
CSEP 517
Natural Language Processing

Autumn 2015

Language Models
Yejin Choi

Slides adapted from Dan Klein, Michael Collins, Luke Zettlemoyer, Dan Jurafsky

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAA

Overview

§  The language modeling problem
§  N-gram language models
§  Evaluation: perplexity
§  Smoothing

§  Add-N
§  Linear Interpolation
§  Discounting Methods

The Language Modeling Problem
n  Setup: Assume a (finite) vocabulary of words

n  We can construct an (infinite) set of strings

n  Data: given a training set of example sentences
n  Problem: estimate a probability distribution

n  Question: why would we ever want to do this?

V†
= {the, a, the a, the fan, the man, the man with the telescope, ...}

x � V†

X

x�V†

p(x) = 1

and p(x) � 0 for all x ⇥ V†

p(the) = 10�12

p(a) = 10�13

p(the fan) = 10�12

p(the fan saw Beckham) = 2⇥ 10�8

p(the fan saw saw) = 10�15

. . .

§  Automatic Speech Recognition (ASR)
§  Audio in, text out
§  SOTA: 0.3% error for digit strings, 5% dictation, 50%+ TV

§  “Recognize speech”
§  “I ate a cherry”

Speech Recognition

“Wreck a nice beach?”

“Eye eight uh Jerry?”

“Eye eight uh Jerry?”

Acoustically Scored Hypotheses

the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739
the station 's signs are in deep in english -14740
the station signs are in deep in the english -14741
the station signs are indeed in english -14757
the station 's signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807
the stations signs are indians and english -14815

ASR System Components

source
P(w)

w a

decoder
observed

argmax P(w|a) = argmax P(a|w)P(w)
w w

w a
best

channel
P(a|w)

Language Model Acoustic Model

The Noisy-Channel Model
n  We want to predict a sentence given acoustics:

n  The noisy channel approach:

Acoustic model: Distributions
over acoustic waves given a

sentence

Language model:
Distributions over sequences

of words (sentences)

Translation: Codebreaking?

“Also knowing nothing official about, but having guessed and
inferred considerable about, the powerful new mechanized
methods in cryptography—methods which I believe succeed
even when one does not know what language has been
coded—one naturally wonders if the problem of translation
could conceivably be treated as a problem in cryptography.
When I look at an article in Russian, I say:
‘This is really written in English, but it has
been coded in some strange symbols. I will
now proceed to decode.’ ”

§  Warren Weaver (1955:18, quoting a letter he
wrote in 1947)

MT System Components

source
P(e)

e f

decoder
observed

argmax P(e|f) = argmax P(f|e)P(e)
e e

e f
best

channel
P(f|e)

Language Model Translation Model

Learning Language Models
§  Goal: Assign useful probabilities P(x) to sentences x

§  Input: many observations of training sentences x
§  Output: system capable of computing P(x)

§  Probabilities should broadly indicate plausibility of sentences
§  P(I saw a van) >> P(eyes awe of an)
§  Not grammaticality: P(artichokes intimidate zippers) ≈ 0
§  In principle, “plausible” depends on the domain, context, speaker…

§  One option: empirical distribution over training sentences…

§  Problem: does not generalize (at all)
§  Need to assign non-zero probability to previously unseen sentences!

p(x1 . . . xn) =
c(x1 . . . xn)

N

for sentence x = x1 . . . xn

Unigram Models
§  Simplest case: unigrams

§  Generative process: pick a word, pick a word, … until you pick STOP
§  As a graphical model:

§  Examples:
§  [fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass.]
§  [thrift, did, eighty, said, hard, 'm, july, bullish]
§  [that, or, limited, the]
§  []
§  [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, too, allowed,

mexico, never, consider, fall, bungled, davison, that, obtain, price, lines, the, to, sass, the, the, further,
board, a, details, machinists, the, companies, which, rivals, an, because, longer, oakes, percent, a,
they, three, edward, it, currier, an, within, in, three, wrote, is, you, s., longer, institute, dentistry, pay,
however, said, possible, to, rooms, hiding, eggs, approximate, financial, canada, the, so, workers,
advancers, half, between, nasdaq]

§  Big problem with unigrams: P(the the the the) >> P(I like ice cream)!

x1 x2 xn-1 STOP ………….

p(x1 . . . xn) =
nY

i=1

p(xi)

Bigram Models
§  Condition on previous single word:

§  Generative process: pick START, pick a word conditioned on previous one,

 repeat until to pick STOP
§  Graphical Model:

§  Any better?
§  [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr.,

gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred,
fifty, five, yen]

§  [outside, new, car, parking, lot, of, the, agreement, reached]
§  [although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty,

seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out, of,
american, brands, vying, for, mr., womack, currently, sharedata, incorporated, believe,
chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to, conscientious,
teaching]

§  [this, would, be, a, record, november]
§  But, what is the cost?

x1 x2 xn-1 STOP START

p(x1 . . . xn) =
nY

i=1

p(xi|xi�1)

Markov Assumption

§  Simplifying	 assump.on:	
	
	

§ Or	 maybe	

	
€

P(the | its water is so transparent that) ≈ P(the | that)

€

P(the | its water is so transparent that) ≈ P(the | transparent that)

N-Gram Model Decomposition

§  k-gram models (k>1): condition on k-1 previous words

§  Example: tri-gram

§  Learning: estimate the distributions

p(x1 . . . xn) =
nY

i=1

q(xi|xi�(k�1) . . . xi�1)

q(xi|xi�(k�1) . . . xi�1)

1.3. TRIGRAM LANGUAGE MODELS 7

we would have

p(the dog barks STOP) = q(the|*, *)⇥q(dog|*, the)⇥q(barks|the, dog)⇥q(STOP|dog, barks)

Note that in this expression we have one term for each word in the sentence (the,
dog, barks, and STOP). Each word depends only on the previous two words: this
is the trigram assumption.

The parameters satisfy the constraints that for any trigram u, v, w,

q(w|u, v) � 0

and for any bigram u, v,
X

w2V[{STOP}

q(w|u, v) = 1

Thus q(w|u, v) defines a distribution over possible words w, conditioned on the
bigram context u, v.

The key problem we are left with is to estimate the parameters of the model,
namely

q(w|u, v)

where w can be any member of V[{STOP}, and u, v 2 V[{*}. There are around
|V|3 parameters in the model. This is likely to be a very large number. For example
with |V| = 10, 000 (this is a realistic number, most likely quite small by modern
standards), we have |V|3 ⇡ 10

12.

1.3.2 Maximum-Likelihood Estimates

We first start with the most generic solution to the estimation problem, the maximum-
likelihood estimates. We will see that these estimates are flawed in a critical way,
but we will then show how related estimates can be derived that work very well in
practice.

First, some notation. Define c(u, v, w) to be the number of times that the tri-
gram (u, v, w) is seen in the training corpus: for example, c(the, dog, barks) is
the number of times that the sequence of three words the dog barks is seen in the
training corpus. Similarly, define c(u, v) to be the number of times that the bigram
(u, v) is seen in the corpus. For any w, u, v, we then define

q(w|u, v) = c(u, v, w)

c(u, v)

1.3. TRIGRAM LANGUAGE MODELS 7

we would have

p(the dog barks STOP) = q(the|*, *)⇥q(dog|*, the)⇥q(barks|the, dog)⇥q(STOP|dog, barks)

Note that in this expression we have one term for each word in the sentence (the,
dog, barks, and STOP). Each word depends only on the previous two words: this
is the trigram assumption.

The parameters satisfy the constraints that for any trigram u, v, w,

q(w|u, v) � 0

and for any bigram u, v,
X

w2V[{STOP}

q(w|u, v) = 1

Thus q(w|u, v) defines a distribution over possible words w, conditioned on the
bigram context u, v.

The key problem we are left with is to estimate the parameters of the model,
namely

q(w|u, v)

where w can be any member of V[{STOP}, and u, v 2 V[{*}. There are around
|V|3 parameters in the model. This is likely to be a very large number. For example
with |V| = 10, 000 (this is a realistic number, most likely quite small by modern
standards), we have |V|3 ⇡ 10

12.

1.3.2 Maximum-Likelihood Estimates

We first start with the most generic solution to the estimation problem, the maximum-
likelihood estimates. We will see that these estimates are flawed in a critical way,
but we will then show how related estimates can be derived that work very well in
practice.

First, some notation. Define c(u, v, w) to be the number of times that the tri-
gram (u, v, w) is seen in the training corpus: for example, c(the, dog, barks) is
the number of times that the sequence of three words the dog barks is seen in the
training corpus. Similarly, define c(u, v) to be the number of times that the bigram
(u, v) is seen in the corpus. For any w, u, v, we then define

q(w|u, v) = c(u, v, w)

c(u, v)

where xi 2 V [{STOP} and x�k+2 . . . x0 = ⇤

Unigram LMs are Well Defined Dist’ns*
§  Simplest case: unigrams

§  Generative process: pick a word, pick a word, … until you pick STOP
§  For all strings x (of any length): p(x)≥0
§  Claim: the sum over string of all lengths is 1 : Σxp(x) = 1

p(x1 . . . xn) =
nY

i=1

p(xi)

CSE392 Natural Language Processing Fall 2013
Assignment 2: HMM-based part-of-speech tagging
— Due Nov 30 11:59 PM, Submission to Blackboard —

1 Overall Goal

In this homework you will implement hidden Markov model (HMM) part-of-
speech tagger. Briefly, the input to the system will be a sentence (a sequence
of words and punctuation tokens), and the output will be the part-of-speech
tags of that sentence. You may work in groups of 2 students. Students in
the same group get the same grade for this assignment.

X

x

p(x) =
1X

n=1

X

x1...xn

p(x1...xn)

X

x1...xn

p(x1...xn) =
X

x1...xn

nY

i=1

p(x
i

) =
X

x1

...

X

xn

p(x1)⇥ ...⇥ p(x
n

)

=
X

x1

p(x1)⇥ ...⇥
X

xn

p(x
n

) = (1� p

s

)n�1
p

s

where p

s

= p(STOP)

X

x

p(x) =
1X

n=1

(1� p

s

)n�1
p

s

= p

s

1X

n=1

(1� p

s

)n�1 = p

s

1

1� (1� p

s

)
= 1

2 Programming Portion

1. The dataset is provided as data.pos file. You can use the first 80% of
the dataset as training corpus, and the rest as the test data.

2. You may use any programming language you like.

3. You must implement the following two components of HMMs yourself:
(1) Supervised HMM training with Laplace smoothing
(2) Viterbi algorithm (which is the algorithm used for testing)

4. Baseline: you can achieve surprisingly high performance (approxi-
mately 90%) by blindly (i.e., always) choosing the most-frequent-tag
for each word. You must implement this baseline as well.

1

CSE392 Natural Language Processing Fall 2013
Assignment 2: HMM-based part-of-speech tagging
— Due Nov 30 11:59 PM, Submission to Blackboard —

1 Overall Goal

In this homework you will implement hidden Markov model (HMM) part-of-
speech tagger. Briefly, the input to the system will be a sentence (a sequence
of words and punctuation tokens), and the output will be the part-of-speech
tags of that sentence. You may work in groups of 2 students. Students in
the same group get the same grade for this assignment.

X

x

p(x) =
1X

n=1

X

x1...xn

p(x1...xn)

X

x1...xn

p(x1...xn) =
X

x1...xn

nY

i=1

p(x
i

) =
X

x1

...

X

xn

p(x1)⇥ ...⇥ p(x
n

)

=
X

x1

p(x1)⇥ ...⇥
X

xn

p(x
n

) = (1� p

s

)n�1
p

s

where p

s

= p(STOP)

X

x

p(x) =
1X

n=1

(1� p

s

)n�1
p

s

= p

s

1X

n=1

(1� p

s

)n�1 = p

s

1

1� (1� p

s

)
= 1

2 Programming Portion

1. The dataset is provided as data.pos file. You can use the first 80% of
the dataset as training corpus, and the rest as the test data.

2. You may use any programming language you like.

3. You must implement the following two components of HMMs yourself:
(1) Supervised HMM training with Laplace smoothing
(2) Viterbi algorithm (which is the algorithm used for testing)

4. Baseline: you can achieve surprisingly high performance (approxi-
mately 90%) by blindly (i.e., always) choosing the most-frequent-tag
for each word. You must implement this baseline as well.

1

CSE392 Natural Language Processing Fall 2013
Assignment 2: HMM-based part-of-speech tagging
— Due Nov 30 11:59 PM, Submission to Blackboard —

1 Overall Goal

In this homework you will implement hidden Markov model (HMM) part-of-
speech tagger. Briefly, the input to the system will be a sentence (a sequence
of words and punctuation tokens), and the output will be the part-of-speech
tags of that sentence. You may work in groups of 2 students. Students in
the same group get the same grade for this assignment.

X

x

p(x) =
1X

n=1

X

x1...xn

p(x1...xn)

X

x1...xn

p(x1...xn) =
X

x1...xn

nY

i=1

p(x
i

) =
X

x1

...

X

xn

p(x1)⇥ ...⇥ p(x
n

)

=
X

x1

p(x1)⇥ ...⇥
X

xn

p(x
n

) = (1� p

s

)n�1
p

s

where p

s

= p(STOP)

X

x

p(x) =
1X

n=1

(1� p

s

)n�1
p

s

= p

s

1X

n=1

(1� p

s

)n�1 = p

s

1

1� (1� p

s

)
= 1

2 Programming Portion

1. The dataset is provided as data.pos file. You can use the first 80% of
the dataset as training corpus, and the rest as the test data.

2. You may use any programming language you like.

3. You must implement the following two components of HMMs yourself:
(1) Supervised HMM training with Laplace smoothing
(2) Viterbi algorithm (which is the algorithm used for testing)

4. Baseline: you can achieve surprisingly high performance (approxi-
mately 90%) by blindly (i.e., always) choosing the most-frequent-tag
for each word. You must implement this baseline as well.

1

CSE392 Natural Language Processing Fall 2013
Assignment 2: HMM-based part-of-speech tagging
— Due Nov 30 11:59 PM, Submission to Blackboard —

1 Overall Goal

In this homework you will implement hidden Markov model (HMM) part-of-
speech tagger. Briefly, the input to the system will be a sentence (a sequence
of words and punctuation tokens), and the output will be the part-of-speech
tags of that sentence. You may work in groups of 2 students. Students in
the same group get the same grade for this assignment.

X

x

p(x) =
1X

n=1

X

x1...xn

p(x1...xn)

X

x1...xn

p(x1...xn) =
X

x1...xn

nY

i=1

p(x
i

) =
X

x1

...

X

xn

p(x1)⇥ ...⇥ p(x
n

)

=
X

x1

p(x1)⇥ ...⇥
X

xn

p(x
n

) = (1� p

s

)n�1
p

s

where p

s

= p(STOP)

X

x

p(x) =
1X

n=1

(1� p

s

)n�1
p

s

= p

s

1X

n=1

(1� p

s

)n�1 = p

s

1

1� (1� p

s

)
= 1

2 Programming Portion

1. The dataset is provided as data.pos file. You can use the first 80% of
the dataset as training corpus, and the rest as the test data.

2. You may use any programming language you like.

3. You must implement the following two components of HMMs yourself:
(1) Supervised HMM training with Laplace smoothing
(2) Viterbi algorithm (which is the algorithm used for testing)

4. Baseline: you can achieve surprisingly high performance (approxi-
mately 90%) by blindly (i.e., always) choosing the most-frequent-tag
for each word. You must implement this baseline as well.

1

(1)

(2)

(1)+(2)

N-Gram Model Parameters
§  The parameters of an n-gram model:

§  Maximum likelihood estimate: relative frequency

 where c is the empirical counts on a training set

§  General approach
§  Take a training set X and a test set X’
§  Compute an estimate of the qs from X
§  Use it to assign probabilities to other sentences, such as those in X’

198015222 the first
194623024 the same
168504105 the following
158562063 the world
…
14112454 the door

23135851162 the *

Tr
ai

ni
ng

 C
ou

nt
s

q(door|the) = 14112454

2313581162

= 0.0006

qML(w) =
c(w)

c()
, qML(w|v) =

c(v, w)

c(v)
, qML(w|u, v) =

c(u, v, w)

c(u, v)
, . . .

Higher Order N-grams?

3380 please close the door
1601 please close the window
1164 please close the new
1159 please close the gate
…
0 please close the first

13951 please close the *

198015222 the first
194623024 the same
168504105 the following
158562063 the world
…
14112454 the door

23135851162 the *

197302 close the window
191125 close the door
152500 close the gap
116451 close the thread
87298 close the deal

3785230 close the *

Please close the door

Please close the first window on the left

More N-Gram Examples

Regular Languages?

§  N-gram models are (weighted) regular languages
§  Many linguistic arguments that language isn’t regular.

§  Long-distance effects: “The computer which I had just put into the
machine room on the fifth floor ___.”

§  Recursive structure
§  Why CAN we often get away with n-gram models?

§  PCFG LM (later):
§  [This, quarter, ‘s, surprisingly, independent, attack, paid, off, the,

risk, involving, IRS, leaders, and, transportation, prices, .]
§  [It, could, be, announced, sometime, .]
§  [Mr., Toseland, believes, the, average, defense, economy, is,

drafted, from, slightly, more, than, 12, stocks, .]

Measuring Model Quality

§  The goal isn’t to pound out fake sentences!
§  Obviously, generated sentences get “better” as we increase the

model order
§  More precisely: using ML estimators, higher order is always

better likelihood on train, but not test

§  What we really want to know is:
§  Will our model prefer good sentences to bad ones?
§  Bad ≠ ungrammatical!
§  Bad ≈ unlikely
§  Bad = sentences that our acoustic model really likes but aren’t

the correct answer

§  The Shannon Game:
§  How well can we predict the next word?

§  Unigrams are terrible at this game. (Why?)

§  How good are we doing?
 Compute per word log likelihood (M words, m test sentences si):

When I eat pizza, I wipe off the ____

Many children are allergic to ____

I saw a ____

grease 0.5

sauce 0.4

dust 0.05

….

mice 0.0001

….

the 1e-100

l =
1

M

mX

i=1

log p(si)

Claude Shannon

Measuring Model Quality

Perplexity

Perplexity is the inverse
probability of the test set,
normalized by the
number of words (why?)

The best language model is
one that best predicts an
unseen test set

PP(W) = P(w1w2...wN)
−

1
N

 =
1

P(w1w2...wN)
N

equivalently :
PP(W) = 2−l

where l = 1
N

logP(w1w2...wN)

2

�l
where l =

1

M

mX

i=1

log p(si)

The Shannon Game intuition for perplexity

§  How hard is the task of recognizing digits ‘0,1,2,3,4,5,6,7,8,9’
at random
§  Perplexity 10

§  How hard is recognizing (30,000) names at random
§  Perplexity = 30,000

§  If a system has to recognize
§  Operator (1 in 4)
§  Sales (1 in 4)
§  Technical Support (1 in 4)
§  30,000 names (1 in 120,000 each)
§  Perplexity is 53

§  Perplexity is weighted equivalent branching factor

Perplexity as branching factor
§  Language with higher perplexity means the number of

words branching from a previous word is larger on
average.

§  The difference between the perplexity of a language
model and the true perplexity of the language is an
indication of the quality of the model.

Lower perplexity = better model

§  Training 38 million words, test 1.5 million words, WSJ

§  "An Estimate of an Upper Bound for the Entropy of
English". Brown, Peter F.; et al. (March 1992).
Computational Linguistics 18 (1)

§  Important note:
§  It’s easy to get bogus perplexities by having bogus probabilities

that sum to more than one over their event spaces. Be careful in
homeworks!

N-gram Order Unigram Bigram Trigram

Perplexity 962 170 109

Measuring Model Quality (Speech)
§  Word Error Rate (WER)

§  The “right” measure:
§  Task error driven
§  For speech recognition
§  For a specific recognizer!

§  Common issue: intrinsic measures like perplexity are easier to use,
but extrinsic ones are more credible

Correct answer: Andy saw a part of the movie

Recognizer output: And he saw apart of the movie

insertions + deletions + substitutions
true sentence size

WER: 4/7
= 57%

Parameter Estimation
§  Maximum likelihood estimates won’t get us

very far

§  Need to smooth these estimates
§  General method (procedurally)

§  Take your empirical counts
§  Modify them in various ways to improve

estimates
§  General method (mathematically)

§  Often can give estimators a formal statistical
interpretation … but not always

§  Approaches that are mathematically obvious
aren’t always what works

3516 wipe off the excess
1034 wipe off the dust
547 wipe off the sweat
518 wipe off the mouthpiece
…
120 wipe off the grease
0 wipe off the sauce
0 wipe off the mice

28048 wipe off the *

qML(w) =
c(w)

c()
, qML(w|v) =

c(v, w)

c(v)
, qML(w|u, v) =

c(u, v, w)

c(u, v)
, . . .

Zeros
§  Training set:
… denied the allegations
… denied the reports
… denied the claims
… denied the request

P(“offer” | denied the) = 0

•  Test set
… denied the offer
… denied the loan

Zero probability bigrams
§  Bigrams with zero probability

§ mean that we will assign 0 probability to the
test set!

§  And hence we cannot compute perplexity
(can’t divide by 0)!

0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1000000

Number of Words

Fr
ac

tio
n

S
ee

n

Unigrams

Bigrams

Rules

Sparsity
§  Problems with n-gram models:

§  New words appear all the time:
§  Synaptitute
§  20,500 results
§  multidisciplinarization

§  New n-grams: even more often
§  Zipf’s Law

§  Types (words) vs. tokens (word occurrences)
§  Broadly: most word types are rare ones
§  Specifically:

§  Rank word types by token frequency
§  Frequency inversely proportional to rank

§  Not special to language: randomly generated character strings
have this property (try it!)

§  This is particularly problematic when…
§  Training set is small (does this happen for language modeling?)
§  Transferring domains: e.g., newswire, scientific literature, Twitter

Smoothing
§  We often want to make estimates from sparse statistics:

§  Smoothing flattens spiky distributions so they generalize better

§  Very important all over NLP (and ML more generally), but easy to do badly!
§  Question: what is the best way to do it?

P(w | denied the)
 3 allegations
 2 reports
 1 claims
 1 request

 7 total

al
le

ga
tio

ns

ch
ar

ge
s

m
ot

io
n

be
ne

fit
s

…

al
le

ga
tio

ns

re
po

rts

cl
ai

m
s

ch
ar

ge
s

re
qu

es
t

m
ot

io
n

be
ne

fit
s

…

al
le

ga
tio

ns

re
po

rts

cl
ai

m
s

re
qu

es
t

P(w | denied the)
 2.5 allegations
 1.5 reports
 0.5 claims
 0.5 request
 2 other

 7 total

Add-one estimation
§  Also called Laplace smoothing
§  Pretend we saw each word one more time than we did
§  Just add one to all the counts!

§  MLE estimate:

§  Add-1 estimate:

PMLE (wi |wi−1) =
c(wi−1,wi)
c(wi−1)

PAdd−1(wi |wi−1) =
c(wi−1,wi)+1
c(wi−1)+V

More general formulations

Add-K:

Unigram Prior Smoothing:

PAdd−k (wi |wi−1) =
c(wi−1,wi)+m(

1
V
)

c(wi−1)+m

PAdd−k (wi |wi−1) =
c(wi−1,wi)+ k
c(wi−1)+ kV

PUnigramPrior (wi |wi−1) =
c(wi−1,wi)+mP(wi)

c(wi−1)+m

Add-1 estimation is a blunt instrument

§  So add-1 isn’t used for N-grams:
§  We’ll see better methods

§  But add-1 is used to smooth other NLP models
§  For text classification
§  In domains where the number of zeros isn’t so huge.

Smoothing: Add-One, Etc.
§  Classic solution: add counts (Laplace smoothing)

§  Add-one smoothing especially often talked about

§  For a bigram distribution, can add counts shaped like the unigram:

§  Can consider hierarchical formulations: trigram is recursively
centered on smoothed bigram estimate, etc. [MacKay and Peto, 94]

§  Bayesian: Can be derived from Dirichlet / multinomial conjugacy -
prior shape shows up as pseudo-counts

§  Problem: works quite poorly!

qadd��(w) =
c(w) + �P

w0(c(w0) + �)
=

c(w) + �

c() + �|V|

quni��(w|v) =
c(v, w) + �qML(w)P

w0 (c(v, w0) + �qML(w0))
=

c(v, w) + �qML(w)

c(v) + �

Linear Interpolation
§  Problem: is supported by few counts
§  Classic solution: mixtures of related, denser histories:

§  Is this a well defined distribution?

§  Yes, if all λi≥0 and they sum to 1

§  The mixture approach tends to work better than add-δ
approach for several reasons
§  Can flexibly include multiple back-off contexts
§  Good ways of learning the mixture weights with EM (later)
§  Not entirely clear why it works so much better

§  All the details you could ever want: [Chen and Goodman, 98]

qML(w|u, v)

q(w|u, v) = �3qML(w|u, v) + �2qML(w|v) + �1qML(w)

Experimental Design
§  Important tool for optimizing how models generalize:

§  Set a small number of hyperparameters that control the degree of
smoothing by maximizing the (log-)likelihood of validation data

§  Can use any optimization technique (line search or EM usually easiest)

§  Examples:

Training Data Validation
Data

Test
Data

k

L

q(w|u, v) = �3qML(w|u, v) + �2qML(w|v) + �1qML(w)

quni��(w|v) =
c(v, w) + �qML(w)P

w0 (c(v, w0) + �qML(w0))

original vs add-1 (normalized) bigram counts

Held-Out Reweighting
§  What’s wrong with add-d smoothing?
§  Let’s look at some real bigram counts [Church and Gale 91]:

§  Big things to notice:
§  Add-one vastly overestimates the fraction of new bigrams
§  Add-0.0000027 vastly underestimates the ratio 2*/1*

§  One solution: use held-out data to predict the map of c to c*

Count in 22M Words Actual c* (Next 22M) Add-one’s c* Add-0.0000027’s c*

1 0.448 2/7e-10 ~1

2 1.25 3/7e-10 ~2

3 2.24 4/7e-10 ~3

4 3.23 5/7e-10 ~4

5 4.21 6/7e-10 ~5

Mass on New 9.2% ~100% 9.2%

Ratio of 2/1 2.8 1.5 ~2

§  Idea 1: observed n-grams occur more in training than they will later:

§  Absolute Discounting (Bigram case)
§  No need to actually have held-out data; just subtract 0.75 (or some d)

§  But, then we have “extra” probability mass

§  Question: How to distribute α between the unseen words?

Absolute Discounting

Count in 22M Words Future c* (Next 22M)

1 0.448

2 1.25

3 2.24

4 3.23

↵(v) = 1�
X

w

c⇤(v, w)

c(v)

c⇤(v, w) = c(v, w)� 0.75 and q(w|v) = c⇤(v, w)

c(v)

§  Absolute discounting, with backoff to unigram estimates

§  Define the words into seen and unseen

§  Now, backoff to maximum likelihood unigram estimates for unseen
words

§  Can consider hierarchical formulations: trigram is recursively backed

off to Katz bigram estimate, etc
§  Can also have multiple count thresholds (instead of just 0 and >0)

Katz Backoff

↵(v) = 1�
X

w

c⇤(v, w)

c(v)

qBO(w|v) =
(

c⇤(v,w)
c(v) If w 2 A(v)

↵(v)⇥ qML(w)P
w02B(v) qML(w0) If w 2 B(v)

A(v) = {w : c(v, w) > 0} B(v) = {w : c(v, w) = 0}

c⇤(v, w) = c(v, w)� �

§  Question: why the same d for all n-grams?
§  Good-Turing Discounting: invented during WWII by Alan Turing and

later published by Good. Frequency estimates were needed for
Enigma code-breaking effort.

§  Let nr be the number of n-grams x for which c(x) = r
§  Now, use the modified counts

§  Then, our estimate of the missing mass is:

§  Where N is the number of tokens in the training set

Good-Turing Discounting*

c

⇤(x) = (r + 1)
nr+1

nr
i↵ c(x) = r, r > 0

↵(v) =
n1
N

Kneser-Ney Backoff*
§  Idea: Type-based fertility

§  Shannon game: There was an unexpected ____?
§  delay?
§  Francisco?

§  “Francisco” is more common than “delay”
§  … but “Francisco” (almost) always follows “San”
§  … so it’s less “fertile”

§  Solution: type-continuation probabilities
§  In the back-off model, we don’t want the unigram estimate pML

§  Instead, want the probability that w is allowed in a novel context
§  For each word, count the number of bigram types it completes

§  KN smoothing repeatedly proven effective
§  [Teh, 2006] shows it is a kind of approximate inference in a hierarchical

Pitman-Yor process (and other, better approximations are possible)

What Actually Works?
§  Trigrams and beyond:

§  Unigrams, bigrams
generally useless

§  Trigrams much better (when
there’s enough data)

§  4-, 5-grams really useful in
MT, but not so much for
speech

§  Discounting
§  Absolute discounting, Good-

Turing, held-out estimation,
Witten-Bell, etc…

§  See [Chen+Goodman]

reading for tons of graphs…

[Graphs from
Joshua Goodman]

Data vs. Method?
§  Having more data is better…

§  … but so is using a better estimator
§  Another issue: N > 3 has huge costs in speech recognizers

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10

1 2 3 4 5 6 7 8 9 10 20

n-gram order

E
nt

ro
py

100,000 Katz

100,000 KN

1,000,000 Katz

1,000,000 KN

10,000,000 Katz

10,000,000 KN

all Katz

all KN

Tons of Data?

§  Tons of data closes gap, for extrinsic MT evaluation

Beyond N-Gram LMs
§  Lots of ideas we won’t have time to discuss:

§  Caching models: recent words more likely to appear again
§  Trigger models: recent words trigger other words
§  Topic models

§  A few recent ideas
§  Syntactic models: use tree models to capture long-distance

syntactic effects [Chelba and Jelinek, 98]

§  Discriminative models: set n-gram weights to improve final task

accuracy rather than fit training set density [Roark, 05, for ASR;
Liang et. al., 06, for MT]

§  Structural zeros: some n-grams are syntactically forbidden, keep

estimates at zero [Mohri and Roark, 06]

§  Bayesian document and IR models [Daume 06]

Practical Issues
§  We do everything in log space

§  Avoid underflow
§  (also adding is faster than multiplying)
§  (though log can be slower than multiplication)

log(p1 × p2 × p3 × p4) = log p1 + log p2 + log p3 + log p4

Google N-Gram Release, August 2006

…

Google N-Gram
§  serve as the incoming 92!
§  serve as the incubator 99!
§  serve as the independent 794!
§  serve as the index 223!
§  serve as the indication 72!
§  serve as the indicator 120!
§  serve as the indicators 45!
§  serve as the indispensable 111!
§  serve as the indispensible 40!
§  serve as the individual 234!

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Huge web-scale n-grams

§  How to deal with, e.g., Google N-gram corpus
§  Pruning

§  Only store N-grams with count > threshold.
§  Remove singletons of higher-order n-grams

§  Entropy-based pruning
§  Efficiency

§  Efficient data structures like tries
§  Bloom filters: approximate language models
§  Store words as indexes, not strings

§  Use Huffman coding to fit large numbers of words into two bytes
§  Quantize probabilities (4-8 bits instead of 8-byte float)

Smoothing for Web-scale N-grams

§  “Stupid backoff” (Brants et al. 2007)
§  No discounting, just use relative frequencies

53

S(wi |wi−k+1
i−1) =

count(wi−k+1
i)

count(wi−k+1
i−1)

 if count(wi−k+1
i)> 0

0.4S(wi |wi−k+2
i−1) otherwise

"

#
$$

%
$
$

S(wi) =
count(wi)

N

Handling Unknown Words
§  If we know all the words in advanced

§  Vocabulary V is fixed
§  Closed vocabulary task

§  Often we don’t know this
§  Out Of Vocabulary = OOV words
§  Open vocabulary task

§  Instead: create an unknown word token <UNK>
§  Training of <UNK> probabilities

§  Create a fixed lexicon L of size V
§  At text normalization phase, any training word not in L changed to

<UNK>
§  Now we train its probabilities like a normal word

§  At decoding time
§  If text input: Use UNK probabilities for any word not in training

* Additional details on
1. Good Turing
2. Kneser-Ney

Notation: Nc = Frequency of frequency c

§  Nc = the count of things we’ve seen c times
§  Sam I am I am Sam I do not eat
I 3!
sam 2!
am 2!
do 1!
not 1!
eat 1!

N1 = 3

N2 = 2

N3 = 1

Good-Turing smoothing intuition
§  You are fishing (a scenario from Josh Goodman), and

caught:
§  10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish

§  How likely is it that next species is trout?
§  1/18

§  How likely is it that next species is new (i.e. catfish or bass)
§  Let’s use our estimate of things-we-saw-once to estimate the new

things.
§  3/18 (because N1=3)

§  Assuming so, how likely is it that next species is trout?
§  Must be less than 1/18
§  How to estimate?

Seen once (trout)
§  c = 1
§  MLE p = 1/18
§  C*(trout) = 2 * N2/N1 = 2 * 1/3 = 2/3
§  P*

GT(trout) = 2/3 / 18 = 1/27

Good Turing calculations

Unseen (bass or catfish)
§  c = 0:
§  MLE p = 0/18 = 0
§  P*

GT (unseen) = N1/N = 3/18

c*= (c+1)Nc+1

Nc

PGT
* (things with zero frequency) = N1

N

Ney et al.’s Good Turing Intuition

59

Held-out words:

H.	 Ney,	 U.	 Essen,	 and	 R.	 Kneser,	 1995.	 On	 the	 es.ma.on	 of	 'small'	 probabili.es	 by	 leaving-‐one-‐out.	 	 IEEE	 Trans.	 PAMI.	
17:12,1202-‐1212	

Ney et al. Good Turing Intuition
§  Intuition from leave-one-out validation

§  Take each of the c training words out in turn
§  c training sets of size c–1, held-out of size 1
§  What fraction of held-out words are unseen in

training?
§  N1/c

§  What fraction of held-out words are seen k times in
training?
§  (k+1)Nk+1/c

§  So in the future we expect (k+1)Nk+1/c of the words
to be those with training count k

§  There are Nk words with training count k
§  Each should occur with probability:

§  (k+1)Nk+1/c/Nk
§  …or expected count: k*= (k +1)Nk+1

Nk

N1

N2

N3

N4417

N3511

. .
 .

.

N0

N1

N2

N4416

N3510

. .
 .

.

Training Held out

Good-Turing complications

§  Problem: what about “the”? (say
c=4417)
§  For small k, Nk > Nk+1
§  For large k, too jumpy, zeros wreck

estimates

§  Simple Good-Turing [Gale and
Sampson]: replace empirical Nk with
a best-fit power law once counts get
unreliable

N1

N2 N3

N1

N2

Resulting Good-Turing numbers
§  Numbers from Church and Gale (1991)
§  22 million words of AP Newswire

§  It	 sure	 looks	 like	 c*	 =	 (c	 -‐	 .75)	

Coun
t	 c	

Good	 Turing	
c*	

0	 .0000270	
1	 0.446	
2	 1.26	
3	 2.24	
4	 3.24	
5	 4.22	
6	 5.19	
7	 6.21	
8	 7.24	
9	 8.25	

c*= (c+1)Nc+1

Nc

Absolute Discounting Interpolation
§  Save ourselves some time and just subtract 0.75

(or some d)!

§  (Maybe keeping a couple extra values of d for counts 1 and 2)
§  But should we really just use the regular unigram P(w)?

PAbsoluteDiscounting (wi |wi−1) =
c(wi−1,wi)− d

c(wi−1)
+λ(wi−1)P(w)

discounted bigram

unigram

Interpolation weight

§  Better estimate for probabilities of lower-order unigrams!
§  Shannon game: I can’t see without my reading___________?
§  “Francisco” is more common than “glasses”
§  … but “Francisco” always follows “San”

§  The unigram is useful exactly when we haven’t seen this
bigram!

§  Instead of P(w): “How likely is w”
§  Pcontinuation(w): “How likely is w to appear as a novel

continuation?
§  For each word, count the number of bigram types it completes
§  Every bigram type was a novel continuation the first time it was seen

Francisco

Kneser-Ney Smoothing I

glasses

PCONTINUATION (w)∝ {wi−1 : c(wi−1,w)> 0}

Kneser-Ney Smoothing II
§  How many times does w appear as a novel continuation:

§  Normalized by the total number of word bigram types

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0}

PCONTINUATION (w)∝ {wi−1 : c(wi−1,w)> 0}

{(wj−1,wj) : c(wj−1,wj)> 0}

Kneser-Ney Smoothing III
§  Alternative metaphor: The number of # of word types seen to precede w

§  normalized by the # of words preceding all words:

§  A frequent word (Francisco) occurring in only one context (San) will have
a low continuation probability

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}
{w 'i−1 : c(w 'i−1,w ')> 0}

w '
∑

| {wi−1 : c(wi−1,w)> 0} |

Kneser-Ney Smoothing IV

PKN (wi |wi−1) =
max(c(wi−1,wi)− d, 0)

c(wi−1)
+λ(wi−1)PCONTINUATION (wi)

λ(wi−1) =
d

c(wi−1)
{w : c(wi−1,w)> 0}

λ is a normalizing constant; the probability mass we’ve discounted

the normalized discount
The number of word types that can follow wi-1
= # of word types we discounted
= # of times we applied normalized discount

Kneser-Ney Smoothing: Recursive formulation

PKN (wi |wi−n+1
i−1) = max(cKN (wi−n+1

i)− d, 0)
cKN (wi−n+1

i−1)
+λ(wi−n+1

i−1)PKN (wi |wi−n+2
i−1)

cKN (•) =
count(•) for the highest order

continuationcount(•) for lower order

!
"
#

$#

Continuation count = Number of unique single word contexts for �

