td>84.7</td>
</tr>
<tr>
<td>Collins 96</td>
<td>86.3</td>
<td>85.8</td>
<td>86.0</td>
</tr>
<tr>
<td>Unlexicalized</td>
<td>86.9</td>
<td>85.7</td>
<td>86.3</td>
</tr>
<tr>
<td>Charniak 97</td>
<td>87.4</td>
<td>87.5</td>
<td>87.4</td>
</tr>
<tr>
<td>Collins 99</td>
<td>88.7</td>
<td>88.6</td>
<td>88.6</td>
</tr>
</tbody>
</table>

- Beats “first generation” lexicalized parsers.
- Lots of room to improve – more complex models next.
Annotation refines base treebank symbols to improve statistical fit of the grammar

- Structural annotation [Johnson ’98, Klein and Manning ’03]
- Head lexicalization [Collins ’99, Charniak ’00]
Problems with PCFGs

- If we do no annotation, these trees differ only in one rule:
 - VP → VP PP
 - NP → NP PP
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words
Problems with PCFGs

- What’s different between basic PCFG scores here?
- What (lexical) correlations need to be scored?
Add “headwords” to each phrasal node

- Headship not in (most) treebanks
- Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N*
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VB*
 - Take leftmost VP
 - Take left child

Lexicalize Trees!
Lexicalized PCFGs?

- Problem: we now have to estimate probabilities like

\[VP(\text{saw}) \rightarrow VBD(\text{saw}) \ NP-C(\text{her}) \ NP(\text{today}) \]

- Never going to get these atomically off of a treebank

- Solution: break up derivation into smaller steps
Complement / Adjunct Distinction

- *warning* - can be tricky, and most parsers don’t model the distinction

- **Complement**: defines a property/argument (often obligatory), ex: [capitol [of Rome]]

- **Adjunct**: modifies / describes something (always optional), ex: [quickly ran]

- A Test for Adjuncts: [X Y] --> can claim X and Y
 - [they ran and it happened quickly] vs. [capitol and it was of Rome]
Lexical Derivation Steps

- **Main idea:** define a linguistically-motivated Markov process for generating children given the parent

1. **Step 1:** Choose a head tag and word
2. **Step 2:** Choose a complement bag
3. **Step 3:** Generate children (incl. adjuncts)
4. **Step 4:** Recursively derive children

[Collins 99]
Lexicalized CKY

bestScore(X, i, j, h)
if (j = i + 1)
 return tagScore(X, s[i])
else
 return
 max
 max
 score(X[h]→Y[h] Z[h']) *
 bestScore(Y, i, k, h)
 bestScore(Z, k, j, h')
 X→YZ
 max
 max
 score(X[h]→Y[h'] Z[h]) *
 bestScore(Y, i, k, h')
 bestScore(Z, k, j, h)
 X→YZ

still cubic time?
Pruning with Beams

- The Collins parser prunes with per-cell beams [Collins 99]
 - Essentially, run the $O(n^5)$ CKY
 - Remember only a few hypotheses for each span $<i,j>$.
 - If we keep K hypotheses at each span, then we do at most $O(nK^2)$ work per span (why?)
 - Keeps things more or less cubic

- Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve Treebank Grammar</td>
<td>72.6</td>
</tr>
<tr>
<td>Klein & Manning ’03</td>
<td>86.3</td>
</tr>
<tr>
<td>Collins 99</td>
<td>88.6</td>
</tr>
</tbody>
</table>
The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson ’98]
 - Head lexicalization [Collins ’99, Charniak ’00]
 - Automatic clustering?
Manual Annotation

- **Manually split categories**
 - NP: subject vs object
 - DT: determiners vs demonstratives
 - IN: sentential vs prepositional

- **Advantages:**
 - Fairly compact grammar
 - Linguistic motivations

- **Disadvantages:**
 - Performance leveled out
 - Manually annotated
Learning Latent Annotations

Latent Annotations:
- Brackets are known
- Base categories are known
- Hidden variables for subcategories

He was right.

Can learn with EM: like Forward-Backward for HMMs.
Automatic Annotation Induction

- **Advantages:**
 - **Automatically learned:**
 - Label all nodes with latent variables.
 - Same number k of subcategories for all categories.

- **Disadvantages:**
 - Grammar gets too large
 - Most categories are oversplit while others are undersplit.

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klein & Manning ’03</td>
<td>86.3</td>
</tr>
<tr>
<td>Matsuzaki et al. ’05</td>
<td>86.7</td>
</tr>
</tbody>
</table>
Refinement of the DT tag

DT

the (0.50)
 a (0.24)
The (0.08)

a (0.61)
 the (0.19)
 an (0.11)

the (0.80)
 The (0.15)
 a (0.01)

this (0.39)
 that (0.28)
 That (0.11)

some (0.20)
 all (0.19)
 those (0.12)

DT-1 DT-2 DT-3 DT-4
Hierarchical refinement

- Repeatedly learn more fine-grained subcategories
- Start with two (per non-terminal), then keep splitting
- Initialize each EM run with the output of the last
Adaptive Splitting

- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful

[Petrov et al. 06]
Adaptive Splitting

- Evaluate loss in likelihood from removing each split =

\[
\frac{\text{Data likelihood with split reversed}}{\text{Data likelihood with split}}
\]

- No loss in accuracy when 50% of the splits are reversed.
Adaptive Splitting Results

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>88.4</td>
</tr>
<tr>
<td>With 50% Merging</td>
<td>89.5</td>
</tr>
</tbody>
</table>
Number of Lexical Subcategories
Final Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>F1 ≤ 40 words</th>
<th>F1 all words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klein & Manning ’03</td>
<td>86.3</td>
<td>85.7</td>
</tr>
<tr>
<td>Matsuzaki et al. ’05</td>
<td>86.7</td>
<td>86.1</td>
</tr>
<tr>
<td>Collins ’99</td>
<td>88.6</td>
<td>88.2</td>
</tr>
<tr>
<td>Charniak & Johnson ’05</td>
<td>90.1</td>
<td>89.6</td>
</tr>
<tr>
<td>Petrov et. al. 06</td>
<td>90.2</td>
<td>89.7</td>
</tr>
</tbody>
</table>
Learned Splits

Proper Nouns (NNP):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NNP-12</td>
<td>John</td>
<td>Robert</td>
<td>James</td>
</tr>
<tr>
<td>NNP-2</td>
<td>J.</td>
<td>E.</td>
<td>L.</td>
</tr>
<tr>
<td>NNP-1</td>
<td>Bush</td>
<td>Noriega</td>
<td>Peters</td>
</tr>
<tr>
<td>NNP-15</td>
<td>New</td>
<td>San</td>
<td>Wall</td>
</tr>
<tr>
<td>NNP-3</td>
<td>York</td>
<td>Francisco</td>
<td>Street</td>
</tr>
</tbody>
</table>

Personal pronouns (PRP):

<table>
<thead>
<tr>
<th>PRP-0</th>
<th>it</th>
<th>He</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP-1</td>
<td>it</td>
<td>he</td>
<td>they</td>
</tr>
<tr>
<td>PRP-2</td>
<td>it</td>
<td>them</td>
<td>him</td>
</tr>
</tbody>
</table>
Learned Splits

- **Relative adverbs (RBR):**

<table>
<thead>
<tr>
<th>RBR</th>
<th>further</th>
<th>lower</th>
<th>higher</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBR-0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBR-1</td>
<td>more</td>
<td>less</td>
<td>More</td>
</tr>
<tr>
<td>RBR-2</td>
<td>earlier</td>
<td>Earlier</td>
<td>later</td>
</tr>
</tbody>
</table>

- **Cardinal Numbers (CD):**

<table>
<thead>
<tr>
<th>CD</th>
<th>1</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-0</td>
<td>1989</td>
<td>1990</td>
<td>1988</td>
</tr>
<tr>
<td>CD-3</td>
<td>million</td>
<td>billion</td>
<td>trillion</td>
</tr>
<tr>
<td>CD-9</td>
<td>78</td>
<td>58</td>
<td>34</td>
</tr>
</tbody>
</table>
Hierarchical Pruning

Parse multiple times, with grammars at different levels of granularity!

coarse: ...

split in two: ...

split in four: ...

split in eight: ...
1621 min
111 min
35 min
15 min
(no search error)
Final Results (Accuracy)

<table>
<thead>
<tr>
<th>Language</th>
<th>Method</th>
<th>≤ 40 words F1</th>
<th>all F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG</td>
<td>Charniak&Johnson ‘05 (generative)</td>
<td>90.1</td>
<td>89.6</td>
</tr>
<tr>
<td></td>
<td>Split / Merge</td>
<td>90.6</td>
<td>90.1</td>
</tr>
<tr>
<td>GER</td>
<td>Dubey ‘05</td>
<td>76.3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Split / Merge</td>
<td>80.8</td>
<td>80.1</td>
</tr>
<tr>
<td>CHN</td>
<td>Chiang et al. ‘02</td>
<td>80.0</td>
<td>76.6</td>
</tr>
<tr>
<td></td>
<td>Split / Merge</td>
<td>86.3</td>
<td>83.4</td>
</tr>
</tbody>
</table>

Still higher numbers from reranking / self-training methods
Dependency Parsing*

- Lexicalized parsers can be seen as producing *dependency trees*

Each local binary tree corresponds to an attachment in the dependency graph.
Dependency Parsing

- Pure dependency parsing is only cubic [Eisner 99]

- Some work on non-projective dependencies
 - Common in, e.g. Czech parsing
 - Can do with MST algorithms [McDonald and Pereira 05]
Tree-adjoining grammars*

- Start with *local trees*
- Can insert structure with *adjunction* operators
- Mildly context-sensitive
- Models long-distance dependencies naturally
- ... as well as other weird stuff that CFGs don’t capture well (e.g. cross-serial dependencies)
TAG: Long Distance*
CCG Parsing

- Combinatory Categorial Grammar
 - Fully (mono-) lexicalized grammar
 - Categories encode argument sequences
 - Very closely related to the lambda calculus (more later)
 - Can have spurious ambiguities (why?)

\[
\begin{align*}
 John & \vdash NP \\
 shares & \vdash NP \\
 buys & \vdash (S \backslash NP) / NP \\
 sleeps & \vdash S \backslash NP \\
 well & \vdash (S \backslash NP) \backslash (S \backslash NP)
\end{align*}
\]

```
S
  \text{NP} \quad \text{S} \backslash \text{NP}
  \text{John} \quad (S \backslash NP) / NP \quad \text{NP}
    \text{buys} \quad \text{shares}
```