
CSE 517
Natural Language Processing

Winter 2015

Yejin Choi
University of Washington

Expectation Maximization

2

Language
Models

(Word

Sequences)

Sequence
Tagging

- HMM

(Word-label
sequences)

Parsing

- PCFG

(Trees)

Machine
Translation

(Sequence-

to-sequence;

Sequence-
to-tree;

Tree-to-tree)

Generative (Probabilistic) Models

Discriminative (Log-linear / Feature-rich) Models

Unsupervised Learning & EM

(Recap) Expectation Maximization for HMM
§  Initialize transition and emission parameters

§  Random, uniform, or more informed initialization
§  Iterate until convergence

§  E-Step:
§  Compute expected counts

§  M-Step:

§  Compute new transition and emission parameters (using
the expected counts computed above)

§  How does this relate to the general form of EM?

qML(yi|yi�1) =
c(yi�1, yi)

c(yi�1)
eML(x|y) =

c(y, x)

c(y)

Expectation Maximization
Input: model and unlabeled data
Initialize parameters
Until convergence
§  E-step (expectation)

§  compute the posteriors (while fixing the model parameters)

§  M-step (maximization)
§  compute parameters that maximize the expected log likelihood

Result: learn that maximizes:

p(y|x, ✓t) =
p(x, y|✓t)P
y0 p(x, y0|✓t)

✓

p(x, y|✓)

computed from E-step

✓

✓

t+1 argmax

✓

X

i

X

y

p(y|xi
✓

t
)log p(x

i
, y|✓)

L(✓) =

X

i

log p(x

i|✓) =
X

i

log

X

y

p(x

i
, y|✓)

D = {x1
, x

2
, ...x

N}

(General Form)

Expectation Maximization
§  E-step (expectation)

§  compute the posteriors (while fixing the model parameters)
§  we don’t actually need to compute the full posteriors, instead,

we only need to compute “sufficient statistics” that matter for
M-step, which boil down to “expected counts” of things

§  computationally expensive when y is structured multivariate
§  M-step (maximization)

§  compute parameters that maximizes the expected log likelihood
§  For models that are a product of multinomials (e.g.,

naiveBayes, HMM, PCFG), closed forms exist è “maximum
likelihood estimates (MLE)”

p(y|x, ✓t) =
p(x, y|✓t)P
y0 p(x, y0|✓t)

✓

t+1 argmax

✓

X

i

X

y

p(y|xi
✓

t
)log p(x

i
, y|✓)

Some Questions about EM
1.  EM always converges?
2.  EM converges even with approx E-step?

 -- hard EM / soft EM

3.  EM converges to a global or local optimum? (or saddle point?)

4.  EM improve “likelihood”. How?

 -- while what M-step maximizes is “expected likelihood”

5.  Maximum Likelihood Estimates (MLEs) for M-step?
6.  When to use EM (or not)?

6

L(✓) =

X

i

log p(x

i|✓) =
X

i

log

X

y

p(x

i
, y|✓)

EM improves
§  Theorem:

è Improvement on expected log likelihood
 is lower bound for improvement on log likelihood

§  Concavity of Log
 (Jensen’s inequality):
 7

L(✓)

8

Convergence of EM
§  Theorem:

§  Above only tells us that EM is “non-decreasing”
§  Under relatively mild conditions, it can be shown that EM

converges to a local optimum of
§  “On the Convergence Properties of the EM Algorithm”

Wu, 1983

è As long as M-step improves expected log likelihood (at
all), EM improves log likelihood. (Even if we don’t find
argmax in M-step!)

9

L(✓)

L(✓)

Maximum Likelihood Estimates
Supervised Learning for
1.  Language Models:

2.  HMM:

3.  PCFG:

10

qML(yi|yi�1) =
c(yi�1, yi)

c(yi�1)
eML(x|y) =

c(y, x)

c(y)

qML(� ! ⇥) =
Count(� ! ⇥)

Count(�)

qML(w) =
c(w)

c()
, qML(w|v) =

c(v, w)

c(v)
, qML(w|u, v) =

c(u, v, w)

c(u, v)
, . . .

Maximum Likelihood Estimates
Models:
1.  Language Models:

2.  HMM:

3.  PCFG:

What’s common?
è product of multinomials*!

*multinomials is a conflated term. “categorical distribution” is more correct 11

p(x1 . . . xn) =
nY

i=1

p(xi|xi�1)

p(x1 . . . xn, y1 . . . yn) = q(STOP |yn)
nY

i=1

q(yi|yi�1)e(xi|yi)

p(t) =
nY

i=1

q(�i ! ⇥i)

MLEs maximize Likelihood
Supervised Learning for
1.  Language
 Models:

2. HMM:

3. PCFG:

è Happens to be intuitive, we can also prove that
§  MLE with actual counts maximize log likelihood

§  MLE with expected counts maximize expected log likelihood

12

qML(yi|yi�1) =
c(yi�1, yi)

c(yi�1)
eML(x|y) =

c(y, x)

c(y)

qML(� ! ⇥) =
Count(� ! ⇥)

Count(�)

qML(w) =
c(w)

c()
, qML(w|v) =

c(v, w)

c(v)
, qML(w|u, v) =

c(u, v, w)

c(u, v)
, . . .

L(✓) =

X

i

log p(x

i|✓) =
X

i

log

X

y

p(x

i
, y|✓)

E

p(y|x)[l(✓)] =
X

i

X

y

p(y|xi

✓

t

)log p(x

i

, y|✓)

MLE for multinomial distributions
§  Let’s first consider a simpler case.
§  We want to learn parameters that maximize the (log)

likelihood of the training data:

§  Since it’s multinomial, it must be that

§  := count of used in the likelihood of training data
§  For example, for Unigram LM,

and := count (apple) in the training corpus

13

✓kck

l(✓) =

X

i

log p(x

i
) =

X

k

cklog ✓k

p(xi = apple) = ✓apple
ck

X

k

✓k = 1

MLE for multinomial distributions

14

§  Learning parameters for

 such that

§  equivalent to learning parameters for

§  lambda is called Lagrangian multiplier

§  You can add additional lambda terms: one for each equality constraint

X

k

✓k = 1✓ = argmax

✓

X

k

ck log✓k

argmax

✓

X

k

cklog✓k �min

�
�(
X

k

✓k � 1)

g(�, ✓) :=
X

k

cklog✓k � �(
X

k

✓k � 1)

encode constraint

g(�, ✓) :=
X

k

cklog✓k � �1(f1(✓)� C1)� �2(f2(✓)� C2)� ...

MLE for multinomial distributions

15

§  Learning parameters for

 such that

§  equivalent to learning parameters for

§  Find optimal parameters by setting partial derivatives = 0

§  We have MLE! -- can be generalized to a product of multinomials, e.g.,
HMM, PCFG. For each prob distribution that needs to sum to 1, create a
different lambda term.

§  “Lagrange Multipliers without Permanent Scarring”, Dan Klein (http://
www.cs.berkeley.edu/~klein/papers/lagrange-multipliers.pdf)

X

k

✓k = 1✓ = argmax

✓

X

k

ck log✓k

✓k =
ck
�

and � =
X

k

ck

min

�
max

✓
[g(�, ✓) :=

X

k

cklog✓k � �(
X

k

✓k � 1)]

When to use EM (or not)

16

§  The ultimate goal of (unsupervised) learning is to find the parameters θ
that maximizes the likelihood over the training data:

§  For some models, it is difficult to find the parameters that maximize the
log likelihood directly.

§  For such models, it is sometimes very easy to find the parameters that
maximizes the expected log likelihood. (Use EM!)

§  For example, there are closed form solutions (MLE) for models that are
in the form of product of multinomials (i.e., categorical distributions).

§  If optimizing for expected log likelihood is not any easier than optimizing
for log likelihood --- no need to use EM.

L(✓) =

X

i

log p(x

i|✓) =
X

i

log

X

y

p(x

i
, y|✓)

E

p(y|x)[l(✓)] =
X

i

X

y

p(y|xi

✓

t

)log p(x

i

, y|✓)

Other EM Variants

17

§  Generalized EM (GEM)
§  When exact M-step is difficult: finds θ that improves, but not

necessarily maximizes. Converges to a local optimum.

§  Stochastic EM
§  When exact E-step is difficult: Monte Carlo sampling. Will

asymptotically converge to a local optimum

§  Hard EM
§  When exact E-step is difficult: find the best prediction of the hidden

variable ‘y’ and put all the prob mass (= 1) to that best prediction.
§  K-means is Hard EM.
§  Will converge if improving the expected log likelihood of M-step.

