CSP 517 Natural Language Processing Winter 2015

Parts of Speech

Yejin Choi

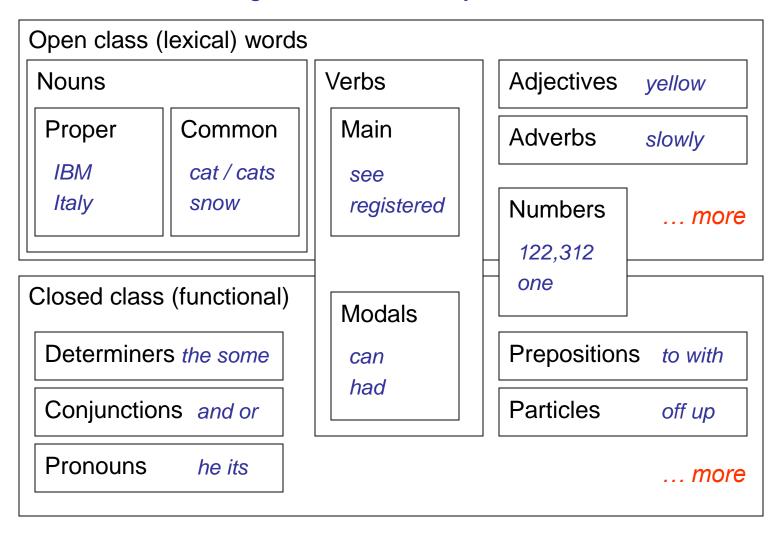
[Slides adapted from Dan Klein, Luke Zettlemoyer]

Overview

- POS Tagging
- Feature Rich Techniques
 - Maximum Entropy Markov Models (MEMMs)
 - Structured Perceptron
 - Conditional Random Fields (CRFs)

Parts-of-Speech (English)

One basic kind of linguistic structure: syntactic word classes



Penn Treebank POS: 36 possible tags, 34 pages of tagging guidelines.

CC	conjunction, coordinating	and both but either or						
CD	numeral, cardinal	mid-1890 nine-thirty 0.5 one						
DT	determiner	a all an every no that the						
EX	existential there	there						
FW	foreign word	gemeinschaft hund ich jeux						
IN	preposition or conjunction, subordinating	among whether out on by if						
JJ	adjective or numeral, ordinal	third ill-mannered regrettable						
JJR	adjective, comparative	braver cheaper taller						
JJS	adjective, superlative	bravest cheapest tallest						
MD	modal auxiliary	can may might will would						
NN	noun, common, singular or mass	cabbage thermostat investment subhumanity						
NNP	noun, proper, singular	Motown Cougar Yvette Liverpool						
NNPS	noun, proper, plural	Americans Materials States						
NNS	noun, common, plural	undergraduates bric-a-brac averages						
POS	genitive marker	' 's						
PRP	pronoun, personal	hers himself it we them						
PRP\$	pronoun, possessive	her his mine my our ours their thy your						
RB	adverb	occasionally maddeningly adventurously						
RBR	adverb, comparative	further gloomier heavier less-perfectly						
RBS	adverb, superlative	best biggest nearest worst						
RP	particle	aboard away back by on open through ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz						

PRP	pronoun, personal	hers himself it we them					
PRP\$	pronoun, possessive	her his mine my our ours their thy your					
RB	adverb	occasionally maddeningly adventurously					
RBR	adverb, comparative	further gloomier heavier less-perfectly					
RBS	adverb, superlative	best biggest nearest worst					
RP	particle	aboard away back by on open through					
то	"to" as preposition or infinitive marker	to					
UH	interjection	huh howdy uh whammo shucks heck					
VB	verb, base form	ask bring fire see take					
VBD	verb, past tense	pleaded swiped registered saw					
VBG	verb, present participle or gerund	stirring focusing approaching erasing					
VBN	verb, past participle	dilapidated imitated reunifed unsettled					
VBP	verb, present tense, not 3rd person singular	twist appear comprise mold postpone					
VBZ	verb, present tense, 3rd person singular	bases reconstructs marks uses					
WDT	WH-determiner	that what whatever which whichever					
WP	WH-pronoun	that what whatever which who whom					
WP\$	WH-pronoun, possessive	whose					
WRB	Wh-adverb	however whenever where why					

Part-of-Speech Ambiguity

Words can have multiple parts of speech

```
VBD VB
VBN VBZ VBP VBZ
NNP NNS NN NNS CD NN
```

Fed raises interest rates 0.5 percent

Mrs./NNP Shaefer/NNP never/RB got/VBD **around/RP** to/TO joining/VBG All/DT we/PRP gotta/VBN do/VB is/VBZ go/VB **around/IN** the/DT corner/NN Chateau/NNP Petrus/NNP costs/VBZ **around/RB** 250/CD

- Two basic sources of constraint:
 - Grammatical environment
 - Identity of the current word
- Many more possible features:
 - Suffixes, capitalization, name databases (gazetteers), etc...

Why POS Tagging?

- Useful in and of itself (more than you'd think)
 - Text-to-speech: record, lead
 - Lemmatization: saw[v] → see, saw[n] → saw
 - Quick-and-dirty NP-chunk detection: grep {JJ | NN}* {NN | NNS}
- Useful as a pre-processing step for parsing
 - Less tag ambiguity means fewer parses
 - However, some tag choices are better decided by parsers

```
IN
DT NNP NN VBD VBN RP NN NNS
The Georgia branch had taken on loan commitments ...
```

```
VDN
DT NN IN NN VBD NNS VBD
The average of interbank offered rates plummeted ...
```

Baselines and Upper Bounds

- Choose the most common tag
 - 90.3% with a bad unknown word model
 - 93.7% with a good one

- Noise in the data
 - Many errors in the training and test corpora
 - Probably about 2% guaranteed error from noise (on this data)

JJJJ NN chief executive officer JJ NN NN chief executive officer NN NN JJchief executive officer NN NN NN chief executive officer

Ambiguity in POS Tagging

- Particle (RP) vs. preposition (IN)
- He talked over the deal.
- He talked over the telephone.
- past tense (VBD) vs. past participle (VBN)
- The horse walked past the barn.
- The horse walked past the barn fell.
- noun vs. adjective?
- The executive decision.
- noun vs. present participle
- Fishing can be fun

Ambiguity in POS Tagging

- "Like" can be a verb or a preposition
 - I like/VBP candy.
 - Time flies like/IN an arrow.

- "Around" can be a preposition, particle, or adverb
 - I bought it at the shop around/IN the corner.
 - I never got around/RP to getting a car.
 - A new Prius costs around/RB \$25K.

Overview: Accuracies

- Roadmap of (known / unknown) accuracies:
 - Most freq tag: ~90% / ~50%
 - Trigram HMM: ~95% /~55%
- TnT (Brants, 2000):
 - A carefully smoothed trigram tagger
 - Suffix trees for emissions
 - 96.7% on WSJ text (SOA is ~97.5%)
 - Upper bound: ~98%

Most errors on unknown words

Common Errors

Common errors [from Toutanova & Manning 00]

	JJ	NN	NNP	NNPS	RB	RP	IN	VB	VBD	VBN	VBP	Total
JJ	0	177	56	0	61	2	5	10	15	108	0	488
NN	244	0	103	0	12	1	1	29	5	6	19	525
NNP	107	106	0	132	5	0	7	5	1	2	0	427
NNPS	1	0	110	0	0	0	0	0	0	0	0	142
RB	72	21	7	0	0	16	138	1	0	0	0	295
RP	0	0	0	0	39	0	65	0	0	0	0	104
IN	11	0	1	0	169	103	0	1	0	0	0	323
VB	17	64	9	0	2	0	1	0	4	7	85	189
VBD	10	5	3	0	φ	0	0	3	0	143	2	166
VBN	101	3	3	0	O	0	0	3	108	Ø	1	221
VBP	5	34	3	1	1	0	2	49	6	3	0	104
Total	626	536	348	144	317	122	279	102	140	269	108	3651

NN/JJ NN official knowledge

VBD RP/IN DT NN made up the story

RB VBD/VBN NNS

recently sold shares

What about better features?

- Choose the most common tag
 - 90.3% with a bad unknown word model
 - 93.7% with a good one
- What about looking at a word and its environment, but no sequence information?
 - Add in previous / next word
 - Previous / next word shapes
 - Occurrence pattern features
 - Crude entity detection
 - Phrasal verb in sentence?
 - Conjunctions of these things

- the ___
- X ___ X
- [X: x X occurs]
- ___ (Inc.|Co.)
- put

Uses lots of features: > 200K

Overview: Accuracies

Roadmap of (known / unknown) accuracies:

■ Most freq tag: ~90% / ~50%

■ Trigram HMM: ~95% / ~55%

■ TnT (HMM++): 96.2% / 86.0%

■ Maxent P(s_i|x): 96.8% / 86.8%

- Q: What does this say about sequence models?
- Q: How do we add more features to our sequence models?

■ Upper bound: ~98%

MEMM Taggers

One step up: also condition on previous tags

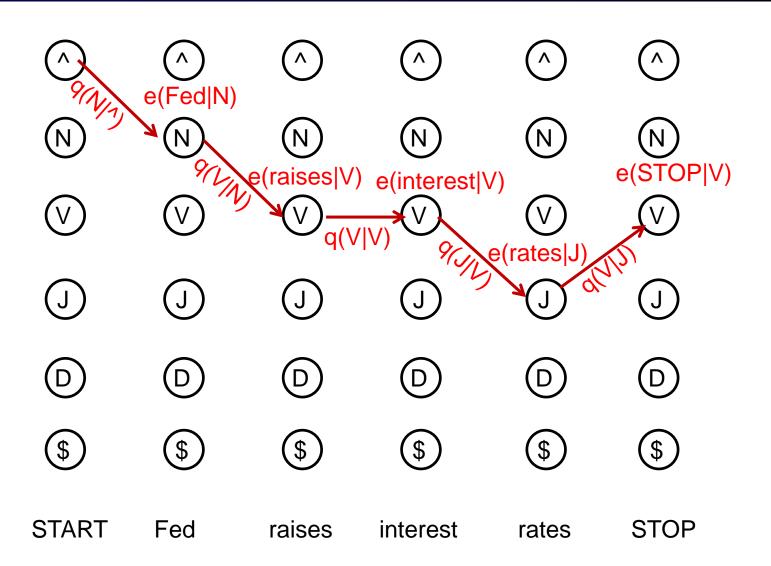
$$p(s_1 \dots s_m | x_1 \dots x_m) = \prod_{i=1}^m p(s_i | s_1 \dots s_{i-1}, x_1 \dots x_m)$$
$$= \prod_{i=1}^m p(s_i | s_{i-1}, x_1 \dots x_m)$$

■ Train up p(s_i|s_{i-1},x₁...x_m) as a discrete log-linear (maxent) model, then use to score sequences

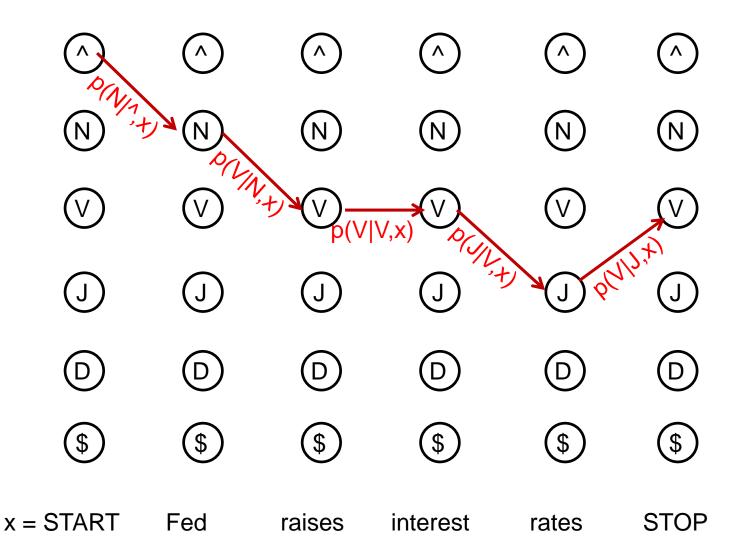
$$p(s_i|s_{i-1}, x_1 \dots x_m) = \frac{\exp(w \cdot \phi(x_1 \dots x_m, i, s_{i-1}, s_i))}{\sum_{s'} \exp(w \cdot \phi(x_1 \dots x_m, i, s_{i-1}, s'))}$$

- This is referred to as an MEMM tagger [Ratnaparkhi 96]
- Beam search effective! (Why?)
- What's the advantage of beam size 1?

The HMM State Lattice / Trellis (repeat slide)



The MEMM State Lattice / Trellis



Decoding

Decoding maxent taggers:

- Just like decoding HMMs
- Viterbi, beam search, posterior decoding

Viterbi algorithm (HMMs):

Define π(i,s_i) to be the max score of a sequence of length i ending in tag s_i

$$\pi(i, s_i) = \max_{s_{i-1}} e(x_i|s_i) q(s_i|s_{i-1}) \pi(i-1, s_{i-1})$$

Viterbi algorithm (Maxent):

Can use same algorithm for MEMMs, just need to redefine π(i,s_i)!

$$\pi(i, s_i) = \max_{s_{i-1}} p(s_i | s_{i-1}, x_1 \dots x_m) \pi(i - 1, s_{i-1})$$

Overview: Accuracies

Roadmap of (known / unknown) accuracies:

■ Most freq tag: ~90% / ~50%

■ Trigram HMM: ~95% / ~55%

■ TnT (HMM++): 96.2% / 86.0%

■ Maxent P(s_i|x): 96.8% / 86.8%

■ MEMM tagger: 96.9% / 86.9%

■ Upper bound: ~98%

Global Discriminative Taggers

- Newer, higher-powered discriminative sequence models
 - CRFs (also perceptrons, M3Ns)
 - Do not decompose training into independent local regions
 - Can be deathly slow to train require repeated inference on training set
- Differences can vary in importance, depending on task
- However: one issue worth knowing about in local models
 - "Label bias" and other explaining away effects
 - MEMM taggers' local scores can be near one without having both good "transitions" and "emissions"
 - This means that often evidence doesn't flow properly
 - Why isn't this a big deal for POS tagging?
 - Also: in decoding, condition on predicted, not gold, histories

Linear Models: Perceptron

- The perceptron algorithm
 - Iteratively processes the training set, reacting to training errors
 - Can be thought of as trying to drive down training error
- The (online) perceptron algorithm:
 - Start with zero weights

Sentence: x=x₁...x_m

- Visit training instances (x_i,y_i) one by one
 - Make a prediction

$$y^* = \arg\max_{y} w \cdot \phi(x_i, y)$$

Tag Sequence:

• If correct (y*==y_i): no change, goto next example!

$$y=s_1...s_m$$

If wrong: adjust weights

$$w = w + \phi(x_i, y_i) - \phi(x_i, y^*)$$

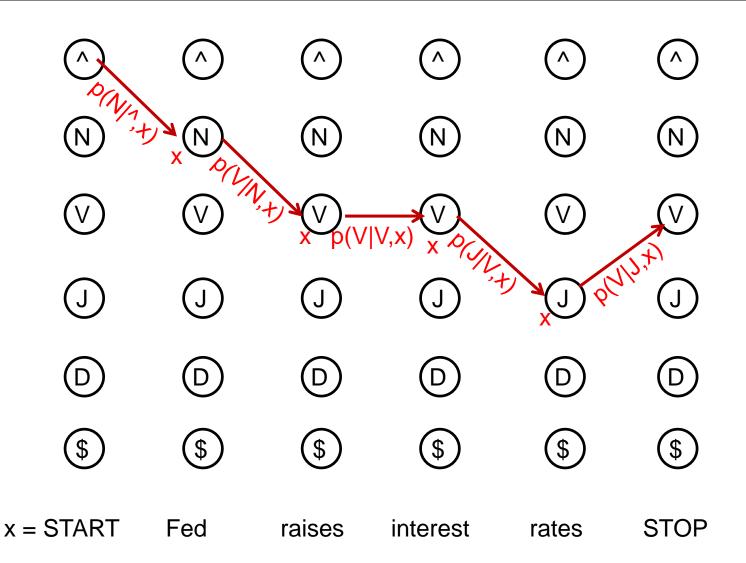
Challenge: How to compute argmax efficiently?

Decoding

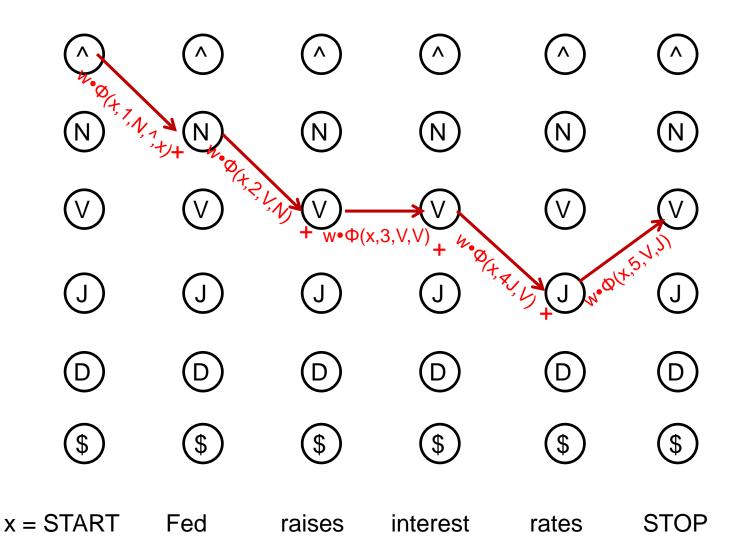
- Linear Perceptron $s^* = \arg\max_{s} w \cdot \Phi(x, s) \cdot \theta$
 - Features must be local, for $x=x_1...x_m$, and $s=s_1...s_m$

$$\Phi(x,s) = \sum_{j=1}^{m} \phi(x,j,s_{j-1},s_j)$$

The MEMM State Lattice / Trellis (repeat)



The Perceptron State Lattice / Trellis



Decoding

- Linear Perceptron $s^* = \arg \max_s w \cdot \Phi(x, s) \cdot \theta$
 - Features must be local, for x=x₁...x_m, and s=s₁...s_m

$$\Phi(x,s) = \sum_{j=1}^{m} \phi(x,j,s_{j-1},s_j)$$

• Define $\pi(i,s_i)$ to be the max score of a sequence of length i ending in tag s_i

$$\pi(i, s_i) = \max_{s_{i-1}} w \cdot \phi(x, i, s_{i-i}, s_i) + \pi(i - 1, s_{i-1})$$

Viterbi algorithm (HMMs):

$$\pi(i, s_i) = \max_{s_{i-1}} e(x_i|s_i) q(s_i|s_{i-1}) \pi(i-1, s_{i-1})$$

Viterbi algorithm (Maxent):

$$\pi(i, s_i) = \max_{s_{i-1}} p(s_i | s_{i-1}, x_1 \dots x_m) \pi(i - 1, s_{i-1})$$

Overview: Accuracies

Roadmap of (known / unknown) accuracies:

■ Most freq tag: ~90% / ~50%

■ Trigram HMM: ~95% / ~55%

■ TnT (HMM++): 96.2% / 86.0%

■ Maxent P(s_i|x): 96.8% / 86.8%

■ MEMM tagger: 96.9% / 86.9%

Perceptron 96.7% / ??

■ Upper bound: ~98%

Conditional Random Fields (CRFs)

[Lafferty, McCallum, Pereira 01]

Maximum entropy (logistic regression)

Sentence:
$$\mathbf{x} = \mathbf{x}_1 \dots \mathbf{x}_m$$

$$p(y|x;w) = \frac{\exp\left(w \cdot \phi(x,y)\right)}{\sum_{y'} \exp\left(w \cdot \phi(x,y')\right)}$$
 Tag Sequence: $\mathbf{y} = \mathbf{s}_1 \dots \mathbf{s}_m$

• Learning: maximize the (log) conditional likelihood of training data $\{(x_i, y_i)\}_{i=1}^n$

$$\frac{\partial}{\partial w_j} L(w) = \sum_{i=1}^n \left(\phi_j(x_i, y_i) - \sum_y p(y|x_i; w) \phi_j(x_i, y) \right) - \lambda w_j$$

- Computational Challenges?
 - Most likely tag sequence, normalization constant, gradient

Decoding

CRFs

$$s^* = \arg\max_{s} p(s|x; w)$$

Features must be local, for x=x₁...xm, and s=s₁...sm

$$p(s|x;w) = \frac{\exp(w \cdot \Phi(x,s))}{\sum_{s'} \exp(w \cdot \Phi(x,s'))} \Phi(x,s) = \sum_{j=1}^{m} \phi(x,j,s_{j-1},s_j)$$

$$\arg\max_{s} \frac{\exp(w \cdot \Phi(x,s))}{\sum_{s'} \exp(w \cdot \Phi(x,s'))} = \arg\max_{s} \exp(w \cdot \Phi(x,s))$$

$$= \arg\max_{s} w \cdot \Phi(x, s)$$

Same as Linear Perceptron!!!

$$\pi(i, s_i) = \max_{s_{i-1}} \phi(x, i, s_{i-1}, s_i) + \pi(i - 1, s_{i-1})$$

CRFs: Computing Normalization*

$$p(s|x;w) = \frac{\exp(w \cdot \Phi(x,s))}{\sum_{s'} \exp(w \cdot \Phi(x,s'))} \Phi(x,s) = \sum_{j=1}^{m} \phi(x,j,s_{j-1},s_j)$$
$$\sum_{s'} \exp(w \cdot \Phi(x,s')) = \sum_{s'} \exp\left(\sum_{j} w \cdot \phi(x,j,s_{j-1},s_j)\right)$$
$$= \sum_{s'} \prod_{j} \exp(w \cdot \phi(x,j,s_{j-1},s_j))$$

Define norm(i,s_i) to sum of scores for sequences ending in position i

$$norm(i, y_i) = \sum_{s_{i-1}} \exp(w \cdot \phi(x, i, s_{i-1}, s_i)) norm(i - 1, s_{i-1})$$

Forward Algorithm! Remember HMM case:

$$\alpha(i, y_i) = \sum_{y_{i-1}} e(x_i|y_i)q(y_i|y_{i-1})\alpha(i-1, y_{i-1})$$

Could also use backward?

CRFs: Computing Gradient*

$$p(s|x;w) = \frac{\exp(w \cdot \Phi(x,s))}{\sum_{s'} \exp(w \cdot \Phi(x,s'))} \quad \Phi(x,s) = \sum_{j=1}^{m} \phi(x,j,s_{j-1},s_{j})$$

$$\frac{\partial}{\partial w_{j}} L(w) = \sum_{i=1}^{n} \left(\Phi_{j}(x_{i},s_{i}) - \sum_{s} p(s|x_{i};w) \Phi_{j}(x_{i},s) \right) - \lambda w_{j}$$

$$\sum_{s} p(s|x_{i};w) \Phi_{j}(x_{i},s) = \sum_{s} p(s|x_{i};w) \sum_{j=1}^{m} \phi_{k}(x_{i},j,s_{j-1},s_{j})$$

$$= \sum_{j=1}^{m} \sum_{a,b} \sum_{s:s_{j-1}=a,s_{b}=b} p(s|x_{i};w) \phi_{k}(x_{i},j,s_{j-1},s_{j})$$

Need forward and backward messages

See notes for full details!

Overview: Accuracies

Roadmap of (known / unknown) accuracies:

■ Most freq tag: ~90% / ~50%

■ Trigram HMM: ~95% / ~55%

■ TnT (HMM++): 96.2% / 86.0%

■ Maxent P(s_i|x): 96.8% / 86.8%

■ MEMM tagger: 96.9% / 86.9%

Perceptron 96.7% / ??

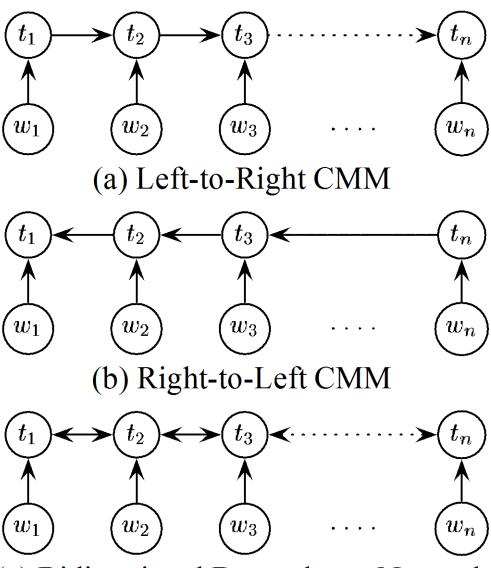
CRF (untuned)95.7% / 76.2%

■ Upper bound: ~98%

Cyclic Network

[Toutanova et al 03]

- Train two MEMMs, multiple together to score
- And be very careful
 - Tune regularization
 - Try lots of different features
 - See paper for full details



(c) Bidirectional Dependency Network

Overview: Accuracies

Roadmap of (known / unknown) accuracies:

■ Most freq tag: ~90% / ~50%

■ Trigram HMM: ~95% / ~55%

■ TnT (HMM++): 96.2% / 86.0%

■ Maxent P(s_i|x): 96.8% / 86.8%

■ MEMM tagger: 96.9% / 86.9%

Perceptron 96.7% / ??

CRF (untuned)95.7% / 76.2%

Cyclic tagger: 97.2% / 89.0%

■ Upper bound: ~98%

Domain Effects

- Accuracies degrade outside of domain
 - Up to triple error rate
 - Usually make the most errors on the things you care about in the domain (e.g. protein names)

Open questions

- How to effectively exploit unlabeled data from a new domain (what could we gain?)
- How to best incorporate domain lexica in a principled way (e.g. UMLS specialist lexicon, ontologies)